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Abstract 

We analyse the properties of  a particular birational mapping of  two variables (Cremona trans- 
formation) depending on two free parameters (e and ~), associated with the action of  a discrete 
group of  non-linear (birational) transformations on the entries of  a q × q matrix. This mapping 
originates from the analysis of  birational transfomaations obtained from very simple algebraic 
calculations, namely taking the inverse of  q x q matrices and permuting some of the entries 
of  these matrices. It has been seen to yield weak chaos and integrability. We have found new 
integrable cases of  this Cremona transformation, corresponding to the values of  ~ = 0 when 

_ _  I 1 e -  3, 7, +1, besides the already known values e = 0 and e = - 1, and also arbitrary ct when 
e = 0. For these cases, one has a foliation of  the parameter space in elliptic curves. We give 
the equations of  these elliptic curves. Based on this very example we show how one can find 
these integrability cases of  the Cremona transformation and actually integrate it using a method 
based on the systematic study of  the finite-order conditions of  the Cremona transformation. The 
method is shown to be efficient and straightforward. The various integrability cases are revisited 
using many different representations of  this very mapping (birational transformations, recursion 
in one variable . . . .  ). 
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1. In troduc t ion  

In previous papers, birational representations of  infinite discrete symmetry groups 
generated by involutions, having their origin in the theory of  exactly solvable models 
in lattice statistical mechanics [ 1 ~ ]  have been analysed. These involutions correspond, 
respectively, to two kinds of  transformations on q x q matrices: the inversion of  the 
q ×: q matrix and a permutation 2 of  the entries of  the matrix (corresponding to the 

parameter space of  the model). 

The set of  such transformations is very large, as large as the number of  permutations 
of  q2 elements: we have thus restricted ourselves in previous publications [7-10] to 

elementary transpositions and shown that this restricted subset of  mappings falls in 

six classes [7 9] for q~>4. For q = 4  three of  these six classes (denoted l, II and III) 
are integrable 3 mappings, their iterations giving algebraic elliptic curves [1 1]. The 
three other classes, even when the mappings are not integrable, do present remark- 

able properties: their iterations lie on (transcendental) curves for most of  the initial 
points. These mappings exhibit many of  the well-known chaotic features of  discrete 
dynamical systems. However, for class IV one even has an integrable subcase (on 

some codimension-one algebraic variety) with again algebraic elliptic curves. One has 
also associated with these mappings in CPd_I (entries of  q x q matrices) a hierarchy 

of  non-linear recursions bearing on a sim, tle variable which enables to cross-check the 

numerical and analytical analysis [8]. 
We will specifically consider in this paper the birational transformations of  q2 _ 1 

variables of  class IV [7,8]. This class, though it is not generically integrable, is quite 

regular (very weak chaos) and actually exhibit two integrable subcases. It has thus 

been called "almost integrable" [7]. 
The corresponding birational transformations on q2 _ 1 variables (q arbitrary) can 

actually be associated with birational transformations in a plane (Cremona transforma- 
tions [12]). Based on this very example, we will show how one can find the integra- 
bility cases of  this Cremona transformation and actually integrate it. We will use a 

method based on the systematic study of  the finite-order conditions of  the Cremona 

transformations. 
In a forthcoming publication, we will analyse these Cremona transformations, be- 

yond the integrability cases, concentrating again on the analysis of  the cycles of  the 

transformations. 

2 Most of the time, the permutations considered in [7-10] are involutive. 
3 Only class 1 is integrable for arbitrary value of q [9]. 



588 S. Boukraa et al./Physica A 240 (1997) 586-621 

2. Recalls 

To set up the notations, let us consider the following q x q matrix: 

rol l  m12 m13 m14 • • • 

/ m 2 1  m22 m23 m24 - ' -  

R q =  / m 3 1  m32 m33 m34 - ' -  ( 2 . 1 )  

~ m ?  l m 4 2 r n 4 3 m 4 4 " ' ' .  . . . . .. 

Let us introduce the following transformations, the matrix inverse I" and the homo- 

geneous matrix inverse I: 

I: Rq ---+ Rq I and I: Rq ---+ Rq I • det(Rq). (2.2) 

The homogeneous inverse I is a polynomial transformation on each of the entries mij 
which associates to each mij its corresponding cofactor. In the following, t will denote 

an arbitrary transposition of two entries of the q x q matrix, and t i j-~ will denote the 

transposition exchanging mij and mk/. The two transformations t and I are involutions, 
whereas the homogeneous inverse verifies i 2 =  (det(Rq))q-2 Jd,  where J d  denotes the 

identity transformation. We also introduce the (generically infinite order) transforma- 
tions K = t. 1 and K = t-I'. Note that K is a (homogeneous) polynomial transformation 

on the entries m~j, while transformation K is clearly a rational transformation on the 
entries mij. In fact, K is a birational transformation since its inverse transformation 
is I ' .  t which is also a rational transformation, in the following, we will also consider 
transformation ~-2 for itself (see Section 2.2.2). It will be denoted k. 

2.1. Class I 

The most remarkable example corresponds to the birational transformations of  class I 

[7,9]. One representative of  such class is, for example, permutation t12-21. The corre- 
sponding mappings are integrable and present factorization properties for the iteration 

of the homogeneous transformation K as well as (integrable) recursions on some ho- 
mogeneous polynomials. 

Let us first consider the successive matrices obtained by iteration of the homogeneous 
transformation K on a generic q x q matrix Rq (see (2.1)) and the determinants of  
these various matrices: 

M 0 = R q ,  M1 =K(M0),  f l  = det(M0). (2.3) 

Remarkably, the determinant of matrix M1 factorizes enabling us to introduce a homo- 
geneous polynomial f2: 

det(Mj ) 
f 2 - -  f q - 3  (2.4) 
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Again, f q  4 also factorizes in all the entries of  the matrix K(M1 ), leading to introduce 

a new "reduced'matrix M2: 

X ( M I  ) 
M 2 - -  - -  

f ~ - ~  • 
(2.5) 

In fact, similar factorization properties are true at any order. Generally, for n ~>1 and 
q/> 4, one has 4 

K(Mn+2 ) det(M,,+ 2 ) 
Mnq-3 = .sf'qn 2t"2d ,+l f q+4 ,  .l'~ ~s = f q - '  j.3,,+, f,,+2q-3 ' (2.6) 

and the following relation independent o f  q: 

h*(M,,+2 ) - K(M,,+2) _ Mn+3 
det(Mn+2 ) fnfn+l f,,+2 fn+3 (2.7) 

One important consequence of  these factorizations is to introduce the homogeneous 

polynomials Jl,. These polynomials do verify, independently q[' q, a whole hierarchy 

oJ" non-linear recursion relations [9] such as 

• " 2  ~ • ~ " +~ 
- fn+a.fn+l , / ' ,J  ,,+3 J , - I f ~ + ,  - J,,+3,/7, 

( 2 . 8 )  
. / ) I - I . ~ l + 3 f n + 4  - -  . £ l f n + l  f n + 5  = f l T - - 2 f n + 2 f ,  l+3 --  fn - I .~ l . )Cn+4  

or, for instance, among many others: 

.l)l+ 2 2 . . . .  2 " 
- - . / , , + 3 ]  , + 4 L , + 7  fn+2f n+3fn+6 f,,+2f T,+SJ,,+6 i f  n+4fn+5 _-- (2.9) 

2 2 "> • 2 ' 
--  -- . ln+l .rn+5 f , , +  6 f , + 2 . L , + 3 f n + 7  . £ , f n + 4 f , , + 5  f n + 3 f n + 4 f n + S  

Let us introduce here variables [9,8] corresponding to the iteration of  the inhomoge- 

neous transformation K: 

x,, = det(K" (Mo)) det(K'+l (Mo)) .  (2.10) 

The x,,'s also satisfy recursion relations, for instance, 

Xn+l -  1 x , , -  1 
R l "  = " x n - l X n + l  • (2.11 ) 

XnXn+lXn+ 2 --  1 X n _ l X n X n ~  I --  1 

Relation RI is actually equivalent to 

R2: x,,+2 -- 1 _ x,,+t -- l 2 (2.12) 
Yn+lXn+3 -- 1 - - X n X n +  2 -- 1 "XnXn+2" 

These factorizat ions  and recursion relations tvere shown in [9] to hold true f o r  arbi- 

trary q × q-matr ix  Jor permutat ions o f  class I. 

4 Because of  factorizations (2.6) one can see that the iteration of  the homogeneous transformation K yields 

a polynomial  growth of  the complexi ty  of  the calculations: the degrees of  the determinants of  matrices M,,'s, 

as well as the degrees of the polynomials  f,+'s are quadratic expressions q [ n  [8,9]. 



590 S. Boukraa et a l . /Phys i ca  A 240 (1997)  586-621  

2.2. Class IV 

Another interesting class of birational transformations, called "class IV", also 
emerged in such study. It also exhibits recursions on the x,'s and integrability, but 
not generically as this is the case for class I. It can thus be seen as an excellent 
"laboratory" to analyse the "frontier" between integrability and chaos. A typical repre- 
sentative of this class is given by permutation t12-32. 

2.2.1. Factorization properties 
The factorizations corresponding to the iterations of transformation K detailed in 

Section 2.1 (see Eqs. (2.4)-(2.7))  for class I, now read for class IV, for arbitrary n: 

det(Mn) . . . . .  f,+~ ( fq -2  f ,_~ fq-~  fn-3)2 

q -  2 6. 
"(fn--4 fn--5 f q ~  2 • " " f . - - Y ) ' ' ' f l  ' 

(2.13) 
q-2  q -3  

g ( M n )  = M.+, . ( f q - 3 .  f.-2" f n - 3 ) "  ( f n - 4 "  fq-~" f ~ - 7 )  

q 3 q--2 f~,,, "( fn-8  " fn-lO" f n - l l ) "  "" 

where 6, and (.  depend on the 
period four. One notes that the 
is different from relation (2.7): 

truncation. These factorizations have a periodicity with 
following factorization independent of  q occurs, which 

( f n + 2 - - f n - - l f n + l )  f n  6fn-- lOfn--14 ' " ' 

( f n  - -  f n - - 3 f n - - 1  ) fn - -4 fn - -8 fn - -12  " ' " 

f n ( f n - - l f n - - 5 f n - - 9 " "  ") - -  ( f n + l f n - - 3 f n - - 7 " '  ' )  

= f n - 2 ( f n  3 f n - - 7 f n - - l l  " ' ' ) - - ( f n - - l f n - - S f n  9 " ' ' ) "  ( 2 . 1 5 )  

Though, one does not have recursions on the f . ' s  but "pseudo-recursions" such as 
(2.15), the previous variables x.'s (see (2.10)), remarkably satisfy again a hierarchy of  
very simple recursions [7-9]. As for class I, the recursions on the x, 's  are independent 
of  q [8]. The most simple one reads 

Xn+3 --  1 Xn+ I - -  1 
: " XnXn+3 • (2.16) 

Xn+2Xn+ 4 --  1 XnXn+ 2 --  1 

For completeness, let us remark that, for the simplest case of 3 × 3 matrices, there 
actually exists non-involutive permutations ~ yielding recursion (2.16) for K = ~ .  I', 

K(M,)  = K(Mn) Mn+l 
det(Mn) - f l f 2 " "  f , f ,+ l  " (2.14) 

Remarkably, the polynomials f~, for class IV, not only satisfy this additional factor- 
ization relations but actually satisfy, for arbitrary q, exact relations, as, for 
example, 
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as, for example, 

m m2 m3) m3 m2)  m22 m2 m23) 
m2, m22m23-  m3, m33m32 or  m3,  m32 

m31 m32 m33 \ m22 m23 m21 \ m13 ml l  m12 

(2.17) 

The first permutation is the product of  a 4-cycle and of  two involutions. The second 

one is a transformation of  order six, product of  a 6-cycle and of  a 3-cycle. 

2.2.2. Class I V  as a mapping of  two variables 
Studying the iteration of  K in the (q2 _ l)-dimensional space CPq2_ l (corresponding 

to the entries of  q x q matrices), one can show that the associated orbits actually 
belong to remarkable two-dimensional subvarieties, namely planes [7,8]. This can be 

easily seen since one has, for any value of  n, the following relation between matrix 
M0 and its even iterates: 

~'2n(M0) = a 0 "  M0 q- al • K 2 ( M 0 )  q- a2 • ~ '4 (Mo)  (2 .18)  

showing that the orbits o f  ~2n lie in planes (depending non-trivially on the initial 
matrix M0, that is, of  a point in a (q2 _ 1)-dimensional space). Note that this property 

is also valid Jor the two non-involutive permutations (2.17). 

More precisely, for transposition tl2_32, one can recursively show [7,8] that the suc- 
cessive iterates of  ~-2 on a generic (initial) matrix M0, can be written in the following 

way: 

~2n(M0) = 1 . ( M o + a n F + b n P ) ,  (2.19) 
No X2 • • • X2n--  2 

where matrix P denotes the constant q x q matrix with entries P[1,2] = 1, P[3, 2] -- - I, 
P [ i , j ] - 0  for ( i , j )  ¢ (1 ,2)  or (3,2),  and F denotes a q x q matrix, quadratic in the 

entries of  matrix M0 (F [ I ,  1] ~-mzlm13 - - m l l m 2 3  . . . .  ): F does depend on Mo, but not 
on the order n of  the iteration. In other words, all the iterates of /~2 lie in a phme 

which depends on the initial matrix Mo. This plane is led by two vectors, namely 
a fixed vector P and another one F, depending on the initial matrix. Note that, for 

the first non-involutive permutation (2.17), one also has a simple constant matrix P, 
namely P[3, l ] =  1, P[3,3] = - 1, P[i,j] = 0  for ( i , j )  ~ (3, l)  or (3,3).  

Inside these planes, the orbits look like curves for many of  the trajectories (see [7]). 
From recursions (2.16) one may have the "prejudice" that the orbits of  transformation 
~2 in CPq2_ I should be curves. In fact, it has been shown in [7,8] that, in some domain 
of  the parameter space CPq2_ l, these orbits are no longer (transcendental) curves but 
may become chaotic set of  points. 

These calculations amounts to considering transformation k =  ~2 as a (birational) 
transformation in two variables (a,b). In fact, recalling the xn's (determinants of  the 
iterates of  M0), one can also represent, and analyse, transformation k as recursions on 
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the xn's (see (2.16)). At first sight it is not completely obvious that the integrability of  
(seen, for instance, as a birational transformation in the two variables (a,b)) should 

automatically yield an integrability of  the recursions on the xn's since a determinant 

does not contain all the "informations" on the entries of  the matrices. 
Let us consider the variables xn's defined by (2.10) or more precisely the homo- 

geneous variables q,' 's, x,  = q~+2/q,. One then has q2, =x0x2 . • . X 2 n - 2  " q0 and also 
qe,+l =xlx3 . . .x2n-l 'ql .  Clearly, q0 and ql are two arbitrary homogeneous quantities. 
From recursion (2.16) bearing on the x,,'s, one gets 

qn+6 - -  qn+2 qn+4 -- q, (2.20) 
q,+3q,+5 ' (q,,+3 -- qn+s) -- qn+lqn+3 " (qn+l -- qn+3) 

which can be partially integrated (see Eq. (8.18) in [7]) as follows: 

22 /~1 
q2n+2 q - q 2 n  q- - - P 2 ,  q2n+3 + qzn+ l  q- - - P l  • ( 2 . 2 1 )  

q2n+ 1 q2n+2 

It is worth notin9 that these recursions are also valid for the two non-involutive 
permutations (2.17). Then, one notices that recursions (2.21) can also be written, 

eliminating Pl and P2, as 5 

22 = --  q2nq2n+ l " (xzn  XZn+2 --  1)X2n+l , (2.22) 
1 - -  X2n+l 

(rz,,+jx2,,-~3 - 1)xzn+2 (2.23) 
)q = --  qzn+lq2n+2 " 1 - -  X2n+2 

Let us also note that t (F)=F,  t ( P ) =  - P  and that transposition t, can simply 
be represented as a reflection in the (a~,bn)-plane: t(a,b)-~(a, A o -  b). From these 
two representations of  t and ~ = ~ - 2  (see (2.19)) in the (a~,bn)-plane, one gets a 

~ A  

representation of  ItI, which is actually an involution. One can introduce the following 

change of  variables (see also [8]): 

q o q l  q2n q o q l  q2n+ 1 q2n 
u~ = - - ,  v~ . . . . . .  (2.24) 

qlq2 + qoql + 22 qo 22 ql qo 

In fact it has been shown in [8] that the change of  variables (an, bn)--+(un, v,) is 

( for  a fixed initial matrix M0) a linear transformation (see Eq. (6.31) in [8]). Thus, 
the integrability of  k = ~-2 in the (q2 _ 1)-dimensional space of  the entries of  q × q 
matrices, which corresponds to integrability of  k in the (an, b,, )-plane, also corresponds 
to the integrability of  k in the (u,, v~ )-plane, that is, as a consequence of  (2.24), to 
the integrability in the (q,,  q,+j )-plane. 

The involutive transformation l t I  takes the remarkably simple form (independent of  
any parameter! ) 

ItI: (u,v)--~(u' ,vt)= u+v-uv_ ,u+v-uv- (2.25) 
v u 

5 Note a misprint in [8]: the actual expressions o f  21 and 22 have opposite values as compared to (2.22) 
(see (6.20) and (6.21) in [8]) 
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and transformation t is represented as the following (two parameters) transformation: 

t:  (u ,v)---*(u, l  + ~ -  v + ~u) ,  (2.26) 

where c and ~ read 

21 -)~2 (q2(q~ + q 3 ) + ) q ) ( q l ( q o + q 2 ) + ) ~ 2 )  PIP2 

)~2 ' qlq2)~2 )~2 
(2.27) 

Let us also recall that there does exist an inte,qrable subcase of  these mappings 

associated to class IV, corresponding to 21 = 22 (i.e. t: = 0) [7]. It yields the following 

integrable recursion: 

xn+2 - 1 Xn+l -- 1 XnXn+ 2 
= (2.28) 

X n + l X n + 3  - -  ] X nxn+ 2 -- 1 Xn+l 

The corresponding qn's actually satisfy two biquadratic equations 6 depending on the 

parity of  n (see [7]). For this integrable c : 0  subcase the group, generated by trans- 

formations (2.25) and (2.26), yields a foliation of  the (u,v)-plane in terms of  curves, 

which form a linear pencil o f  elliptic' curves. This can be seen by noticing that, for 

~ : : 0 ,  an algebraic expression i is actually invariant under both transformations I t l  
and t: 

(1 - u ) . ( 1  - v ) - ( v -  ~ u )  
i -- (2.29) 

H 

One should also note that the e = - 1 case has also been seen to be integrable [8]. This 

e = - 1 case, which corresponds to )~1 = 0, yields a simple rational parameterization 
of  the iteration. This simple case will be revisited in the following. 

3. Graphical approach: • = 0 

For heuristic reasons, let us consider the ~ = 0 case (which happens to correspond 

to a rational parameterization, when e = 0). 

For some values of  e, the mapping becomes integrable, i.e., a generic point on 

the (i, v)-plane stays upon iteration always on a curve. For these values, an algebraic 

k-invariant exists. 

i f  one has a linear pencil of  curves, the algebraic invariant, for these integrable 

values of  *:, must necessarily be o f  the form 

P(i, v) 
A(i ,v)  - - -  - C ,  (3.1) 

Q(i, v) 

where P(i ,v)  and Q(i,v)  are algebraic expressions in terms of  i and v. Let us make 

a few remarks. The invariant A(i ,v)  is clearly not unique: it is defined up to a 

~ It is wel l  k n o w n  that  biquadratic equations are assoc ia ted  wi th  ell iptic cu rves  [6]. 
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homographic transformation. On the other hand, some points in the (i, v)-plane belong 

to all the algebraic curves (base points): the invariant is undetermined at these points, 

i.e., polynomials P(i, v) and Q(i, v) are zero simultaneously at these points. 

The method: The values o f  e, where integrability occurs, correspond to a folia- 

tion o f  the (i,v)-plane in terms of  elliptic curves for a (generically) chaotic map- 

ping. These values can be easily detected graphically. For these situations, where there 

clearly exists an invariant, one can look for curves which degenerate into lines, hy- 

perbolas or parabolas. An invariant by the mapping can then be easily written using 

the equations o f  these simple curves. We will illustrate this graphical method in the 

following for three integrable cases corresponding to the values o f  ~:, namely 1, 
1 and 3' 

3.1. Definitions and notations: Variables i and v 

From relation (2.29) taken for ~ = 0, the variable u can be simply written in terms 

of  the variable v and the algebraic i (which is not invariant since e is not necessarily 

equal to 0 here): 

v.(1 -v)  
u -- (3.2) 

i + v ( 1  - v )  

A A 

and the mappings t and I t I  (see (2.25),(2.26)) read, respectively, 

t: (i,v) ---+ i-  1 - v 1 v - 1 ' 1 - v + 8 , (3.3) 

I~I~'. (i,v)--+ (i, 1 v -i 1 )  ' (3.4) 

These very simple representations o f  the birational transformations o f  class IV enabled 

us to perform a large number o f  numerical calculations which confirm the analysis 

performed in [7]. The iterations o f  these transformations often yield orbits which look 
like curves (weak chaos [7]). 

Let us now analyse in detail the mappings generated by (3.3),(3.4). One has then 
to study the iteration of  transformations k = ~-2 or its inverse ~ - l :  

"k=I't~i't: (i,v)---~ i .  1 -  v • 1 - 1 + -  1 - (3.5) 
v 1 ' v v 1 ' 

,)) (1 1)) 
i v ~ T - - i  " ' 

( 1))) i • 1 +  
v - 1  i 
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3.2. Two simple inteqrable values e = 1 and e = -  1 

Let us first consider E = 1. When looking at the orbits of  k, for ~: = 1, or rather 

for ~: very close to 1, one sees very clearly a foliation o f  the parameter space in 

hyperbolas: t: = 1 is integrable. One immediately gets an algebraic invariant A(i, v) and 

the associated hyperbolas (A is a constant): 

i 2 "(V--  1) 2 v . ( v -  1) 
A ( i , v ) - ( v 2 _ v _ i )  2, i = i A . ( v _ l ± A  ) (3.6) 

It can be easily checked, using the mapping, that indeed A(i, v) is k-invariant. 

One can also verify straightforwardly that e. = - 1 is also an integrability condi- 

tion [7]. One immediately gets an algebraic invariant under transformations (3.5): 

( v -  1) 2 
A(i ,v)  - (v 2 _ v - i)2 " (3.7) 

I 3.3. ~ :zv  

The graphical method of  visualization o f  the orbits (in the (i, v)-plane) enables to see 

new values of  e yielding integrable mappings. Fig. l (a)  represents the elliptic curves 
1 z corresponding to ~ = 3" It corresponds to 50 different orbits o f  k ~2 and thus shows 

clearly the existence o f  the foliation o f  the (i, v)-plane in (elliptic) curves (see (3.12) 

below). One sees also very clearly in Fig. l (a)  the base points of  this foliation. 

More accurately, one detects graphically three situations where factorizations into 

simple curves occur. One can see in Fig. l(a), as a consequence o f  these factorizations, 

simple curves emerging, namely a line and two hyperbolas el(i, v) = 0, three lines and 

one hyperbola e2(i, v) -- 0, and finally one parabola e3(i, r) = 0: 

el( i ,v)  = (2i + v) .  (2iv + v -  3 i -  1). ( - v  2 + v + 2iv - i ) ,  (3.8) 

e z ( i , v ) = i . ( 2 v -  1 ) . ( 2 i - v +  l ) . ( v  2 - v + 2 i v  3i) ,  (3.9) 

e3(i, v) = v 2 - 1) - -  i .  (3.10) 

The three expressions satisfy a remarkable relation 

et (i, v) - e2(i, v) + e](i, v) = 0 .  (3.11 ) 

1 From these results an algebraic invariant emerges for e = ~: 

el( i ,v)  
A ( i , v ) -  (e3(i,v))2 . (3.12) 

Fig. l(b) represent the chaotic orbits corresponding to a small perturbation o f  this 
integrable foliation (namely e =0.52). Such a small perturbation destroys the integrable 

foliation o f  Fig. l(a). 
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0.15 

3 0 ~  
-0.40 

( a ) epsilon= 0.500000000 N= 100000 

1 Fig. l ( a ) .  Foliation of the (i, v)-plane: 50 orbits for ~ = g. 

1.50 

3.4. e = !  3 

1 is another value of  e for which a foliation of  the plane pops out (see Similarly, e = 
Fig. 2(a)). Again the base points can clearly be seen in Fig. 2(a). One even detects 
graphically three situations where factorizations occur in this foliation. These situations, 
which correspond to the vanishing of  some expression en(i, v), are, respectively, four 
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0.15 

- 0 4 0  150 

( ~ ) epsilon= 0.520000000 N= IOO000 

Fig. l(b). Fifty orbits for e=0.52. 

hyperbolas  e l ( i , v ) = O ,  two lines and one hyperbola  e 2 ( i , v ) = O ,  one parabola and one 

line e3(i, v) = O: 

el ( i, v ) = (v 2 - 3 i v -  3v + 4i  + 2) • ( v 2 - 3 i v -  v + 2i)  

• (v  2 + 3 i v - v - 2 i ) . ( 3 v  2 + 9 i v - v -  1 2 i - 2 ) ,  (3 .13)  
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0.15 
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-0.40 

{a)  epsilon= 0.333333333 N= IO00GO 

I Fig. 2(a). Foliation of the (i,v)-plane: 50 orbits for e = 3' 

e2(i ,v)  = ( 3 v - -  2 ) .  (v -- 3 i - -  1).  (--v 2 + v - -  3iv + 4i) ,  

e 3 ( i , v ) = ( v - -  1 ) . ( v  2 - v - i ) .  

The three expressions again satisfy a remarkable relation 

e l ( i , v ) -  5e20 , !  2 • v ) +  ! ~ e ~ ( i , v ) = O .  

1.50 

(3.14) 

(3.15) 

(3.16) 
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0.15 

o 36 

.040 

( b ) epsilon= 0.334000000 N= IO0000 

/ 50 

Fig. 2(b). Fifty orbits for ~: = 0.334. 

The invariant  for e = ½, can be chosen  as fol lows:  

e l ( i , v )  (3 .17)  
A( i ,  t;) --  ( e 3 ( i , v ) ) 2  . 

Fig. 2 (a )  represents  the fol ia t ion o f  the (i, v) -plane  in el l ipt ic  curves  cor responding  to 

t Fig. 2 (b)  represents  the ehaot ic  orbits  cor responding  to a small  per turbat ion o f  e, ~ : = ~ .  
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namely e = 0.334. Again one sees that the foliation of the (i, v)-plane in elliptic curves 
is quite unstable. 

l For e = ~ any point (i, v) satisfying e2(i, v) = 0 is a point of order six by the mapping. 
2 .  This can be easily seen by iterating a point lying on the line of Eq. v -- 5" 

i, ~ , ~ 27 + 81i ' 9 + 27 i /  

~" { - 5 - - 2 7 i  4 ) ~ ( 2 - - 9 i - - 8 1 i  2 

~ \ 2 7 + 8 1 i ' 9 - F 2 7 i  \ - 2 7 - 8 1 i  ' - -  

, 

' ( ~ - T 8 1 i '  

1 - 9 i )  k~ ( i , ~ )  

(3.18) 

In fact, this means that the 6-cycle points are no more isolated fixed points of ~6 .  A 

whole curve of order six takes place. This remark will be used in the next section to 
introduce a method for calculating the invariants based on the search of the finite-order 
curves. From a graphical point of view, the curve e2(i, v ) =  0 is a set of points of order 
six which should not easily be seen. However, when we scan the parameter space in 
order to see the foliation, we get points close to this hyperbola the orbits of which 
are infinite and "densify" elliptic curves very close to the hyperbola, thus enabling to 
"visualize" the finite-order curve e2(i, v)= O. 

Let us remark that such graphical inspections cannot really be used to find exhaus- 
tively all the values of e yielding integrability. One needs to perform analytical calcu- 
lations in order to get such an exhaustive list and prove the corresponding integrability. 

4. Integrable cases: Finite-order approach 

Let us now use another more systematic approach to prove the integrability of the 
Cremona transformation for the previous values of e, based on the study of the finite- 
order orbits of the mapping. 

4.1. General remarks on foliations 

Let us first make some general remarks in order to introduce the finite-order method. 
When one looks at the orbits of transformations k, integrability means that, for any 
point on the (i, v)-plane (for ~ = 0), or on the (u, v)-plane (for arbitrary c~), the mapping 
yields an infinite set of points which densify a curve. One thus gets a foliation of the 
plane parameter space ~(u,  v, 2 ) =  0, where the constant 2 depends on the initial point 
(u0, v0) in the iteration. 

If one assumes that ~(u,  v, 2) is algebraic, one can expand 7 it as 

~(U, V, )~) = PM(U, V)" )M d- PM-I(U, V)" )M--I 

+ . . . +  PM-r(U,V)'AM-r + ' ' ' + P I ( U , V ) ' 2 + P o ( u , v ) .  (4.1) 

7 The case o f  a linear pencil o f  (elliptic) curves corresponds  to M = 1: Pl(u, v). 2 + Po(u, v)= O. 
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These algebraic curves have (by construction !) an infinite set of (birational) automor- 

phisms: they are therefore elliptic curves [11]. One can thus (in principle) introduce 

an (elliptic) parametrization of the birational mappings on each curve ~(u,  v, 2 ) = 0 .  
There exists a (spectral) parameter 0 and a shift v/ (which depends on 2 that is on 

the curve, but not on the point in the curve) such that the involutions I" and t are 
represented by reflections: 0 ~ - 0  and 0 -~  - 0 +  q and the (generically infinite order) 

transformation k amounts to performing a translation of v/: 0 --+ 0 + q. The finite-order 
conditions, namely kU .~_ identity, thus read: 

0 - 0 + N .  r/. (4.2) 

These conditions just amounts to imposing that the shift q is commensurate with one 

of the two periods of  the elliptic functions. This is a condition bearing on q, or 
equivalently on 2, independently of the point on the curve. The finite-order points are 

not isolated points: they correspond to a whole curve, that is particular values of )~. 
These results do not require a foliation into a linear pencil of elliptic curves. 

This means the following: writing the condition of finite order N, "~x= identiO', 
read two conditions, namely UN(U, V)= 0 and VN(U, V)= 0. These two conditions must 
factorize some curves of  the foliation corresponding to some finite set of values of 2: 

Ev(u,v) = H ~(u,v,)~) = o. (4.3) 

Writing systematically these conditions of  finite order N, and getting the gcd of Us, 
and V~, one gets therefore FN(U,V) and thus one can get the previous polynomial 

coefficients P~t(u, v) in (4.1) from the system of equations (linear in the PM's): 

,N ./~N 1 [~N(U, V)" A r ÷ /:~N--I(U, V) ÷ ' ' "  ÷ PN M(//,/~')" )'i y'-j'v/ 

+ . . .  + Pl(u,v). 2r + Po(u,v) = Fx(u,v). (4.4) 

In fact, most of the time, due to factorizations in the expressions of the Fv(u, v)'s, 
it is not necessary to "accumulate" a large number of such finite-order conditions. The 

various factors of the Fu(u, v) 's do have covariance properties with a simple cofactor 
term (one does not have an accumulation of different independent cofactors). Simple 

ratio of these factors enable to get quickly an invariant. 
The method: In the following, we will use the previous remarks to actually get 

algebraic invariants of  Cremona transformations (birational transformations of two 
variables). The method is as follows: we will systematically write, for a given Cre- 
mona transformation (x, y)  -+ (x', y ') ,  the finite-order conditions kN = identity on the 
two components, getting two algebraic expressions XN(X, y) - -  0 and Yu(x, y) = 0. Ac- 
tually, one rather writes (for computer memory reasons in the formal calculations) 
~?v', __(k l)Uz with Nj +N2 = N  and ]N~-  N2[ ~< 1. One will factorize these two poly- 
nomials XN(X,y) and YN(x,y) in order to get their gcd which will be denoted GN. 
This gcd transforms under the Cremona transformation k into itself, up to a cothctor 
denoted CN. One will accumulate such gcd's and associated cofactors until one is ac- 
tually able to build an algebraic invariant of  k as products and ratios of these gcd's. 
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Of  course, considering factors of  these gcd's ,  or simple curves emerging from a graph- 
ical analysis (see el(i, v ) =  0, (3.8),(3.13)) which are not finite-order curves, one may 

be able to build simpler algebraic invariants. The cofactors obtained by this method 
have particular algebraic properties [13,14]. 

4.2. Integrable candidates for e from finite-order analysis for c~ = 0: (i, v)-analysis 

Let us now use similar calculations in order to seek for relations between e and ct 
(or just particular values of  e and c~) such that the mapping becomes integrable. 

Let us first concentrate on condition ~ = 0 for which one can benefit from the intro- 

duction of  the variables i and v (see Section 3). 

The finite-order conditions of  order N, namely ~ U =  identity, yield two conditions 
on i, v and e: IN(i, V)= 0 and Vu(i, v ) =  0. The elimination of  i, for example, between 

Iu(i,v) and Vu(i,v) factorizes, among others, the following simple expressions (de- 
1 pendin9 only on e.t): e , ( e +  1 ) , ( e -  1),(e - ½) and (e - ~) up to N = 6 .  

One remarks, from this analysis, that some particular values of  e,, which are candi- 
dates for integrability, immediately pop out. It will be seen in the following that these 

values are indeed values of  integrability of  the mapping. The fact that these singled out 
values of  ~: emerge from conditions which should depend on the remaining variable i 
is remarkable. One cannot expect all the integrable values of  e to be obtained that way 

and, in principle, one has to perform several eliminations of  variables in the remaining 

other conditions which actually mix e and v. The calculations, which are a bit tedious, 

are sketched in Section A.1 of  Appendix A. 
All the factors in (A.2) are key ingredients to build the possible algebraic invariants 

o f  the Cremona transformation. The finite-order algebraic curves of  integrable Cremona 
transformations are to be found among the various factors of  (A.2) in Appendix A (and 

similar ones for N ~> 7). On the other hand, the corresponding values of  e are to be 
found among the various factors similar to (A.3) in Appendix A. 

4.3. Invariant from finite-order analysis for ~ = O: (i, v)-analysis 

From the previous analysis, one gets a (finite) set o f  values of  e as possible candidate 

for integrability for ~ =0.  Let us now analyse these various values for e and use the 
method of  Section 4.1 to find the corresponding algebraic invariants o f  the mapping 
(3.5) in the (i, v)-plane. 

Let us first remark that a simple covariant exists for arbitrary e. I f  one considers, 
parabola P1 = i - v 2 + v = 0, one can easily verify that it transforms covariantly under 
k: 

P1 ~ C 1  " Pl with C l  = - ( v  - 1 - e) 2 • i 
V 2 • (V - -  1 )  2 ( 4 . 5 )  

e =  ½: The gcd 's  at orders N = 4 , 5  and 7 are trivial. At order six the gcd of  16 and 

//6 reads G6 = ( 3 v - 2 ) . ( 3 i v - 4 i - v + v 2 ) . ( 3 i +  1 - v ) .  It transforms under k as follows: 
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G6 ---+ C .  G6, where the cofactor C reads 

_ (3v - 4) 3 • i 2 

27v 3 • (v - 1 )4 " (4.6) 

At  order eight the gcd o f  18 and Vs reads 

G8 = 768iv + 352v 2 + 1944v4i 4 - 7776v3i 4 + 3264v3i - 2560v2i + 448i2v 2 

- 1 2 8 v  7 - 1280i2v + 512i 2 + 2264v 4 - 1440v 3 + 2048v3i 2 - 2112iv 4 

- 1696v 5 + 24v 8 _ 3312v4i 2 _ 6336i3v 3 + 8448i3v 2 _ 4864i 3 + 832vSiv 

+624v 6 + 1024i 3 + 2016v5i 2 + 11232i4v 2 - 6912i 4 + 1728v4i 3 _ 192iv 6 

-432v6i  2 + 1536i 4 . 

G8 transforms, under k, as follows: G8 ---' ~ 2  . G 8  ' where the cofactor C is the same 

as for G6, namely (4.6). One thus gets immediately an invariant by transformation k: 

Gs ( G6 ) 2  (4.7) I~ = G~ or the simpler k-invariant 12 = p , .  ~ - _  1) 

1 Other values o fe:  A similar analysis can be performed for ~: = 0 , -  1, ~, 1. The calcu- 

lations are detailed in Section A.2 of  Appendix A. The results in Appendix A confirm 

the graphical approach o f  Section 3. One can actually get the algebraic k-invariants,  thus 

showing that these values of  e, lead to the integrability o f  the mapping. On the contrary, 

one does not get any non-trivial gcd ' s  for the other values of  e that pop out in (A.3)  in 

Appendix A, for instance, e = 11, e = - 5 ,  the roots of: 4c4+ 35t: 3 -  83e, 2 + 6 5 e , -  13 = 0 

and so on. Apparently,  when ~ = 0, the only integrable cases are ~: = ± l,  e = 0, ~: = ~, 
I 

4.4. Invariant f rom finite-order analysis." (u, v)-analysis fo r  arbitrary 

Let us now consider the general analysis where a is arbitrary. In that case, one 

does not have an equation like (3.2) anymore and one must thus return to the or i~na l  

variables u and v. In term of  these variables transformation k, and its inverse k - I ,  

read, respectively, 

~k" (u,v)---~ ( 1 - ( 1 - u ) ( v - ~ . u - e ) 1 - ( 1 - u ) ( v - ~ . u - e ) )  

V UU 

= 0 and arbitrary e,: Let us first assume that ~ = 0. The (u, v) analysis of  ~ = 0 

for various values o f  e, namely 1 , - 1 ,  ½, ½, is given in Section A.3 o f  Appendix A. 

One recovers results, similar to the one obtained in Section 3, when the Cremona 

transformation is seen as a birational transformation in i and v. 
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g = 0 and  arbi trary ~: Let us now assume that g = 0 and apply the same method as 

before• For N = 3 one gets two conditions (U3 = 0 and V3-0) :  

U 3 = ( - 1  ~- v ) -  ( - - v ~ u  --  ~u  2 _t.. u Z v ~ _  v + v 2 - u-{- u p - -  uv  2)  

• ( 2 ~ u  2 - ~ u -  l + v + u - 2 u v ) ,  

V3 = ( u v -  w u -  ~u 2 + u Z w -  v + v 2 - u -  uv2)  • ( ~ u -  c~u 2 + 1 - v ) .  ( v -  c~u). 

Remarkably, the gcd of these two expressions is non- tr iv ia l ( for  arbi trary ~, and reads 

G3 = u"  ( - v  - u + u v ) "  o~ + ( v  2 - u + u v  - v - u v 2 ) .  

This expression of u and v, which is a-dependent, is actually covariant by transforma- 

tion k: 

G 3 ~ C - G 3  where C =  1 -  v + ~u + uv - c~u 2 u.(1 - v + ~ u )  (4•8) 

At order four one gets larger expressions for U4 and V4 which factorize and remarkably 

have a common factor. The gcd of U4 and V4, denoted G4, reads 

G4 = U 2"  (2uv - 2u - 2v + 1).  ( - v  - u + uv ) .  ~2 

- u . ( u -  1 ) . ( - l + v ) ( 4 u v  2 - 4 v  2 - 4 u v + v + u ) . e  

+ v . ( u  - 1 ) . ( - 1  + v ) . ( 2 u v  2 - 2 v  2 - 2uv + 2v + u ) .  

G4 is actually covariant by transformation k: G4 ~ d2. G4, where the cofactor 

is the same as (4.8). Therefore, for e - -0 ,  but arbi trary values of ~, the algebraic 

expression 

G4 
I0 = G~ (4.9) 

is actually invariant under the iteration of the infinite-order transformation k. One 

thus has an integrable birational mapping (dependin9 on one cont inuous p a r a m e t e r  ~) 

yielding a foliation of the (u, v) plane by a linear penc i l  o f  elliptic curves given by 
Eq. (4.9). 

In the following, it will be seen that one can actually associate to this mapping two 
recursions of  drastically different nature, bearin9 on a single variable: one amounts 
to a simple change of variable (see (5.1) in Section 5 below), and the other one 
amounts to introducing the xn's (determinants of  the iterates of Rq  previously intro- 
duced, see (2•10)). 

5. A recursion on a single variable for • = 0 

Let us consider c~ = 0 for arbitrary a• The variable i (see (2.29)) is an invariant for 
= 0. For arbitrary e it has, a priori, no special property. However, if one restricts to 
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c~ = 0, one can actual ly  wri te  u and v as a funct ion o f  i and v (see (3 .2)) .  W e  will  

use this p roper ty  to descr ibe  the ~ = 0 (and e ¢  0)  si tuation.  Paradoxica l ly ,  one uses 

the var iable  i, in t roduced  for  arbi t rary  :~ and e = 0, to descr ibe  the ~ = 0 for arbi t rary 

v situation. 

One can choose,  ins tead o f  (i, v), two other var iables  ( s , r )  defined by  

s = - .  1 - r = v - ~ .  (5 .1)  
V V l ' 

Then,  the act ion o f  k on (s, r )  becomes  

( r .  (s - ) 
L \ ( 7i5 , s+( l  . (5.2) 

The interest  o f  these new var iables  (s,r) is that one can eas i ly  obtain a recursion 
bear ing  on a single variable (s or r ) :  

(Sn+ 1 -- ,~-~)(S n --  g,, Jr 1) (rn -- g)(rn+l -- g) 
s,,-.2 = or rn+2 = ( 1  - z) + (5.3)  

(Sn+ 1 + 1) (r,,+l + g) 

showing  that  the quant i ty  rn+l - sn = 1 - e is independent  o f  the i teration. 

Let  us analyse  recurs ion (5.3).  A n y  recurs ion o f  " length two"  (i.e. one gets s,,+2 as 

a function o f  s~+l and sn) can be seen as a rat ional  t ransformat ion on two var iables:  

s,,+2 = F(&, Sn+ 1 ) becomes  (s, t) -+ (t, F(s, t)). (5.4) 

Recurs ion (5 .3)  is s t ra ight forwardly  assoc ia ted  to a new rat ional  t ransformat ion lc and 

one verif ies immed ia t e ly  that  this rat ional  t ransformat ion is birat ional .  Transformat ion  

and its inverse  k - I  read, respect ive ly ,  

( ( t - ~ ) . ( s + l - e ) )  (5 .5)  
~: ( s , t ) ~  t, }7-1  ' 

~--1. (S,l)__+ (S/+/--S_2_S"_ ~+';s_,~: "~:2 S) . 

In order  to integrate recurs ion (5 .3)  one can use the prev ious  approach  based  on 

the sys temat ic  analysis  o f  the f ini te-order  curves  o f  the birat ional  t ransformat ion (5.5).  

Since the change  o f  var iables  f rom (u, v) to s, (or  rn) def ined in (5.1)  is only  def ined for 

= 0, all the calcula t ions  in the fo l lowing  cor respond to :~ = 0 and to the " in tegrable"  
I values  o f  e,, namely  e = 1, - 1,0, ½, 5 

Let  us r emark  that, for any value of  g,, the line Dj = g + t -  s is covar iant  by  the 

act ion o f  t ransformat ion  /~: 

k: D i - +  C" .DI  wi th  cofac tor  ( ~ -  ~" - t (5 .6)  
t + l  

1 for this very  recursion Let  us now revisi t  the in tegrabi l i ty  cases  e = 1 , - 1 , 0 ,  ½, 

(5 .3)  or, equivalent ly ,  the (new)  assoc ia ted  Cremona  t ransformat ion  (5.5).  
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Integration o f  the recursion for e = ½. Let us first consider e = ½, and use the method 

o f  finite-order orbits analysis. Then, condit ion/c N = identity gives two conditions SN = 0 
and TN = 0. Their gcd ' s  are trivial for N = 3,4, 5, 7 . . . .  One gets the first non-trivial 

gcd's GN for N = 6 and N = 8, namely,  

G6 = (3s + 1 ) .  (3t + 1). (9ts + 9t + 1 - 3s) 

and 

G8 = 2187t4s 4 + 5832t4s 3 + 5346t4s 2 + 1944t4s + 243t 4 + 1944t3s 3 + 450t 2 

+ 3240t3s 2 + 1512t3s + 216t 3 - 486sat 2 _ 648t2s 3 + 324t2s 2 + 360t2s 

- 216ts 3 - 72ts 2 - 744ts + 264t + 27s 4 + 378s 2 - 256s + 43 .  

These expressions transform as follows under /c: (G6, G s ) - - ~ ( - C - G 6 ,  C 2. G8) where 

i One thus gets the/c-invariants is cofactor (5.6) taken for ~ = 7" 

G8 (G6"~ 2 (5.7) 
II = G---~6 or more simply / 2 =  \ D l J  " 

Let us remark that these different expressions for the invariant are related to a large 

set o f  identities on the covariants Gn's. I f  one calculates Glo, one sees that it is not 

independent o f  G6 and Gs, namely Glo - 16. G 2 = - 6 .  (2- G8 - G2) 2. In fact, there 

are an infinite number o f  such relations. Most o f  the time they are consequences of  the 

foliation o f  the two-dimensional parameter  space into a linear pencil  o f  elliptic curves: 

an infinite set o f  finite-order curves, like GN = 0, corresponds to algebraic values o f  

the invariant, thus yielding many non-trivial relations between the GN'S. 
Other values of  e: Similar calculations are performed in Appendix B for the other 

integrable values o f  ~, namely e = ½, 1 , -  1,0. Clearly, one recovers (as it should) similar 

algebraic/c- invariants  associated with integrability. 

6. Expression of E and ~ in terms of entries of q x q matrices: 

Recursions in the x~'s 

The purpose o f  this section is to see i f  the integrability seen for k =/~2 in CPq2_ 1, 

that is, in the (u, v)-plane (or in the (i, v)-plane when ~ = 0), can also be seen on the 

determinants o f  the iterates o f  h'. 

6.1. Recursions in the Xn'S." Parity discussion 

Recalling Eqs. (2.21) and (2.27) one can express ~ (related to the ratio o f  21 and 

22) and ~ as a function of  the Xn'S defined in (2.10) and thus as a function o f  the 

entries o f  the q × q matrix M0. 
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Denoting L the ratio At/A2 one has the following results with n = 0,2,4,. . .: 

c"=lll-l ~. 

3.2 

with & =&I.&+2 (~n+lXn+3 - l).ch,l - 1) 

3 b2 x,+1 G&&+2 - 1)'(Xn+2 - 1) ' 

that is (with n=0,2,4,...): 

(6.1) 

x,+3 = 
&r.&+z.(xn+I - 1)+&,+l~bI+2- 1).(X,.&+2 - l1.L 

%l'&+l'&l+2 .(&x+1 - 1) 
(6.2) 

Let us also remark that one gets at the next order 

i2 
I:,+1 = 7 - 

1 with 3 =&+l'&1,3 (&+2%+4 - I).(%+2 - 1) 

XI Al &It2 (&+I&+3 - l).h+3 - 1)' 
(6.3) 

that is (with n = 0,2,4,. . .) 

&+l'&+3.(%+2- l)'L+xn+2'(&+3 - 1)'(&+1'&+3 - 1) 
&l+4= 

&z+l~&+2~&+3~(&+2 - l1.L 
(6.4) 

One thus has EO = ~2 = ~4 = . . and cl = 1:3 = ~5 = . . . . The fact that one “jumps” from 

n to n + 2 is a consequence of the fact that i=k2 is singled out. The elimination of 

the ratio i.l/i,t between (6.1) and (6.3) clearly gives (2.16). Let us introduce x,~: 

c(,,= (1 fXn+I -&+2&l+l - &+l&1+2&+3)(1 +&I -&&+I -&&+I&+2) 

x,+1 ~bJn-+2 - ])'(&I+2 - 1) 

One should note that the successive values of z,,‘s are such that c(, = LX,,+Z, i.e. ~10 = 

x2 = ., and ~1 = ~(3 = . . . . One can however have invariant expressions, independently 

of the parity of n, namely, 

(21 = (EJ , n=0,2,4,.. (6.5 1 

This is a straight consequence of M = - pt p2/132 (see (2.27)). The expressions of x 

and E in (2.26) correspond in fact to M = ~(0 = x2 = . and c = EO = ~2 = . . 

6.2. The two M = 0 conditions 

The vanishing condition of CI yields for n even or odd, 

1 +&I -hPn+I 
x,+2 = (6.6) 

xn '&z+l 

One could analyse this very recursion (6.6) for itself (assuming that n is not of a 

fixed parity) using, for instance, the method developed in this paper to integrate it (if 

integrable!) i.e. by associating a Cremona transformation (see (5.4)). One verifies that 

this mapping is not integrable for itself: it has to be considered coupled with mother 

recursion on the x,,‘s. 
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In fact, condition (6.6) valid for n = 0 or n = 1, presents some remarkable compability 

with the iteration of  K and, furthermore, one can verify that, if  it is valid for n = 0, it 
will be verified for any n even and, on the contrary, if  it is valid for n -- 1 it will be 

verified for any n odd. There are thus two branches 

BI: l + x n -  XnXn+l - -  XnXn+lXn+2 = 0 ,  n = 0 , 2 , 4  . . . . .  (6.7) 

B2: 1 ÷ Xn+ I - -  Xn+2Xn+l - -  Xn+lXn+2Xn+3 z 0, n = 0 ,2 ,4  . . . . .  (6.8) 

Therefore, these two conditions should be seen as a part o f  a system recursions. 
Condition (6.7) (or condition (6.8)) is actually compatible with the system of  recursions 

(6.1) and (6.3) for arbitrary value of the ratio 21/22. One thus has to consider two 

situations corresponding to the two branches of  c¢ : 0, namely Bj and B2. 

6.2.1. The first branch Bl : non-inteyrable 
Let us first consider the first branch B1. The system of  recursions (6.2), (6.4) and 

(6.7) is a compatible system. One can actually verify that (6.4) can be deduced 

from (6.2) and (6.7). One can replace this compatible system of  recursions ((6.2), 

(6.4) and (6.7) taken only for n even) by 

1 ÷ X  n - -  XnXn+ l 
x , + 2 =  , (6.9) 

X n ' X n + l  

( x n + l ) ' ( - - 1  -xn+2XnXn+l) 'L+xn ' ( l+xn  -XnXn+l) 
x , + 3 =  ( l + x ,  - x,x,+l).x, .x,+l ' 

where n = 0, 2, 4 . . . .  and where L denote the ratio of  21 and 22 that is 1 + e.. Of  course, 

this interesting compatibility property (valid for arbitrary value of  the ratio L that is 

arbitrary value of  a) is not sufficient to imply integrability. 
Coming back to system (6.9), one can use the method developed in this paper to 

integrate it ( i f  integrable!). For this purpose let us again associate, to this system of  
recursion, its corresponding Cremona transformation k and its inverse 

-~: ( x , y ) _ _ ~ ( l + x - x y  ( x + l ) . ( - x + 2 x y - 1 ) . L + ( l + x - x y ) . x )  

- L  + xy + Lx 2 x "~ 
k - l :  (x,y)---~ L+xZ x y _ L x 2 + x ,  x y + [ ~ x 2 _  1 ) .  

For the different integrable values of  e (or L), one gets that the successive gcd 's  o f  
the XN and YN conditions (corresponding to writing k N-~- identity on the two (x, y )  
coordinates) are just simple functions o f x  for N = 3 ,  4, 5, 6, 7, 8, namely x and 1 +x .  
This suggests that this very system of  recursions (6.9) is not integrable. Examples of  
3 × 3-matrices corresponding to branch B1 are given in Section D.2 o f  Appendix D. 
The graphical analysis o f  their iterates confirm this non-integrability. 
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6.2.2. The second branch B2 ." Integrable 
Let us consider the second branch B2. One also has a compatible system of  recursions 

and one can replace the system of  recursion (6.2), (6.4) and (6.8) by 

1 ~-Xn+ 1 --  Xn+lXn+ 2 
Xn+3 z 

Xn +2 " Xn+ 1 

(X n " Xn+2 - -  1 )- ( X n + 2  - -  1 ).  L 1 
x,+3 = + - -  , (6.10) 

x,  "x,+2 • (x~+l - 1 ) xn+l 

where n = 0 , 2 , 4 , . . .  It can also be rewritten eliminating xn+3 between the two last 

equations and xn+2 from the first equation (6.10): 

x~ (1 2 - - x ~ + t ) +  x.+l "L 
Xn+2 - -  

xn • x.+ l "L 

(Xn + X n  "Xn+l --  X n + l ) .  L ~_Xn . (Xn+ 12  _ 1 ) 
x,+3 = (6.11 ) 

Xn " (1 -- X2n+l ) -[- Xn+l . L 

One can also associate to (6.11) the following Cremona transformation k and its 

inverse ~-1 :  

k: ( x , y ) - - - , (  x - x y 2  + L y  L x +  y _ _ L x - x + x y 2 - L y )  
yLx ' x - - x y  5 + Ly ' (6.12) 

( ( y x - l + x ) L  1 )  
k - ' :  (x,y)---* x . ( y L x _  L + ~xx Z - x f z - + ~ y _  2yx + 2 _ x ) , y x - -  l + x " 

4 (i.e. e,-- Let us assume that L = 5 ½) in the system o f  recursion (6.11 ). The success ive  

gcd 's  GN read 

G 4 = l  + y ,  G6 = 3 ( y -  1 ) - ( y  + l ) . ( 2 y x - x + 3 x y  2 - 4 y ) . ( y x - 2 + x ) ,  

G8=Cy+l).~8, 
with 

G8 = 64yx + 24x 2 + 520x2y 2 - 344x2y 4 + 256xy 3 + 128y 2 - 384xy 2 

- 256y 3 + 544y3x 2 + 80yx 3 -- 432y3x 3 - 64y2x 3 - 256y4x 3 

_ 16ySx 3 _ 16x2y 5 + 384xy 4 + 128y 4 - 320ySx + 60y6x 4 + 72y7x 4 

- 144x3y 7 + 312x2y 6 + 27x4y 8 _ 192x3y 6 _ 20x4y 2 + 3x 4 + 58x4y 4 

-- 8x4y + 24x4y3+40x4y  5 - 16yx 2 " 

The covariants are, respectively, 

d4~ .  ~ 4x C6--  C43 C8--  d45 
3x - 3xy 2 + 4y '  x 2 . y '  x 4 . y2 

satisfying C4" C5 ~-C6 2, yielding the k-invariant:  I0-~ (G8. G 4 ) / G  2. 
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Similar calculations for e = ½, 0, - 1  are given in Appendix C. 

The integrability seen for ~ = ~ 2  in the (u, v)-plane, or in the (i, v)-plane, can ac tu-  

a l ly  be  also seen  on the  d e t e r m i n a n t s  o f  the  i t e ra tes  of k = ~2. 

Note that these calculations are also valid for the non- invo lu t i ve  permutation (2.17), 
thus providing integrability cases for these quite non-trivial examples of  birational 
transformations. 

Let us remark that all these calculations can be revisited on the original birational 
transformations k - -  ~2 bearing on the entries of  q × q matrices. Sections D. 1 and D.2 

of Appendix D provide, respectively, a "dictionary" and some examples of  the :t = 0 
cases for 3 x 3 matrices. 

6.3. I t e r a t i o n  o f  3 × 3 ma t r i ces :  B r a n c h  B2 

For 3 × 3 matrices the ~ = 0 conditions can be written explicitly (see also Section D. 1 
of Appendix D). Let us denote the initial matrix and its entries as follows: 

Mo= 
abc] 
d e f 

9 h i 

(6.13) 

Let us assume that the permutation of entries b and h represents the permutation t of  

class IV (see Section 2.2.1). Matrix M0 belongs to the branch B2 if one of these two 

conditions is satisfied: 

a e +  f h - e i - b d + b f  - c e - d h + e 9 = O  and d i -  f g + a f  - c d = O .  

For d i  - f 9  + a f  - c d  = 0 the ratio 21/22 simplifies and reads 

21 4 e d ( a f  - c d )  

22 ( f  - d ) ( e f g  + 9 e d  - f b d  - f h d  - e a f  - b d  2 - h d  2 + 2 e c d  + e a d )  

(6.14) 

For - e i  + f h  + ae  - b d  + b f  - ce  - d h  + eg = 0  the ratio iq/22 simplifies and reads 

21 ( b f  + f h  - b d  + 2ae  - d h  - 2 c e ) .  (ae  - d h  - b d  + ge )  
(6.15) - -  z 

22 ( 2 a f h  + 2a2e - 2 a b d  + 2 a b f  - 2ace  - 2 a d h  + 2age  - 2 e g c ) e  

The conditions for branch Bl are given in Section D.1 of Appendix D. 
Let us, for instance, consider the integrable value e = ½. Section D.2 of Appendix D 

gives an example of  such a matrix (see (D.7)) corresponding to branch B 2 and e = ½. 
One can revisit the f a c t o r i z a t i o n  s c h e m e  (similar to the one detailed for the birational 
mappings of  class IV detailed in Section 2.2.l, see (2.13)) in this very integrable 
case. One actually see, similarly to a phenomenon already seen in the e = 0 integrable 
case [7], that the (generic) faetorization scheme (2.13)) is modified (occurrence of 
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additional factorizations) yielding a polynomial growth 8 o f  the calculations [7]. The 

factorization scheme reads 

det(Ml ) 
f l  = det(M0), Ml = K(Mo ), f2 -- - -  , 

fl 

det(M2 ) 
M e : K ( M I ), f 3 -- ~12 : -~2 , 

K(M2) det(M3) det(M4 ) 
M3 -- ~ - I  ' f4 - -  f l "  f2" f 3 '  M4 = K(M3), .f5 : f 2 . . I i 2 . . f 2 3  " J 4  ' 

K(M4) det(Ms) K(Ms)  
M5 - f l "  f2" f3 '  f6 = f 2 .  f22 f 3  f4" f s '  Mo = f~----~f2 " ' "  (6.16) 

Note that relation (2.14) is still valid for this new factorization scheme. When com- 
pared to the factorization scheme of  class IV (see (2.13)), one sees that, already for .[3 

and M3, an extra term factorizes namely f l .  This term makes the whole difference be- 

tween integrability and non-integrability. The successive degrees of  the (homogeneous) 

polynomials fn ' s  read, respectively, for f l , f 2  . . . .  : 3 ,3 ,3 ,6 ,6 ,6 ,9 ,9 ,  12, 12, 18, 15,24,21, 
I integrable) recursions on the 30 . . . .  The factorisation scheme and the associated (c = 

J;, 's  are not very simple as a consequence of  the fact that the branch B2 is associated 
with a system of  two recursions (see (6.10)). 

7. Conclusion 

We have first analysed graphically a particular Cremona transformation depending 

on two continuous parameters s and c~, This graphical method shows curves, globally 
• A 

invariant, for which the Cremona transformation is of  infinite order (the orbit o f  k 

densities an algebraic curve). The gcd 's  of  the finite-order conditions yield algebraic 
expressions which enable to get quickly the foliation of  the integrable Cremona trans- 

formations. When integrable the vanishing of  these gcd 's  happen to be particular curves 

of  the foliation. In fact, the graphical method enables to see both types of  curves (the 
finite- and the infinite-order ones)• 

We provided explicit and simple examples (Cremona transformation associated with 

class IV) in order to show how a general method based on the analysis of  the finite- 
order conditions enables to actually integrate Cremona transformations. 

The integrability cases of  this Cremona transformation have been revisited using 
various representations (Cremona transformation in (i,v), in (u,v),  recursion in one 
variable, Cremona transformations associated with this recursion in one variable, recur- 
sion in the determinant o f  iterated matrices and Cremona transformation associated with 
this last recursion). Fortunately, the integrability cases of  these various representations 

8 The relation between polynomial growth of the calculations and integrability has been discussed in detail 
in [8,10,15]. 
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match. We have also obtained an algebraic invariant (4.9) of  Cremona transformations 

depending on one continuous parameter c~. 

In fact, all these calculations are not specific o f  the birational transformation o f  

class IV. They can be worked out on any Cremona  transJbrmation (birational trans- 

formation in two variables).  Actually,  Appendix E shows another example o f  foliation 

o f  the plane in algebraic elliptic curves obtained for an example of  birational symme- 

tries o f  the parameter  space of  a six-state chiral Ports model  [1,16]. 
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Appendix A. Finite-order analysis for • = 0 and various e's 

A.1.  Inteorable  candidates f o r  e: (i, v)-analysis  f o r  ~ = 0 

In order to get the possible "integrable" values of  e, let us first eliminate e in the 

two equations corresponding to ~U = identi ty .  For instance, writing ~6 = ident i ty  yields 

16 = - e - ( i +  1 - 2 v + v  2) "16, (A.1)  

where 16 is a polynomial  in i and v, and an expression for V6 that is too large to be 

reproduced here. After  performing the elimination o f  e between I6 and //6, one obtains 

R 0 = i . v  l ° - ( v + 2 ) . ( 3 v - 2 ) - ( v - 2 ) 3 ( v -  1) 8 - ( i - v  2 + v )  5 - ( - v + l + i )  5 

x (iv - 2i - 2 + 5v - 5v 2 + 2v3) - (3iv - 4i - v + V2)(i q- 3 -- 5V + 2V z) 

× (i -- V q- v2)(i 2 q- 4i -- 5iv + 2V + 2v2i -- 3V 2 + V3) • (--1 + i + V) 3 . . .  , 

(A.2)  

where the . . .  denote eight other factors. Let us just  consider, to illustrate the method, 

one o f  the factors o f  R0, namely 

C I  = iv - 2i - 2 + 5v - 5v 2 + 2v 3 = 0 .  

The elimination of  i between C1 and V6 gives RI = - (v - 1 )4 ( - e  - 1 + 2v) - RI 

where 

/~l = - 2 3 2 v  4 - 32v 2 + 136v 3 + 204v 5 - 93v 6 + 160e2v - 489v 4e, + 216v3e z 

- 24v2~ 3 + 1 8 v  7 - -  16e + 219~v 5 - 5 4 ~ v  6 - 32e. 2 + 144Ev - 122v4e z - 16~ 3 



S. Boukraa et al./Physica A 240 (1997) 586-621 613 

+ 4 2 e 2 v  5 + 6vTe + 383v 5 + 16~;3v 3 _ 9~,3v 4 + 16~;3v - 4408v 2 + 624~,v 3 

_ 240e2t, 2 _ 992v 6 . 

The  e l im ina t i on  o f  i b e t w e e n  CI and  16 g ives  R2 = 2 ( v -  1) 9.  ( -~ :  1 + 2 v ) - R 2  where  

/~2 = 64 + 10668v 4 - 640v + 2800v  2 - 6992v  3 - 9296v  5 + 2745v  6 - 9491 r ~ 

+ 2007v  8 + 1679v 7 + 12207v m - 1408e4v + 64a + 128~; 6 + 48v9c 5 ÷ 832v2t: 6 

+ 22896ev  5 - 8301e, v 6 - 256c z - 57z;]0c 4 _ 9v%, 6 + 348v12e, e + . . .  , 

and  . - -  deno te  62 o the r  m o n o m i a l s  o f  e, and  v. The  e l imina t ion  o f  v b e t w e e n  /?l and  

/~2 g ives  a p o l y n o m i a l  in e w h i c h  con ta ins  m a n y  factors:  

C0 = (r  + 7)  • (2e - 1 ) .  (3e 2 - 10~, + 1 1 ) .  (~: - 1 )it . (e, + 1 )2o 

× (4~: 6 ÷ 44e, 5 - 23e 4 - 697e 3 + 1431r  e - 71 le  + 104) 

• (36e, 9 + 186e 8 - 126887 + 2234e  6 - 1522c 5 + 257e 4 + 118e 3 - 32e 2 - 1 ) 

• ( 12c 2 - 58 ÷ 1 ) .  (4t: 4 + 35e 3 - 83e 2 + 65~: - 13 ) • ( - 2  + 3e,) 2 • ( - 1  + 3 r )  6 . 

( A . 3 )  

O f  course ,  w h e n  one  p e r f o r m s  such  s equence  o f  e l imina t ions  one  get  m a n y  " s p u r i o u s "  

candida tes :  this  set  o f  poss ib le  va lues  o f  ~ h a v e  to be  r e in t roduced  in the  or ig ina l  

equa t ions  to see the  ones  rea l ly  y i e ld ing  a c o m m o n  fac to r iza t ion  for  16 and  //6. In fact,  

th is  set  o f  poss ib le  va lues  o f  e j u s t  c o r r e s p o n d  to fac tor  Ci in R0 and  one  has  to 

p e r f o r m  s imi la r  ca lcu la t ions  for  eve ry  o ther  fac tor  in R0. 

For  h i g h e r  va lues  o f  the  in tege r  N the  two  cond i t ions ,  for  w h i c h  one  wan t s  to see 

a c o m m o n  fac tor  to factor ize,  b e c o m e  qu ick ly  qui te  " l a rge" ,  and  the  p rocedure  to get 

the  c o m m o n  fac tor  requ i res  to ca lcu la te  and  c o m b i n e  m a n y  resul tants .  The  ca lcu la t ions  

b e c o m e  qu ick ly  ve ry  large. 

A.2. Finite-order analysis for ,~ = 0 and various e2s: (i, v)-analysis 

I Let us cons ide r  the  C r e m o n a  t r a n s f o r m a t i o n  (3 .5 )  in i and  v for  ~ = 0 and  for  t: = 5, I. 

,, _ i .  The  ca lcu la t ions  o f  Sec t ion  4.3 can  be  p e r f o r m e d  for  e = 1 The  first non- t r iv ia l  ' J - 5 "  5" 
g c d ' s  are ob ta ined  for  N = 5, 7 and  8: 

G s = v X - v + 2 i v - 3 i ,  G 8 = ( v - l ) . ( 2 v - 3 ) ,  

wi th  

G7 = G8" G 7 ,  

G7 = 8i3v2 - 16i3v + 6i3 + 6i2 - 9i2v + 7iv + 6i2v 2 - 10v2i + 3v 2 ÷ 5v3i 

_ 6 v  3 _ 2 i v  4 ÷ 3 v  4 
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t ransforming under  k as Gi ~ Ci  • Gi with 

i .  ( 2 v -  3 ) 2 ( - v  + 1 + 2i)  

C s = 4 v . ( v _  1) 2 - ( v  2 - v + 2 i v - 3 i ) '  

C7 = (2v - 3)  4 • ( - v  2 q- v q- 2iv  - 3 i ) .  i 3 

32v 6 • (v - 1)7 

y ie ld ing  the k- invar iant  

G7 G7 
0 - -  - -  - -  G 8 " p 2  ( i -  v 2 + v) 2 

e = 1: The  first non-tr ivial  gcd ' s  are for N = 4, 6, 8: 

G4= 

G8 = 

t ransforming under  k as Gi --~ Ci • Gi with 

C4 - -  i '  (v -- 2)  2 C6 --  (v - 2)  5 • i 2 
V 2 " (V- -  1)2'  (V--  1)4" V5 
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C8 = ( - v 2  q- v ~- 2 iv  - 3 i ) i  

2 ( v -  1)3v 2 

where  P1 = i - v 2 + v (see (4 .5))  

/ . ( v -  1), G 6 = i . ( 3 i Z v 2 - 6 i 2 v + 4 i 2 + 2 i v - 2 v 2 i + v 4 + v 2 - 2 v 3 ) ,  

G4 • ( i2v  2 - 2i2v + 2i  2 - 2v2i + 2iv  + v 4 - 2v 3 + v 2) 

and 08 = 03 • 

Therefore  one gets a first k- invar iant  by consider ing the ratio 10 = G 8 / G  3 or more  

s imply  us ing parabola  Pl:  11 = G 4 / P I .  

= 0: For  e = 0, one remarks  that, since i is invariant,  the t ransformat ion amounts  

to pe r fo rming  a homographic  t ransformat ion on v (the parameters  o f  the homographic  

t ransformat ion depending  on i). The  prev ious  analysis is pointless:  the invariant is 

a l ready known (namely  i). 

A.3 .  F i n i t e - o r d e r  a n a l y s i s  f o r  ~ = 0 a n d  var ious  e's: (u,  v ) - a n a l y s i s  

l .  i The  first non-tr ivial  gcd ' s  are obtained = 0 a n d  ~ = 5" Let  us assume here that e = 7" 

for N = 6 and 8: 

G6 = ( - 2  + 3v)"  ( - 3 u  + 3uv ÷ 4 - 3v)"  ( 3 u v  - u - 3 v ) ,  

G8 = - 9 9 8 4 u v  2 + 1536v 2 + 512u 2 + 1024uv + 20 160u2v 2 + 32 256uv 3 

+ 12 528U4V 4 -- 54 144uZv 3 -- 3328U2V + 39 168U3V 3 -- 6912V 3 -- 256U 3 

+ 1944V 6 -- 46 656UV 4 + 72 144U2V 4 -- 16 320U3V 2 + 11 232V 4 -- 7776U4V 5 

-- 49 248U3V 4 + 3328u3v -- 7776V 5 + 31 104UV 5 -- 46656UeV 5 + 96U 4 

-- 1056U4V -- 10 368U4V 3 + 31 104U3V 5 + 1944U4V 6 -- 7776U3V 6 -- 7776uv 6 

+ 11 664U2V 6 + 4632u4v 2 . 
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These  two covariants  G6 and Gs t ransform under  k with the cofactors:  

C6 = 4 - 3 v  + 3 u v  - u and C8 = C26, 
( - 4  + 3 v ) .  u 

yie lding the k- invar iant  Io = G s / G  2. 

1 The first non-tr ivial  gcd ' s  are deduced = 0 a n d  e, = ½ : Let  us assume here that e = g. 

f o r N = 7  and 8: 

G7 = 2u  3 - 12u3v + 2 6 u 3 v  2 - 2 4 u 3 v  3 + 8u3u 4 - 2 4 u 2 v  4 + 72u2v  3 - 76u2v  2 

+ 24v 3 + 33u2v -- 5u 2 + 24uv 4 -- 72uv 3 + 72uv 2 - 2 7 u v  + 6 u  - 8v 4 

- -  2 2 v  2 + 6 v  , 

G8 = 1 4 4 u v  2 - 44v 2 - 5 4 u v  + 3 u  + 12v - 10u 2 - 152u2v 2 + 66u2v + 4Bur 4 

-- 48U2V 4 -- 144UV 3 + 144U2V 3 -- 48U3t, 3 + 52U3t  '2 _ 24U3V + 48V 3 + 4U 3 

-- 161) 4 if- 16U3V 4 . 

These  two covariants  G7 and G8 t ransform under  k with the same cofactor:  

3 - 2 v  + 2 u v -  u 
d= 

(3 - 2 v ) .  u 

y ie ld ing  the k- invar iant  10 = G 8 / G 7 .  

= 0 a n d  c = 1' Let  us n o w  assume that e = 1. The first non-tr ivial  gcd ' s  are for 

N = 4 , 6  and 8: 

G4 = u .  (1 - v ) -  (1 - u ) ,  

G6 = 3v 2 - 6uv  2 + 3u2v  2 - 6v + 1 2 u v  - 6u2v + 4 - 6u + 3u 2 , 

G8 = G4 • (U2U 2 -- 2U2V q- U 2 q- 4UV --  2UV 2 -- 2U + V 2 -- 2V + 2 ) .  

Note  that G6 is immedia te ly  an i n v a r i a n t ,  while  the two covariants  G4 and G8 transform 

under  k wi th  the same cofactor  C: 

= 2 - v + u v - u  

( - 2  + v ) u  

A 

yie lding t h e  k - i n v a r i a n t  I0 = G s / G 4  = 1 (2  + G6).  

c~ = 0  a n d  e = 0: Let  us assume ~ = 0. The first non-tr ivial  gcd ' s  are deduced  for 

N = 3 and 4: 

G 3 = - v  2 + u v  2 - u v  + v + u ,  G4  = 2 u v  2 - 2v 2 - 2 u v  + 2 v  + u .  

These  two covariants  G3 and G4 t ransform under  k, with the same cofactor:  

_ 1 - v + u v  yie ld ing  the k- invar iant  I0 = G 4 / G 3  . (A.4)  
(1  - v ) .  u 
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Appendix B. Recursion in a single variable for e = ½, 1, - -1,  0 

Let  us cons ider  the recurs ion in a s ingle var iable  def ined by  (5.3)  for  the " in tegrable"  

values  o f  ~ ( e =  ½, 1 , - 1 , 0 ) .  

I and use the same analysis  as before.  Recursion for  e = ½. Let  us now cons ider  e = 

One gets  the first non-trivial 9cd's GN for N = 7 and 8, namely ,  

G7 = 32t3s 3 4- 48t3s 2 4- 16t3s 4- 24t2s 2 4- 12t2s 4- 12t 2 

- -  8 I s  3 - -  22ts + 12t + 12s 2 - 12s + 3 ,  

G8 = 64t3s 3 - 16ts 3 - 12s 2 4- 12s - 3 4- 28ts - 12t + 48t2s 2 

+ 24t2s -- 12t 2 + 96t3s 2 + 32t3s .  

These  two express ions  G7, G8 t ransform under  /~ wi th  the same cofactor:  

= \5T -5/ ' 

that is, the square o f  (5.6).  One thus gets the /c-invariant I0 = G8/G7 or more  s imply,  

using Dl  (see (5 .6)) :  l l  = G7/D 2. 

Recursion for  g= 1: For  e =  l the first non-t r ivia l  g c d ' s  are ob ta ined  for N = 4  

and 6, namely ,  G4 = s .  t and G6 = 3t2s 2 - 2st + s 2 - 2s + t 2 + 2t + 1. These  express ions  

t ransform under  /c by  the cofactors  (~4 = ( t -  l ) / ( t  + 1) and ~'6 = C24. One thus gets 

the /~-invariants 

G6 =(G4~  2 
I0 = G-~ or more  s imply  Ii  k ,~ - l J  " 

Recursion for  ~ = - 1: Let  us cons ider  e = - 1. In these variables ,  t ransformat ion 

/~2, for e =  - 1, is quite t r ivial  ( t ransla t ion) :  k 2 ( s , t ) = ( s  4-2 , t  + 2). Al l  the g c d ' s  are 

trivial.  The fol iat ion o f  the (s, t )  p lane  corresponds  to the lines: s -  t = constant .  

Recursion for  e = 0: For  e. = 0, one gets the first non-trivial 9cd's GN for N = 3, 4, 

namely ,  G3 = (st 4- t 4- 1 ) .  (t - s)  and G4 = (2st + 2t + 1 ) • (t - s). These express ions  

t ransform under  /~ wi th  the same cofactor  C, y ie ld ing  a /~-invariant I0 or more  s imply  

I1. They  read,  respect ive ly ,  

G4 G3 _ - t  I0 I~ 
t + l '  

1 Appendix C. Branch B2 for e = ~, 0 

Let  us cons ider  the bi ra t ional  mapp ing  (6.12),  assoc ia ted  with the sys tem o f  the two 

compat ib le  recurs ions  (6.11 ). 
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Let us consider  L =  3 (i.e. e =  ½). The success ive  god ' s  GN, read,  respect ive ly ,  

G4 = 1 ÷ y and 

G7 = - 1 5 y x  + 12x + 18y - 4 5 y  2 + 7 2 x y  2 - 2x 2 ÷ 2x2y 2 -- 42x2y  4 

-- 77y3x  2 + 18y 3 -- 2 y x  3 + 2y3x 3 -- 10yZx 3 + 75xy  3 + 27yx  2 

+ 16y4x 3 + 8ySx 3 + 8x2y 5 -- 24xy  4 + 2X 3 , 

G8 = ( y  + 1) -  G s ,  

with 

G8 = 51yx  - 3x - 18y + 4 5 y  2 - 18xy 2 ÷ 8 X  2 - -  14x2y 2 -- 39xy 3 

-- 15yx 2 + 29y3x 2 -- 18y 3 + 2 yx  3 -- 6y3x 3 ÷ 33xy  4 --  x 3 

+ 4 y 2 x  3 _ 7y4x 3 + 4y5x 3 + 4x3y 6 _ 20x2y 5 . 

The ca lcula t ion  o f  the cor responding  cofactors  y ie ld  an invar iant  I0. They  read, 

respect ive ly ,  

d4= 3x & -  c3 d s -  Io- 
2x - 2xy  2 + 3 y '  x 2 " y '  X 3 • y '  G4 • G7 

Let us assume L =  1 (i.e. e = 0 )  in the sys tem of  recurs ion (6.11).  The success ive  

g c d ' s  GN are given by  

G 3 = ( y x - 1 ) . ( y x  + x  + y) ,  G 4 = ( 5 ' +  l ) . ( y x -  1 ) . ( - x  + x y  2 - 2 y ) ,  

G5 = ( x 2 y  4 + 3 y 3 x  2 + 2 x 2 y  2 - y x  2 - x 2 - 3 y x  - 4 x y  2 - y 2  _ x y 3 ) .  ( y x  - 1 ) ,  

G6 = ( y  + 1 ) .  ( y x  -- 1 ) .  ( 2 x y  2 + yx  - x - 3 y ) .  ( y x  + x + y ) .  

The cofactors  read 

1 , d 4  = ~ X2 C3 : y x  . ( x  - x y  2 ÷ y )  " " y '  C5  = d ~  . x 2, C 6  = d ~  ..¥3 . y 

yie ld ing  the k- invar ian t  Io = G6 • G 3 / G 4  • G5 or more  s imply,  Ii = G5 - (x -  y - 1 )/G~. 

Appendix D. 3 x 3 matrices 

D. 1. Branch B1 in terms of  entries of  3 × 3 matrices 

We use the notations of  Section 6.3 and assume that the permutation of  entries b 
and h represent the permutation t of  class IV. Branch B~, reads (besides a singular 
condition of  non invertibility of  M0, det(M0)= 0 and an algebraic condition which does 
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not survive for higher values of  n): 

(a - i - c + g ) .  (d + f ) = 0 .  (D.1) 

In the d = -  f case the ratio 21/22 simplifies and reads 

2 1  
- -  z 

22 4ai - 4cg 

(a + i - g - c ) ( a +  i + c  + g)  

which yields, for instance, the following conditions for e = 0 and e = - I: 

(D.2) 

e,=O---~(a - i - c + y ) .  (a - g + c - i ) = O  , 

e = - l - - - ~ ( a  + i - g - c ) . ( a  + i + c + g ) = O .  

Quadratic relations among the entries o f  M0 hold for e = ½, 1, 1. 

In the a = i + c - 9 case the ratio 21/22 simplifies and reads 

21 2e .  (i + e) 

22 b f + f h  + bd - 2ei - 2ce + dh 

which yields the following conditions for e = 0 and e = - 1: 

(D.3) 

(D.4) 

e = O - - ~ ( b + h ) . ( d  + f ) = O ,  e , = -  l - - ~ e . ( i + c ) = O .  

D.2. S o m e  examples  

Branch  Bl:  I f  one plots the iteration o f  k =/~2, or o f  the associated Cremona trans- 

formation in ( s , t )  (see (5 .5)) ,  for the various "integrable" values of  e, one gets quite 

chaotic orbits for the successive ( s , t )  or (sn,s,+~) for branch B1. This can be seen 
iterating with k =/~2 the 3 × 3 initial matrices: 

- 2 6 2  3 - 2 5 8 -  

M 0 =  5 - 1  7 

- 2  8 - 6  

which correspond to 

a = c + i - g  see 
The simplicity 

o r  

4°  - 3 6  

5 - 1  

- 2  1 

I and _ l (and more precisely branch BI and, respectively, e = ~ e -  

Section D. 1 ). 
o f  e = -  1 can be seen on matrix 

2 3 6 ]  

M0(m) = 5 - 1  + 32.  m 2 (D.5) 

- 2  1 - 32 • m - 6  

which also corresponds to branch BI. In fact, matrix (D.5) gives xn = 1 for n even, 
xn = 13 for n - - 2 , 6 ,  10, 14 . . . .  and xn = ~ for n = 4 , 8 ,  12, 16 . . . .  This transformation of  
order four in the xn's, is however a simple translation on the matrices Mo(m)  • m 

m + l .  
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Branch B2: The following matrix Mo(h) depending on one parameter h, corresponds 

to branch B2: 

- 4 0  3 - 7  

M o = 13 1 2 (D.6) 

- 5  h - l l h - 7 1  

~:= 51 is then equivalent to h = - -~ or h - 13.12 

An example of  matrix associated with branch B2, iterated in the factorization scheme 

(6.16) o f  Section 6.3 is, for instance, 

- 255428  + 2 3 0 4 f  

Mo( f ) = 1 111 1 " , (D.7)  

2 1789 

where 2 = - 242 701 372 - 1 765 520 6 4 0 f  + 15 925 2 4 8 f  2, and: /~ = - 243 212 861 - 

1 765 516 032./" + 15 925 2 4 8 f  2. 

Appendix E. Analysis of  birationai symmetries  of  a s ix-state chiral Potts  model 

Let us consider a six-state chiral Potts model [1,16]. It is known that there exists an 

infinite group o f  birational symmetries of  the two-dimensional parameter space [1,16]. 
A 

This group is, for instance, generated by an (infinite-order) birational transformation K 

(or its i n v e r s e / ~ - l  ): 

K"  (x,y)--+ (1  + x + 2 y - x  2 - 2 x y - y 2  l + x + _ + 2 y Z x 2 _ - 2 x y - y 2  ) 
2y 2 - x  2 - - x  ' X 2 + x y  -- f 2 ~  ~-, ' 

2x 2 _ y2 x _ y2 

/~-1 : (x ,y) - -~  2 x 2 y + y 2 x + y 2 ~ - - - - x S - - 2 x y _ y  2, 

--(x 2 + x2y -- xy -- y2)  ",~ 

2x2y + y2x + v2--~x2--x -2--- 2-xy -- ),2 J " 

These birational transformations are integrable and have the following invariant [1,16]: 

(2x 3 + x 2 + 2x2y - 2xy - y2x - 2y2)  • (x - y2)2 
B =  (E.I) 

(x + y )4 .  (x -- 1) .  (1 -- y)2 

Using the previously detailed systematic method one gets 

G 3 = x - y  2, G 4 = ( y -  1 ) . ( x -  1 ) ' ( x + y )  2 , 

G5 = - 8 y 2 x  2 - y4 _ 3y6 + 3x 5 + 2y5 _ 6x3 y _ 4xy3 + xS y2 + 4x4y3 

- 13x4y 2 - 2xSy + 8x3y 4 - 20x3y 3 + 1 lx3y 2 + 6ySx 2 

- l l y 4 x  2 + 8x4y + 20x2y 3 - 8ySx + 13y4x, 
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G6 = ( y  - 1 ) • (x + y ) "  (2x 3 + x 2 + 2 x 2 y  - 2 x y  - y 2 x  - 2 y  2) • ( x  - y2)2, 

G7 = - 4 8 x S  y 3 + 18x7y q- y4xl°  - 170xS y 2 - 60x9y q- 40x2  y 7 - 184xZy 8 

+ 40x6y 3 - 6 x y  8 - 70xy  9 q- 8 y 7 x  + 1 4 y 6 x  2 - 1 4 y S x  3 - 59x4y 4 - 164xTy 3 

+ 18x8y + 2x6y 4 - 22xSy 5 - 156x4y 6 + 117x3y 6 - 224x3y 7 - 164x3y 9 

+ 300x3y 8 + 246x8y 3 + 2x4y 8 + 90x4y 7 - 8 x l ° y  2 + 24x l °y  

- 130xSy 6 - 9x l0 

- 70x9y 3 -I- 115x9y 2 - 184x8y 4 h- 300x7y 4 - 224x7y 5 

q- 81x5y 4 - 8y  1° _ 4 y  9 

- 156x6y 6 - 22xSy 7 + 90x6y 5 + 122x4y 5 - 170x2y l° + 246x2y 9 - 60xy  ll 

+ 115xy l° + 9y12x + 1 8 y l l x  2 q- 9 y l ° x  3 - 6y4x 9 

+ 4 0 y S x  8 + 117y6x 7 - 9 y  12 

+ 122yYx 6 + 9 y l 2 x  2 + 1 8 y l l x  3 + 8ySx 9 + 14y6x 8 + 9x 8 + 9x7y 2 + 2 4 y  11 

_ 14yYx7 + 40x4y9 _ 4x10y3 + 81xSy8 _ 59y8x6 _ 48ygx5 + 9x 9 + y8 

with  covar iants  

with 

( X ' f l ' ~  ~2 .f12 .72 ~X3 .f13 . ~4 . 6 
G - - -  c 4 -  , G -  , 2 • ]22 ' /~3 . ]23 25 .]26 

0~3 . f14. 75 . ~2 596. f16. ]j8 . ~2 
c 6 =  , c 7 -  , 26.  ]28 21o. ]212 

~ = y -  1, f l = 3 y + 2 x + l ,  

c S = x - 1 ,  2 = x 2 + x - 2 y  2, 

7 =  1 + x + 2 y  - - X  2 -- 2xy - y2,  

]2 = x  2 + x y -  y 2  _ y .  

F r o m  these covar iants  it is s t ra ightforward to see that it was  necessary  to go up to 

order  seven to get the a lgebra ic  k- invar iant :  

G7 
Q = gG--5-. (E.2)  

The express ion  o f  this invar iant  is s l ight ly  more  compl ica ted  than (E. 1 ) but  it is related 

to (E.2)  by  a very  s imple  ( ra t iona l )  re la t ion 

1 - -  7 B  + B 2 9 - B 

Q -  ( B + I ) 2  - - 1  ( 1 + 8 ) 2 .  (E.3)  
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