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Abstract. We show that at the disorder variety, the n-point correlation functions of the 
checkerboard Potts model have a simple causal structure, and decay as simple exponentials 
for space-like separations. An exact expression for the susceptibility in the king case is 
obtained. The result is additional evidence in favour of the conjectured S, symmetry of 
the checkerboard Potts model in the presence of a finite field. 

The study of equilibrium statistical models restricted to disorder varieties (Verhagen 
1976, Enting 1977, Peschel and Emery 1981, Dhar 1983, Rujan 1984, Jaekel and 
Maillard 1984, Baxter 1984) has been a topic of much interest in recent years. The 
disorder surfaces are special algebraic varieties (point sets satisfying one or more 
algebraic equations in their coordinates) in the parameter space of the Boltzmann 
weights of the model, for which the partition function can be calculated quite easily, 
and has a simple algebraic structure. On these varieties (called disorder varieties 
hereafter), the configurations of the d-dimensional model may be considered as time 
histories of the probabilistic evolution of a ( d  - 1)-dimensional model, and thus these 
models are also interesting in the context of non-equilibrium statistical mechanics. 

For two-dimensional models with reflection symmetry in disorder varieties, it is 
known that intra-row correlation functions have a simple exponential form (see 
Stephenson (1970) for the triangular Ising model and Baxter (1984) for the checker- 
board Potts model). In this letter, we extend these results and show that correlation 
functions at disorder vaeeties have a simple causal structure, and the correlation 
functions are simple for space-like separations. For two-dimensional models, the 
correlation functions for space-like separations are simple exponentials. 

The simple form of correlation functions at the disorder variety suggests the 
development of a systematic perturbation theory around these remarkable varieties. 
As a first step towards this goal, we have calculated the susceptibility of the Ising 
model on the checkerboard lattice (which includes as a special case the triangular 
lattice) restricted to the disorder variety. We note that the exact expression for 
susceptibility is not known for any of the two-dimensional ferromagnetic Ising models. 
It has been calculated exactly only for some very special models, i.e. the super-exchange 
model (Fisher 1960) and a triangular Ising model with some one, two and three spin 
couplings (Enting 1977). 

The expression for susceptibility has an unexpected S3 symmetry, which is the 
remainder of a more general S4 symmetry conjectured to hold for the checkerboard 
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Potts model for arbitrary q and finite fields (Jaekel er a1 1985). Our calculation is thus 
additional rather strong evidence in favour of the conjectured symmetry. 

Using the local criterion of Jaekel and Maillard (1985) we first show that the 
correlation functions of the checkerboard Potts model at the disorder variety have a 
simple exponential behaviour with distance for space-like separations (see also Enting 
( 1978)). 

Consider the scalar q-state Potts model on the checkerboard lattice. The Boltzmann 
weight of a small square with boundary spins a, p, y and 6 is W ( a ,  p, ’y, 6) (figure 1) 
given by 

W a ,  P, 6, Y )  = exp(Kl aa,@ + K26,,, + + K466,0). 
The Boltzmann weight of a configuration of spins is defined as the product of 

Boltzmann weights of all the black squares of the checkerboard. Of course, equivalently 
we may define it as the product of weights of all the white squares (this corresponds 
to an interchange of K ,  with K, and K 2  with K4). 

Figure 1. The nearest-neighbour couplings for the spins (I, p, y, 6 at the four corners of 
an elementary black square of tl-e checkerboard lattice. 

The local criterion of Jaekel and Maillard is as follows: if the Boltzmann weights 
W are such that c W a ,  P, 796) = A  ( 1 )  

@.Y 

independent of the choice of a and S, then the partition function per site is A I / * .  To 
derive this result, we need only note that for a finite lattice with particular boundary 
conditions, integration over the spins in the topmost row gives rise to a factor A for 
each black square, and the same boundary conditions are reproduced for the next 
topmost row. Since the partition function is insensitive to the choice of boundary 
conditions, the result follows. For the checkerboard Potts model, the disorder condition 
(1) simplifies to 

e-% - 1 - eKI-l e%-1 e%-1 
e-K4+q-i eKl+q- l  e % + q - I  e q + q - I  

- 

and the partition function per site A I ”  is given by 

(eK! - l ) ( e s -  I ) ( eq  - 1)eK4 ( 1 -eK4 ) A = 

We define a space-like line on the checkerboard lattice as a sequence of steps in 
which each horizontal step is directed rightwards, and each vertical step (upwards or 
downwards) is preceded by a horizontal step on a K 2  bond. A set of sites is called 
space-like separated if there exists a space-like line going through all of them. 
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To find the correlation functions along a space-like line, we integrate from the top 
row of spins downwards recursively 'eating away' the black squares, and from the 
bottom layer upwards by integrating over white squares. In this way all sites of the 
lattice are eaten away, except for the ones on the line. Clearly, all correlation functions 
for space-like separated points are the same as those on a line (i.e. one-dimensional). 
For the Potts model, these are known to have a simple product form and can be written 
down by inspection. For example, the two-point function (q(8u,,uR) - l ) / (q  - 1)  is just 
the product t ; l t ; z t ; 3 Q ,  where n,, n2, n, and n4 are just the numbers of bonds of type 
1, 2 , 3  and 4, respectively, in the space-like path connecting the two points, and 
t ,  = (eKi - l)(eKi + q - l)- '  for i = 1,2,3, and f4= l)(e-K4+ q - l)- ' .  The effective 
coupling constant for bonds of the type 4 is (-K4) and is reversed in sign because a 
K4 bond on the space-like path appears in the integration of the black squares above, 
as well as the white squares below. 

This 'causal' structure of n-point functions at the disorder variety is clearly generalis- 
able to higher dimensions, and is related to the fact that these models are equivalent 
to stochastic evolution models with local interactions. The simple exponential fall-off 
is specific to two-dimensional models. 

Calculation of correlation functions for non-space-like separations is not so simple. 
Integrating over as many spins as possible from above as well as below, we are still 
left with a number of unintegrated squares (figure 2). While for small separations 
these may be evaluated by brute force, an analytical solution for arbitrary separations 
is not possible. We are thus unable to calculate the susceptibility for the general Potts 
model. In the Ising case, the problem simplifies and an exact calculation for the 
susceptibility can be done. 

(cl) Ibi 

Figure 2. Calculation of two-spin correlations at the disorder variety. The squares that 
can be integrated over trivially are crossed out. ( a )  For space-like separations, only spins 
on the dark line remain unintegrated. ( b )  For non-space-like separations the spins inside 
the region enclosed inside the dark lines also remain unintegrated. 

The disorder condition for the checkerboard Ising model is given by 

t ,  t,?, + f4 = 0 (2) 
where t i = t a n h K i ( i = l ,  . . . ,  4). 

The sites of the checkerboard lattice can be divided into two sublattices, to be 
called the even and odd sublattices. At zero field each lattice has zero magnetisation. 
Let h GOdd( R )  be the magnetisation induced at the site ( a + R )  if an infinitesimal field 
h is imposed at an odd site a. The correlation function Geven(R) is defined similarly. 
By symmetry 

G o d d ( R )  = Geve"(-R).  (3) 
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The susceptibility x is given by the relation 

x = c Godd(R) = Geve"(R). 
R R 

Let Atodd( Y )  and Aeve"( Y )  be the induced magnetisation at the odd and even sites 
with ordinate Y, respectively, when an infinitesimal field h is introduced at all sites 
on the X axis (ordinate 0): 

+m 

Ata(Y)=h  c [Geve"(2m, Y)+Godd(2m-1,  Y ) ]  (4) 
m=--00 

where a is even or odd according to whether Y is even or odd. A similar equation 
holds for At"'( Y ) ( a ' #  a ) .  

Using equation (4) we get for small fields 

( 5 )  
1 

x = - [At Odd( Y )  + Ateve"( Y ) ] .  
2h  y=--00 

The calculation of Atodd( Y )  and Aevcn( Y )  is straightforward. Eating away the black 
squares above the row with ordinate Y gives a factor A independent of the configuration 
of spins at row Y. Hence ( P )  and ( y )  are the same as their value if all the black 
squares above the row containing spins P and y were absent. Let Z ( a ,  6) be the 
restricted partition of the lattice excluding the interactions between the spins a, P, y 
and 8, with spins a and S held fixed, and integrating over all other spins. From the 
definition of equilibrium averages we get 

( P )  = ( c P W ( a ,  P, x S ) Z ( a ,  8)) ( c W ( a ,  P, 3: S ) Z ( a ,  8)) - I  ( 6 )  
a.P.v.6 %%Y16 

where 

w(a, PI 7, 8) = ( 1 + t i  

c P W a ,  P, x 8) = 4 [ ( t l +  t2 t , f 4 ) 0  + ( t 2 t 3 +  tl f 4 ) S I  

)( 1 + t2 @?'I( 1 + t 3  $)(1+ t4a8) (7) 

and a, P, y and S are Ising variables taking values * 1 .  Using the relations 

P ,  Y 

and 

w(a, P, 'Y, a ) Z ( a ,  8) =4(1+ $ 1  f 2 f 3 f 4 ) Z ( a 3  8) 
%P,Y*S 

we get 

( P ) = [( t l  + f2 f3  f4)( a )  + ( t2 t3 + t l  f4)( 1 + t l  t2 t3 t4)-'. (8) 

The expression for ( 7 )  in terms of ( a )  and (8) is written down by symmetry. This 
shows that Atadd( Y )  and Ateve"( Y )  are linearly related to Atodd( Y - 1)  and Ateven( Y - 1). 
Writing in a matrix form ( Y 3 1 )  

1 [ Atodd( " 3  = T [ Atodd( Y - 1)  
Ateve"( Y )  Ateven( Y - 1) 

where T is a 2 ~2 matrix: 

(9) 
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From equations (9) and ( 5 )  we get 

It is easily shown that 

Substituting in equation (1 1) we get finally 

L387 

(11) 

whose T is given by equation (10). 
The expression for ,y is clearly invariant under the interchange of t l  and 1,. However, 

there is a strong evidence that the partition function of the checkerboard Potts model 
for any odd and even line in the presence of a finite field has an unexpected S4 symmetry 
with respect to any permutation of the four variables t l ,  t2, t ,  and t4 (Jaekel et a1 1985). 
If this conjectured symmetry is exact x should be invariant under arbitrary permutations 
of t , ,  t2 and t ,  (since t4 is singled out by the disorder criterion). This symmetry is far 
from obvious by inspection of equations (10) and (12). However, a complete evaluation 
of the matrix element in equation (12) gives a rather compact expression for x (we 
used the symbolic manipulation program REDUCE (Heam 1984) to handle the rather 
tedious algebra) on the disorder variety 

when 

t ,  t 2  t ,  + t4 = 0. 

The result is manifestly symmetric under all permutations of t l ,  t ,  and 2,. As a check 
on the calculation, we have verified that ,y agrees with the high temperature expansion 
for the susceptibility of the checkerboard Potts model (Syozi and Naya 1960) up to 
seventh order in ti. 

A disorder solution for the checkerboard Ising model can also be obtained in the 
presence of a finite field (Jaekel and Maillard 1985). This does not allow a direct 
calculation of the susceptibility as one is obliged to take derivatives only along the 
disorder surface. Knowing the derivatives in a non-tangential direction (say, along 
K,) the calculation of susceptibility is, in principle, possible, but is much more 
complicated than the treatment above due to the complicated equation of a disorder 
surface in the presence of a finite field. 

The unexpected simplicity and symmetry of the expression for susceptibility is 
additional strong evidence in favour of the conjectured S, symmetry of the partition 
function of the checkerboard Ising model in the presence of a finite magnetic field. 
In the absence of an external field, Bhazanov and Stroganov (1985) have shown that 
it is related to a 'hidden' SL(2, R )  symmetry of the vertex version of the model. In 
the presence of a finite field the symmetry is even more subtle, and deserves further study. 

The simple structure of the n-point correlation functions should help in developing 
a systematic perturbation theory about the disorder solutions. We showed that the 
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expression for susceptibility for the two-dimensional Ising model at the disorder point 
is a simple rational expression in the high temperature variables. Does a similar result 
hold for the checkerboard Potts model? 
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