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Disorder solutions for Ising and Potts models with a field 
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Abstract. The exact expressions of the disorder varieties and the corresponding values 
taken by the partition functions of the checkerboard Ising and Potts models with a magnetic 
field are obtained. Different specialisations and extensions of these exact results are 
examined. 

1. Introduction 

In the framework of two-dimensional Ising and Potts models, few exact solutions (with 
an analytical expression for the partition function) are known, when the interactions 
include a magnetic field (for a review, see Wu 1982). Remarkable examples were 
provided in the case of anisotropic models on a triangular lattice, by Verhagen (1976) 
and Rujan (1984) for Ising and Potts models respectively. These solutions belong to 
the class of the so-called disorder solutions (Stephenson 1970, Welberry and Galbraith 
1973, Enting 1977, 1978). A local criterion to derive them in a simple way has also 
been given recently (Jaekel and Maillard 1985). Using the latter for the anisotropic 
Ising and Potts models with a magnetic field, we shall obtain the disorder varieties 
and the corresponding (rational) values of the partition functions for the checkerboard 
lattice. By means of an appropriate limit, these solutions will also provide those 
associated with the triangular lattice. 

When the number of spin states is greater than two, the case of the Potts model 
appears to be more restrictive (leading to a disorder variety of codimension two) than 
that of the king model (disorder variety of codimension one). Hence, we shall first 
try to give, as long as possible, a common treatment to both models, but when coming 
to the analytical evaluation of the disorder varieties and of the partition functions, we 
shall have to deal with each model separately. A second part will be devoted to the 
study of the symmetry properties of the solution and its various limits. 

2. Derivation of the disorder solutions 

The partition function per site 2 of the checkerboard Ising or Potts model with a 
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magnetic field can be written 

N 

z2”= 1 n w, (a )  
{U} n = l  

where a denotes the different spins, n an elementary generating cell and  w, its associated 
Boltzmann weight. ( In  the following, we shall make use of standard conventions, as 
indicated in the figure; a and c (resp. K ,  and K,) alternatively stand for nearest- 
neighbour interactions along columns, and b and d (resp. K 2  and K,) along rows.) 

The associated Boltzmann weight for the Potts model is given by 

w , ( a )  = a * ~ , ~ , ~ * ~ , U ~ ~ s u h U ~ ~ 6 U ~ U i ( ~ ~ ) * U i o ( ~ ~ ) b u ~ o ( ~ ~ ) * u k o ( ~ ~ ) * 0 ~ 0  

(U,, a], (+k, aI E Z,, z = ABCD; the partition function depends only on a, b, c, d and z )  
and for the Ising model 

W n  ( a )  = exp( Kl  ‘+,UJ K2UlUk + K ~ u ~ c T ,  + K ~ C T ~ U , )  

exp[( H4+ la,  + ( + H 2 )  a] + ( HZ + H7) a k  + ( H 3  + H4) a l l  

(a,, U,, (+k, aI = *l,  H = HI + H 2 +  H,+ H4; the partition function depends only on the 
K,’s and H). Note that these standard conventions imply different definitions of the 
zero of energy, so that the Ising model can be recovered from the Potts model at q = 2 ,  
but only after an  appropriate rescaling of the Boltzmann weight. One will also notice 
that, a priori, the only symmetries of the partition functions which follow from their 
definitions are those of the square ( a  - c, b - d  and a + b + c +  d + a, or K ,  t) Kt, 
K2t)K4,  K , +  K 2 +  K,+ K4+ K , ) .  

The local criterion (Jaekel and Maillard 1985) mentioned in the introduction can 
be stated as follows: when the following condition is satisfied 

independent of a,, aI ( A ( a ,  6, c, d ,  z )  for the Potts model; A ( K , ,  K z ,  K,, K,, H )  for 
the Ising model, the partition function per site is then given by 

( 2 )  = A 

The criterion just defined naturally singles out one of the four interactions ( d  or 
K,), But, of course, one can also introduce the similar criteria which single out the 
other interactions and  thus obtain four different disorder solutions. 
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In order to make explicit the equations implied by ( 1 )  on  the parameters of the 
model, it appears convenient to introduce q x q  matrices M,, the elements of which 
are given by 

M4( a, A)u,u, = Abu~Oa”~mJAbuJo. 

Equation ( 1 )  can be rewritten as 

M,(a, A )M, (b ,  B)M,(c ,  C )  = AM,( l /d ,  1 / D )  

M ,  ( a, A )  M ,  (b ,  B )  M ,  ( c, C ) M ,  (d,  D )  = A ( 2 - 1 ) ( 1 - q - d)l, 

or, using the identity: ( x - l ) ( l - q - x ) M , - ’ ( x ,  X ) = M q ( 2 - q - x ,  1 / X )  

( 3 )  

where d is equal to 2 - q - t / d  and U, denotes the q x q identity matrix. In  the case 
of the Ising model ( q  = 2 ) ,  because of a different definition of the Boltzmann weight, 
one has 

M2(a ,  A ) M 2 ( b ,  B ) M 2 ( c ,  C ) M 2 ( d ,  D ) =  -iAABCD(abcd)”’(d-1/d)l2 (4) 

with 
d = eln-2K4 

( 5 )  
a = eZKi b = e’&, c = e*K, 

A = B = eZH2, c = e’Hi, D = e’H4. 

In the q > 2 case, the matrix M,( a, A )  can be reduced by conjugation to the product 
of a diagonal matrix ( a  - 1 ) 8 , - 2  and of a 2 x 2  matrix. (Here, we make use of a discrete 
Fourier transform over Z, which takes into account the identical roles played by 
the ( q  - 1 )  spin states different from zero): 

[ ( q  -qq:”A a + q - 2  
m (  a, A )  = 

Therefore equation ( 3 )  is equivalent to the following system of equations 

m(  a, A ) m (  b, B ) m (  c, C ) m (  d, D )  = A ( d  - 1 ) (  1 - q - d)U, 
and (the relation on the diagonal part leading to a unique equation): 

(6) 

( a  - l ) ( b  - l ) ( c -  1) 
A =  1 - 9 4  ( 7 )  

(Then, the case of the Potts model ( q  > 2 )  differs from the Ising one ( q  = 2 )  by the 
presence of an  additional equation: ( 7 1 . )  In any case, the value of A (and  therefore 
of the partition function per site) is extracted from the matrix equations (4) or  (6) by 
taking the determinant (det m ( a ,  A )  = ( a  - l ) ( a  + q - 1)A’); for the Potts model ( q  > 2 )  

(8) 
- 2 ( a  - l ) ( a  + q -  l ) ( b -  l ) ( b + q -  l ) ( c -  l ) ( c + q -  1 )  A - 2  

( 1  - l / d ) ( l - q -  l / d )  

and for the Ising model ( q  = 2 )  (det M,(a, A )  = ( a 2 -  1)A’) 
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The equations of the disorder variety are obtained through elimination of A, B, C, 
D (with the constraint z = ABCD) in the following matrix equation 

m ( a ,  A ) m ( b ,  B )  = A m ( 6 ,  D)-’m(c ,  C)- ’  

A = A ( d - 1 ) ( 1 - - 6), for q > 2  (10)  

A =  -iAz(abcd)’’2(6- l /d ) ,  for q = 2. 

One remarks that, in this equation, the equality of the off-diagonal terms is provided 
by the irrelevant ratio A / B  (or  C I D )  and by the equations (8) or  (9). The equality 
of the diagonal elements (that depend only on AB and C D )  then leads to the desired 
(unique) equation 

In the Ising case, this can be given in the following form 

16abcd(a2-  1) (  b2-  1) (c2  - l ) (d2-  l ) ( z  - 1 ) 2 [ ~ b ~ d (  Z +  1 ) * - 4 ~ ]  

= z2f(a ,  b, c, d ) g ( a ,  b, c, d ) g ( a ,  c, d b ) g ( a ,  6, b, c)  
with 

f(a,  b, C, 6)= ( a  - l ) ( b -  l ) ( c -  1 ) ( 6 -  1 )  - ( a +  l ) ( b +  l ) ( c +  1 ) ( d +  1) 
and 

g(a,  b, C, d ) = ( a  - l ) ( b  - l ) ( c +  1 ) ( 6 +  1 )  - ( a  + l ) ( b +  l ) ( c  - 1 ) ( 6 -  1). 

Thus, to sum up, on the variety of codimension one defined by equations ( 5 )  and (1  l ) ,  
the partition function per site is given by (2)  and (9). In the Potts case ( q > 2 ) ,  the 
disorder variety is characterised by two equations: one is obtained by eliminating A 
between equations ( 7 )  and (8), and expresses the magnetic field in terms of the 
interactions of the model 

and the other one can be made independent of z by substituting the z value (12) into 
the unique equation derived from the matricial equation (10): 

A ,(A 2pAc q 2 A  D) = 0 (13) 

p = ( a  - l ) ( b  - l ) ( c  - l ) (d-  1) + ( a  + q - l ) ( b +  q - l ) ( c  + q - 1 ) ( 6 +  q - 1)  
where 

- q h D = ( U  - l ) ( b - l ) ( C -  1 ) ( 6 - 1 )  - ( U  4 - l ) ( b +  - l ) ( C +  - 1 ) ( 6 +  - 1) 

( A D  = 0 gives the disorder variety of the model without a field (Baxter 1984)) 

hc = A D  - q [ a  4- b + C +  d +  2( - 2)] 

(and A c  = 0 gives the critical variety of the model without a field (see for instance 
Hintermann et a1 1981)). Restricted to this disorder variety, of codimension two, the 
partition function is given by (2)  and ( 7 ) .  

3. Symmetry and different limits 

One merit of the previous matricial translation of the local criterion is to treat the four 
interaction couplings on an  equal footing (see equations (3), (4)  for instance) once d 
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is replaced by d. Curiously, the expressions of the disorder varieties appear to be 
completely symmetric under all permutations of the four variables a, 6, c and d (see 
equations ( l l ) ,  (12), (13)). Technically, this unexpected result can be understood in 
the following way: there exist changes of the local fields Hi (A, B, C, D), which map 
the problem onto an equivalent one, where two of the coupling constants K ,  (a, 6, c, 
6) have been permuted, while the value of the total magnetic field remains unchanged 
( z  fixed) 

m(a,  A ) m ( 6 ,  B )  = m(6,  B’ )m(a ,  A’) 

with A B = A ‘ B ’ .  As a consequence, and because equations (7) and (9) are also 
symmetric under the permutations of a, 6, c, the disorder solutions finally exhibit a 
complete S,  symmetry. As already remarked at the beginning of the previous section, 
one can change the coupling constant that is distinguished in the expression of the 
local criterion (here d ) ,  and then obtain a set of disorder solutions which is invariant 
under the S4 symmetry (all permutations of a, 6, c, d ) .  Arguments have been given 
elsewhere that support the idea that this last symmetry could be valid in general, for 
the whole partition function of the model with a magnetic field, and not only when it 
is restricted to the disorder varieties (Jaekel et a1 1985). 

One advantage of dealing with an anisotropic model on the checkerboard lattice 
is that it also provides simultaneously solutions for various kinds of other lattices or 
models. For instance, the c + w ( K 3 + m )  limit allows one to recover the disorder 
solution for a model on a triangular lattice (for the Ising model see, for instance, Jaekel 
and Maillard (1985) with the following substitutions: t ,  = ( a  - 1 ) / (  a + l ) ,  t 2  = 
( 6 - 1 ) / ( 6 + 1 ) ,  - 1 / t 4 = ( d - l ) / ( d + 1 ) ,  and the change of H into 2 H ) .  For the Potts 
model (q > 2), the condition (13 )  factorises in this limit into: ALA: = 0, i.e. the union 
of the already known disorder variety (Rujan 1984) ( A D  = 0 and z = 1) and of the 
critical variety (Baxter et a1 1978) of the same model, but without a field 

ab+ ad+ bd+ ( 9  - 2 ) ( a  + 6 +  d ) +  ( q  - l ) ( q  - 3 )  = 0 

e ~ 6 d  - ( U  + 6 + d )  - ( 4  -2 )  = O  

and z given by 

U - 1  6 - 1  d ( l - q ) - l  
z2 = - ~ 

a + q - l b + q - l  d - 1  ‘ 

On this variety, the partition function is given by 

( U  - l ) ( b -  1 )  z =  
(lid - 1 )  . 

In fact, as is shown by equation (13) ,  for the checkerboard Potts model, the disorder 
variety has two (in general) irreducible components: one being the already known 
disorder variety for the model without a field (Baxter 1984) ( A D = O  and z =  l ) ,  and 
the other one being of a quite high degree 

h:A~+Z/.dc+ q2hD=0. (15 )  

Let us just remark that this last variety shares a common intersection with both the 
disorder and the critical varieties ( A D = O ,  A c = O )  of the checkerboard Potts model 
without a field. Besides the already mentioned triangular lattice, there are still other 
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cases when (15) can be reduced. The honeycomb lattice limit ( c  -+ 1) is one of them 
( K 3  + 0): 

A D (  h c +  q)*  = 0 

and another one is given by the limit c -+ 1 - q ( K ,  + in): 

A D ( A c -  q ) 2 = o .  

Moreover, other examples of disorder solutions for Potts (or Ising) models with a 
magnetic field can also be obtained by means of the same technique. We shall only 
mention the use of the solution on a triangular lattice to deduce two others. One 
corresponds to the checkerboard Potts model, but now with an inhomogeneous field, 
acting on only one half of the spins (those of types vi and (+k in the figure). The 
disorder variety is still of codimension two: one of its two equations identifies with 
the criticality condition for the checkerboard Potts model without a field: 

A c = O  G ( 4  - 1)( - 3 )  
= abed - ( 4  - 2 ) (  U + b + C +  d )  - ( a b  + uc + ad + bc + bd + c d ) .  

The other equation still gives the expression of the field in terms of the four coupling 
constants 

U - 1  b - 1  C - 1  6-1 
~ + q - l  b + q - I  ~ + q - l  d + q - l ’  

z=--- 

Restricted to this disorder variety, the partition function is given by ( 2 )  and ( 7 ) .  
Another one corresponds to the anisotropic KagomC-Potts model, with interactions 
a, b, d along the three different directions, and with a magnetic field (the exponential 
of which is given by z) .  One gets a disorder variety of codimension two again: one 
equation identifies with the criticality condition for the triangular Potts model (14), 
while the other expresses the magnetic field as a rather complicated function of a, b 
and d. The expression of the partition function on this disorder variety is then 

4. Conclusion 

One merit of the disorder solutions is to exhibit, rather simply, some features of the 
models. In particular, the S,  symmetry (which, when restricted to each of the disorder 
solutions, reduces to an S,  symmetry), that appears in the Potts model without a field 
can be confirmed by other exact solutions (at criticality and for q = 2 ,  q + O )  and 
expansions (large q, high temperature.. .). The presence of a magnetic field seems to 
preserve this unexpected S,  symmetry of the checkerboard Potts model. 

The same criterion (3) is easily generalised to other discrete spin models, with a 
magnetic field, but it is then more difficult to put into evidence the S3 symmetry, on 
other models than the scalar Potts model. This, and also the algebraically simple 
character of the disorder solutions, emphasise the remarkable analytical structure of 
the partition function of the Potts model, even in the presence of a magnetic field. 
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