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Abstract

We analyse the properties of a particular birational mapping of two variables (Cremona trans-
formation) depending on two free parameters (¢ and «), associated with the action of a discrete
group of non-linear (birational) transformations on the entries of a ¢ x ¢ matrix. This mapping
originates from the analysis of birational transformations obtained from very simple algebraic
calculations, namely taking the inverse of ¢ X ¢ matrices and permuting some of the entries
of these matrices. It has been seen to yield weak chaos and integrability. We have found new
integrable cases of this Cremena transformation, corresponding to the values of a =0 when
e= %, %,4—1, besides the already known values ¢=0 and ¢= — 1, and also arbitrary o when
e¢=0. For these cases, one has a foliation of the parameter space in elliptic curves. We give
the equations of these elliptic curves. Based on this very example we show how one can find
these integrability cases of the Cremona transformation and actually integrate it using a method
based on the systematic study of the finite-order conditions of the Cremona transformation. The
method is shown to be efficient and straightforward. The various integrability cases are revisited
using many different representations of this very mapping (birational transformations, recursion
in one variable, ...).
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1. Introduction

In previous papers, birational representations of infinite discrete symmetry groups
generated by involutions, having their origin in the theory of exactly solvable models
in lattice statistical mechanics [1-6] have been analysed. These involutions correspond,
respectively, to two kinds of transformations on g x g matrices: the inversion of the
g x g matrix and a permutation? of the entries of the matrix (corresponding to the
parameter space of the model).

The set of such transformations is very large, as large as the number of permutations
of ¢* clements: we have thus restricted ourselves in previous publications [7-10] to
elementary transpositions and shown that this restricted subset of mappings falls in
six classes [7-9] for ¢=4. For g =4 three of these six classes (denoted I, IT and III)
are integrable® mappings, their iterations giving algebraic elliptic curves [11]. The
three other classes, even when the mappings are not integrable, do present remark-
able properties: their iterations lie on (transcendental) curves for most of the initial
points. These mappings exhibit many of the well-known chaotic features of discrete
dynamical systems. However, for class IV one even has an integrable subcase (on
some codimension-one algebraic variety) with again algebraic elliptic curves. One has
also associated with these mappings in CP,:_, (entries of ¢ x g matrices) a hierarchy
of non-linear recursions bearing on a single variable which enables to cross-check the
numerical and analytical analysis [8].

We will specifically consider in this paper the birational transformations of ¢ — |
variables of class IV [7,8]. This class, though it is not generically integrable, is quite
regular (very weak chaos) and actually exhibit two integrable subcases. It has thus
been called “almost integrable” [7].

The corresponding birational transformations on g — 1 variables (g arbitrary) can
actually be associated with birational transformations in a plane (Cremona transforma-
tions [12]). Based on this very example, we will show how one can find the integra-
bility cases of this Cremona transformation and actually integrate it. We will use a
method based on the systematic study of the finite-order conditions of the Cremona
transformations.

In a forthcoming publication, we will analyse these Cremona transformations, be-
yond the integrability cases, concentrating again on the analysis of the cycles of the
transformations.

2 Most of the time, the permutations considered in [7-10] are involutive.
3 Only class | is integrable for arbitrary value of g [9].
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2. Recalls

To set up the notations, let us consider the following g x ¢ matrix:

mp omp o m3 My
mpy My mp3 Mg

Ry= | M31 M3 m33 msq oo (2.1)
M4y Mgy M43 Myq

Let us introduce the following transformations, the matrix inverse T and the homo-
geneous matrix inverse I:

I: Ry—R;' and I: R,—R;' det(R,). (2.2)

The homogeneous inverse [ is a polynomial transformation on each of the entries my;
which associates to each m;; its corresponding cofactor. In the following, ¢ will denote
an arbitrary transposition of two entries of the ¢ x g matrix, and #;_g will denote the
transposition exchanging m;; and my,. The two transformations ¢ and 7 are involutions,
whereas the homogeneous inverse verifies 72 = (det(R,,))qu Sd, where #d denotes the
identity transformation. We also introduce the (generically infinite order) transforma-
tions K =¢-1 and K =¢-1. Note that K is a (homogeneous) polynomial transformation
on the entries m;;, while transformation K is clearly a rational transformation on the
entries m;;. In fact, K is a birational transformation since its inverse transformation
is 7t which is also a rational transformation. In the following, we will also consider
transformation K2 for itself (see Section 2.2.2). It will be denoted k.

2.1. Class I

The most remarkable example corresponds to the birational transformations of class I
[7,9]. One representative of such class is, for example, permutation #,;_3;. The corre-
sponding mappings are integrable and present factorization properties for the iteration
of the homogeneous transformation K as well as (integrable) recursions on some ho-
mogeneous polynomials.

Let us first consider the successive matrices obtained by iteration of the homogeneous
transformation K on a generic ¢ x g matrix R, (see (2.1)) and the determinants of
these various matrices:

M() :Rq, M] :K(Mo), f1 = det(M()) . (23)

Remarkably, the determinant of matrix M, factorizes enabling us to introduce a homo-
geneous polynomial f5:

_det(M))

fZ—F . (24)
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Again, f ’1’74 also factorizes in all the entries of the matrix K(M)), leading to introduce
a new “reduced”matrix M:

_ KMy
=—".
1
In fact, similar factorization properties are true at any order. Generally, for n>1 and

g =>4, one has*

M,

(2.5)

K(Mn+2) . det(Mn+2)
n3 = T Snis=— (2.6)
fZ fﬁ+1f3+; fz lf?hLI- 71+23
and the following relation independent of g:
T K Mn Mn
K(Mn+2): ( +2) = s (27)

det(M,>) B Satarr fura foes .

One important consequence of these factorizations is to introduce the homogeneous
polynomials f,. These polynomials do verify, independently of q, a whole hierarchy
of non-linear recursion relations [9] such as

g2 2 : 2 C g2
fnf n+3 fn+4f,,+| . fn—lf:1+2 - J‘;H}./‘;

‘ — (2.8)
an 1 fn+3fn+4 - fnfn+lfn+5 fn—an+2fn+3 - fn— i f)lfr1+4

or, for instance, among many others:
ot f 2eaSurs — fuaf 2asfuse _ o2 frisfuse — farsf Eoafusr (2.9)

f,2,+2f/l+3fn+7 - f;tfn+4f%+5 f3,+3fn+4fn+8 - fn+lfn+5f,2,+.(, '

Let us introduce here variables [9,8] corresponding to the iteration of the inhomoge-
neous transformation K:

x, = det(K"(Mp)) det(K" ' (My)) . (2.10)
The x,’s also satisfy recursion relations, for instance,

Xpp1 — 1 Xy —1
R]I = *Xp—1Xpst - (211)
XpXn1Xpy2 — 1 Xn—1XpXp—t — 1

Relation R is actually equivalent to

Xpi2 — 1 Xpi1 — |
Ry ) _ 'xnxiJrz . (2.12)
Xn+1Xn+3 — 1 XpXp+2 — 1

These factorizations and recursion relations were shown in [9] to hold true for arbi-
trary q X g-matrix for permutations of class 1.

* Because of factorizations (2.6) one can see that the iteration of the homogeneous transformation K yields
a polynomial growth of the complexity of the calculations: the degrees of the determinants of matrices M,’s.
as well as the degrees of the polynomials f,,’s are quadratic expressions of n {8,9).
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2.2. Class IV

Another interesting class of birational transformations, called “class IV”, also
emerged in such study. It also exhibits recursions on the x,’s and integrability, but
not generically as this is the case for class I. It can thus be seen as an excellent
“laboratory” to analyse the “frontier” between integrability and chaos. A typical repre-
sentative of this class is given by permutation #)_3;.

2.2.1. Factorization properties
The factorizations corresponding to the iterations of transformation K detailed in
Section 2.1 (see Egs. (2.4)—(2.7)) for class I, now read for class IV, for arbitrary »:

det(M,) = for1 - (S92 fumt - f125 F225)
SIS fams Sae Sac) - ST

K(My) =My - (f57 f353 fams) (F923 00 fuor)
(S 10 fomt) - 7

where d, and ¢, depend on the truncation. These factorizations have a periodicity with
period four. One notes that the following factorization independent of q occurs, which
is different from relation (2.7):

(2.13)

K(Mn) _ My
det(Mn) fle"'fnfn+l '

Remarkably, the polynomials f,, for class IV, not only satisfy this additional factor-
ization relations but actually satisfy, for arbitrary q, exact relations, as, for
example,

(fni2 = futfur1)  So—6Sn-10fn-14"
(fn_fn—Bfn—l) fn~4fn—8fn—12"'

— fn(fn—lfn~5fn—9"')_(fn+lfn—3fn~7"')
Soco(fussfaaSoori ) = (fomi fumsSnoo- )

Though, one does not have recursions on the f,’s but “pscudo-recursions” such as
(2.15), the previous variables x,,’s (see (2.10)), remarkably satisfy again a hierarchy of
very simple recursions [7-9]. As for class I, the recursions on the x,’s are independent
of q [8]. The most simple one reads

K(M,)= (2.14)

(2.15)

s =1 ey =1

= - XpXn43 . 2.16
Xpp2Xnrd — 1 Xpxgyp —1 70 (2.16)

For completeness, let us remark that, for the simplest case of 3 x 3 matrices, there
actually exists non-involutive permutations & yielding recursion (2.16) for K=2 -1,
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as, for example,

miy miz mp3 my mi3 m2 ma; ma my3

myy my  m3 | — | M3 ms33 M3 or m33 M3 ms;

ms mz; M3z myy  mp3 My miz myy miz
(2.17)

The first permutation is the product of a 4-cycle and of two involutions. The second
one is a transformation of order six, product of a 6-cycle and of a 3-cycle.

2.2.2. Class IV as a mapping of two variables

Studying the iteration of K in the (¢* — 1)-dimensional space CF,._, (corresponding
to the entries of ¢ x ¢ matrices), one can show that the associated orbits actually
belong to remarkable two-dimensional subvarieties, namely planes [7,8]. This can be
easily seen since one has, for any value of n, the following relation between matrix
M, and its even iterates:

K¥(My)=aq - My + a, - KA(My) + as - K*(My) (2.18)

showing that the orbits of K lie in planes (depending non-trivially on the initial
matrix My, that is, of a point in a (¢> — 1)-dimensional space). Note that this property
is also valid for the two non-involutive permutations (2.17).

More precisely, for transposition #2_3», one can recursively show [7,8] that the suc-
cessive iterates of K2 on a generic (initial) matrix M, can be written in the following
way:

R7(My)= — (Mo + a)F + BuP). (2.19)
X0X2 ... Xop_2

where matrix P denotes the constant g x ¢ matrix with entries P[1,2]=1, P[3,2] = —1I.
Pli,j]=0 for (i,j) # (1,2) or (3,2), and F denotes a g X ¢ matrix, quadratic in the
entries of matrix My (F[1,1]=my m3 — myymn, ...): F does depend on My, but not
on the order n of the iteration. In other words, all the iterates of K2 lie in a plane
which depends on the initial matrix M. This plane is led by two vectors, namely
a fixed vector P and another one F, depending on the initial matrix. Note that, for
the first non-involutive permutation (2.17), one also has a simple constant matrix P,
namely P{3,1]=1, P[3,3]= — I, P[i,j]=0 for (i,j) # (3.1) or (3,3).

Inside these planes, the orbits look like curves for many of the trajectories (see [7]).
From recursions (2.16) one may have the “prejudice” that the orbits of transformation
K2 in CPy:_, should be curves. In fact, it has been shown in [7,8] that, in some domain
of the parameter space CP,._, these orbits are no longer (transcendental) curves but
may become chaotic set of points.

These calculations amounts to considering transformation k=K? as a (birational)
transformation in two variables (a,b). In fact, recalling the x,’s (determinants of the
iterates of M), one can also represent, and analyse, transformation % as recursions on
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the x,’s (see (2.16)). At first sight it is not completely obvious that the integrability of
k (seen, for instance, as a birational transformation in the two variables (a, b)) should
automatically yield an integrability of the recursions on the x,’s since a determinant
does not contain all the “informations” on the entries of the matrices.

Let us consider the variables x,’s defined by (2.10) or more precisely the homo-
geneous variables g,’s: x, = ¢u+2/g,. One then has ¢z, =Xpx2...X2,—2 - go and also
Gamil =X1X3...X25—1 - q1. Clearly, gy and ¢, are two arbitrary homogeneous quantities.
From recursion (2.16) bearing on the x,’s, one gets

qn+6 — 4n+2 qn+4 — qn (2.20)

3 : =dn+19n+3 -
3+ (q;1+3 - qn+5) e (qn+l - qn+3)

which can be partially integrated (see Eq. (8.18) in [7]) as follows:

A2 Al
= P2, q2n+3 + q2n+1 +
q2n+1 qan+2

G2 + g t+ =pr. (2.21)

It is worth noting that these recursions are also valid for the two non-involutive
permutations (2.17). Then, one notices that recursions (2.21) can also be written,
eliminating p, and p,, as>

X X242 — 1 X2
b= — gutaan - T2 Pt (2.22)
= X2n41
. 2n+1X2n+3 — 1)x
b= = qurriganyy - 2t = s (2.23)
— X2p42
Let us also note that (F)=F, {(P)= — P and that transposition #, can simply

be represented as a reflection in the (a,,by,)-plane: t(a,b)— (a, 40 — b). From these
two representations of ¢ and k=K? (see (2.19)) in the (a,,b,)-plane, one gets a
representation of It1, which is actually an involution. One can introduce the following
change of variables (see also [8]):

q0q1 92 _ qoq1 9ot Gon
[ Un— _ e —_— .

U, =—4 , 2.24
q192 +goq1 + 42 qo ) a1 9o (224)

In fact it has been shown in [8] that the change of variables (a,,b,)— (u,,0,) is
(for a fixed initial matrix My) a linear transformation (see Eq. (6.31) in [8]). Thus,
the integrability of k=K? in the (¢> — 1)-dimensional space of the entries of ¢ x ¢
matrices, which corresponds to integrability of k in the (ayu, by)-plane, also corresponds
to the integrability of k in the (un, vy )-plane, that is, as a consequence of (2.24), to
the integrability in the (g,,g,+1)-plane.

The involutive transformation It/ takes the remarkably simple form (independent of
any parameter!)

% (u,v)—%(u',v’):(u+b;j_ ”",”H;_ ””) (2.25)

5 Note a misprint in [8]: the actual expressions of i; and A, have opposite values as compared to (2.22)
(see (6.20) and (6.21) in [8])
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and transformation ¢ is represented as the following (fwo parameters) transformation:
t: (uv)y—>(u,l+e—v+ou), (2.26)

where ¢ and % read

A=A ge @@+ @)+ Ah)ag ) +4) _ pip
).2 ’ qqu)Q /12 ’
(2.27)

Let us also recall that there does exist an integrable subcase of these mappings
associated to class IV, corresponding to 4; = 4, (i.e. é=0) [7]. It yields the following
integrable recursion:

Xp2 — 1 _ Xnl T 1 X Xn42

= (2.28)

Xupi Xap3 — 1 XpXpe2 — 1 X
The corresponding g,’s actually satisfy two biguadratic equations® depending on the
parity of n (see [7]). For this integrable ¢ =0 subcase the group, generated by trans-
formations (2.25) and (2.26), yields a foliation of the (u,v)-plane in terms of curves,
which form a linear pencil of elliptic curves. This can be seen by noticing that, for
£=0, an algebraic expression i is actually invariant under both transformations /¢/
and :

i:(l—u)o(l—v)-(v—ocu)

(2.29)

u
One should also note that the £ = — 1 case has also been seen to be integrable [8]. This
e= — 1 case, which corresponds to 4, =0, yields a simple rational parameterization

of the iteration. This simple case will be revisited in the following.

3. Graphical approach: « = 0

For heuristic reasons, let us consider the « =0 case (which happens to correspond
to a rational parameterization, when ¢=0).

For some values of &, the mapping becomes integrable, i.c., a generic point on
the (7,v)-plane stays upon iteration always on a curve. For these values, an algebraic
k-invariant exists.

If one has a linear pencil of curves, the algebraic invariant, for these integrable
values of ¢, must necessarily be of the form

P(i,v)

OG,v)
where P(i,v) and Q(i,v) are algebraic expressions in terms of i and v. Let us make
a few remarks. The invariant A(i,v) is clearly not unique: it is defined up to a

A, v) =

(3.1)

S It is well known that biquadratic equations are associated with elliptic curves [6].
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homographic transformation. On the other hand, some points in the (i, v)-plane belong
to all the algebraic curves (base points): the invariant is undetermined at these points,
1.e., polynomials P(i,v) and Q(i,v) are zero simultaneously at these points.

The method: The values of &, where integrability occurs, correspond to a folia-
tion of the (i,v)-plane in terms of elliptic curves for a (generically) chaotic map-
ping. These values can be easily detected graphically. For these situations, where there
clearly exists an invariant, one can look for curves which degenerate into lines, hy-
perbolas or parabolas. An invariant by the mapping can then be easily written using
the equations of these simple curves. We will illustrate this graphical method in the
following for three integrable cases corresponding to the values of ¢, namely 1,%
and %

3.1. Definitions and notations: Variables i and v

From relation (2.29) taken for a =0, the variable u can be simply written in terms
of the variable v and the algebraic i (which is not invariant since ¢ is not necessarily
equal to 0 here):

v (l—v)

and the mappings ¢ and Itl (see (2.25),(2.26)) read, respectively,

t: (i,v)a(i-(l—%) (1—Uf1),1—v+s>, (3.3)

e . i
I (i) — (:,1 - 1) . (3.4)

These very simple representations of the birational transformations of class IV enabled
us to perform a large number of numerical calculations which confirm the analysis
performed in [7]. The iterations of these transformations often yield orbits which look
like curves (weak chaos [7]).

Let us now analyse in detail the mappmgs generated by (3. 3) (3.4). One has then
to study the iteration of transformations k =K? or its inverse &k ':

k = Iilr: (i,v)—»(i-<1—§)~(I—Uil),lﬁ—%(l—%)), (3.5)
Pk (i,v)—»( <1+ ) ( jf:i)

i s(v—l)

()
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3.2. Two simple integrable values ¢ =1 and ¢= — 1

Let us first consider e=1. When looking at the orbits of Z, for ¢=1, or rather
for ¢ very close to 1, one sees very clearly a foliation of the parameter space in
hyperbolas: ¢ =1 is integrable. One immediately gets an algebraic invariant A(i,r) and
the associated hyperbolas (4 is a constant):

-1)? . v-(v—-1)
A(i ~—————-, =34 —. 3.6
It can be easily checked, using the mapping, that indeed A(i,v) is k-invariant.

One can also verify straightforwardly that ¢e= — 1 is also an integrability condi-

tion [7]. One immediately gets an algebraic invariant under transformations (3.5):

(v—1)2

A(i,v) = (—U—Z—U——l)z .

(3.7)

3.3. z;:%

The graphical method of visualization of the orbits (in the (i, v)-plane) enables to see
new values of ¢ yleldmg integrable mappings. Fig. 1(a) represents the elliptic curves
corresponding to €= 5. It corresponds to 50 different orbits of k = K? and thus shows
clearly the existence of the foliation of the (i, v)-plane in (elliptic) curves (see (3.12)
below). One sees also very clearly in Fig. 1(a) the base points of this foliation.

More accurately, one detects graphically three situations where factorizations into
simple curves occur. One can see in Fig. 1(a), as a consequence of these factorizations,
simple curves emerging, namely a line and two hyperbolas e(i, v) = 0, three lines and
one hyperbola e;(i,v) = 0, and finally one parabola e;(i,v) = 0

el(i,0)=Qi+v)-Qiv+v—3i—1)- (=0 + v+ 2iv — i), (3.8)
ers(i,v)=i-Qu—1)- Qi —v+ 1) (v? — v+ 2iv — 3i), (3.9)
es(i,v)y=v? —v—i. (3.10)

The three expressions satisfy a remarkable relation

er(i,v) — ea(i,v) + e3(;,v) = 0. (3.11)

From these results an algebraic invariant emerges for ¢ = %:
el(iau)

(e3(i,v))?

Fig. 1(b) represent the chaotic orbits corresponding to a small perturbation of this

integrable foliation (namely £ =0.52). Such a small perturbation destroys the integrable
foliation of Fig. 1(a).

A(i,v) = (3.12)
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-0.40 150

(a) epsilon= 0.500000000 N= 100000

Fig. 1(a). Foliation of the (i, v)-plane: 50 orbits for ¢ = %

1
3.4 e= 3

Similarly, e = % is another value of ¢ for which a foliation of the plane pops out (see

Fig. 2(a)). Again the base points can clearly be seen in Fig. 2(a). One even detects
graphically three situations where factorizations occur in this foliation. These situations,

which correspond to the vanishing of some expression e,(i,v), are, respectively, four
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015

-0.40 1.50

(b) epsifon= 0.520000000 N= 100000

Fig. 1(b). Fifty orbits for &£ =0.52.

hyperbolas e (i,v) =0, two lines and one hyperbola e;(i,v) =0, one parabola and one
line e3(i,v) =0:

ei(i,v)=> = 3iv—3v+4i +2)-(v? = 3iv — v+ 2)
(v +3iv—v—2i) - Bvr + v — v — 12i — 2), (3.13)
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Fig. 2(a). Foliation of the (i,v)-plane: 50 orbits for &= %

er(i,0)=Bv—2)- (v —3i — 1) (=0 + v~ 3iv + 4i), (3.14)
es(,ry=@w—1)- (W2 —v—1i). (3.15)

The three expressions again satisfy a remarkable relation

e1(i,v) — te3(i,v) + Le3(v) = 0. (3.16)
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150

040
(b) epsilon= 0.334000000 N= 100000

Fig. 2(b). Fifty orbits for &« =0.334.

can be chosen as follows:

The invariant for ¢= %,

. . el(isv)
Aliv) = s (3.17)

Fig. 2(a) represents the foliation of the (i,v)-plane in elliptic curves corresponding to
%. Fig. 2(b) represents the chaotic orbits corresponding to a small perturbation of &,

=
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namely ¢ =0.334. Again one sees that the foliation of the (7, v)-plane in elliptic curves
is quite unstable.

For e = % any point (i, v) satisfying e,(i,v) =0 is a point of order six by the mapping.
This can be easily seen by iterating a point lying on the line of Eq. v = %:

2\ %, % —24+9i+81% 8+4+36i\ % [(—-5-27i 2
L3 (lal+3l) . > . ? Y
3 27 + 81i 9+ 271 27+ 8li 3

¥ [—5-27i 4 T [(2-9—-812 1-9i\ 7 /.2
> ’ . P Lo .
27+ 81i 9427 —27 — 81i 3 3

(3.18)

In fact, this means that the 6-cycle points are no more isolated fixed points of k. A
whole curve of order six takes place. This remark will be used in the next section to
introduce a method for calculating the invariants based on the search of the finite-order
curves. From a graphical point of view, the curve e;(7,v)=0 is a set of points of order
six which should not easily be seen. However, when we scan the parameter space in
order to see the foliation, we get points close to this hyperbola the orbits of which
are infinite and “densify” elliptic curves very close to the hyperbola, thus enabling to
“visualize” the finite-order curve e,(i,v)=0.

Let us remark that such graphical inspections cannot really be used to find exhaus-
tively all the values of ¢ yielding integrability. One needs to perform analytical calcu-
lations in order to get such an exhaustive list and prove the corresponding integrability.

4. Integrable cases: Finite-order approach

Let us now use another more systematic approach to prove the integrability of the
Cremona transformation for the previous values of ¢, based on the study of the finite-
order orbits of the mapping.

4.1. General remarks on foliations

Let us first make some general remarks in order to introduce the finite-order method.
When one looks at the orbits of transformations 7;, integrability means that, for any
point on the (i, v)-plane (for « =0), or on the (u, v)-plane (for arbitrary «), the mapping
yields an infinite set of points which densify a curve. One thus gets a foliation of the
plane parameter space 2(u,v, 1) =0, where the constant A depends on the initial point
(up,v9) in the iteration.

If one assumes that 2(u,v, A) is algebraic, one can expand’ it as

P(u,v,2) = Py(u,v) - M + Py _(u,v) - AM7!
oot Py (uv) AT P, ) - A+ Po(u,v). 4.1)

7 The case of a linear pencil of (elliptic) curves corresponds to M =1: P(u,v) - A + Py(u, v} =0.
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These algebraic curves have (by construction !) an infinite set of (birational) automor-
phisms: they are therefore elliptic curves {11]. One can thus (in principle) introduce
an (elliptic) parametrization of the birational mappings on each curve Z(u,v,4)=0.
There exists a (spectral) parameter 6 and a shift # (which depends on 4 that is on
the curve, but not on the point in the curve) such that the involutions I and ¢ are
represented by reflections: # — — 6 and  -— — #+ 5 and the (generically infinite order)
transformation & amounts to performing a translation of n: 8 — 6 + 1. The finite-order
conditions, namely kY = identity, thus read:

0=0+N 7. (4.2)

These conditions just amounts to imposing that the shift # is commensurate with one
of the two periods of the elliptic functions. This is a condition bearing on 1, or
equivalently on A, independently of the point on the curve. The finite-order points are
not isolated points: they correspond to a whole curve, that is particular values of 4.
These results do not require a foliation into a /inear pencil of elliptic curves.

This means the following: writing the condition of finite order N, k" = identity,
read two conditions, namely Uy(u,v)=0 and Fy(u,v)=0. These two conditions must
factorize some curves of the foliation corresponding to some finite set of values of A:

Fy(uv) = [[ 20,2 = 0. (43)

Writing systematically these conditions of finite order N, and getting the ged of Uy
and Vy, one gets therefore Fy(u,v) and thus one can get the previous polynomial
coefficients Py (u,v) in (4.1) from the system of equations (linear in the Py, ’s):

Py(u,v) - 2 + Py_q(uo) - AV 4o+ Py () - AV
4+ P, v) - A+ Po(u,v) = Fy(u,v) . (4.4)

In fact, most of the time, due to factorizations in the expressions of the Fy(u.v)’s,
it is not necessary to “accumulate” a large number of such finite-order conditions. The
various factors of the Fy(u,v)’s do have covariance properties with a simple cofactor
term (one does not have an accumulation of different independent cofactors). Simple
ratio of these factors enable to get quickly an invariant.

The method: In the following, we will use the previous remarks to actually get
algebraic invariants of Cremona transformations (birational transformations of two
variables). The method is as follows: we will systematically write, for a given Cre-
mona transformation (x, y) — (x/, '), the finite-order conditions KV = identity on the
two components, getting two algebraic expressions Xy(x, y)=0 and Yy(x, y)=0. Ac-
tually, one rather writes (for computer memory reasons in the formal calculations)
kM =) with Ny + N> =N and |N, — N>/ <1. One will factorize these two poly-
nomials Xy(x,y) and Yy(x, y) in order to get their ged which will be denoted Gy.
This ged transforms under the Cremona transformation k into itself, up to a cofactor
denoted Cy. One will accumulate such ged’s and associated cofactors until one is ac-
tually able to build an algebraic invariant of k as products and ratios of these ged’s.
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Of course, considering factors of these gcd’s, or simple curves emerging from a graph-
ical analysis (see e;(i,v) =0, (3.8),(3.13)) which are not finite-order curves, one may
be able to build simpler algebraic invariants. The cofactors obtained by this method
have particular algebraic properties [13,14].

4.2. Integrable candidates for ¢ from finite-order analysis for o = 0: (i, v)-analysis

Let us now use similar calculations in order to seek for relations between ¢ and «
(or just particular values of ¢ and &) such that the mapping becomes integrable.

Let us first concentrate on condition o =0 for which one can benefit from the intro-
duction of the variables i and v (see Section 3).

The finite-order conditions of order N, namely P =1identity, yield two conditions
on i,v and ¢ Iy(i,v)=0 and Vy(i,v)=0. The elimination of i, for example, between
In(i,v) and Fy(i,v) factorizes, among others, the following simple expressions (de-
pending only on ¢!). g,(e+1),(e —1),(¢ — %) and (¢ — %) up to N =6.

One remarks, from this analysis, that some particular values of ¢, which are candi-
dates for integrability, immediately pop out. It will be seen in the following that these
values are indeed values of integrability of the mapping. The fact that these singled out
values of & emerge from conditions which should depend on the remaining variable i
is remarkable. One cannot expect all the integrable values of ¢ to be obtained that way
and, in principle, one has to perform several eliminations of variables in the remaining
other conditions which actually mix ¢ and v. The calculations, which are a bit tedious,
are sketched in Section A.1 of Appendix A.

All the factors in (A.2) are key ingredients to build the possible algebraic invariants
of the Cremona transformation. The finite-order algebraic curves of integrable Cremona
transformations are to be found among the various factors of (A.2) in Appendix A (and
similar ones for N >7). On the other hand, the corresponding values of ¢ are to be
found among the various factors similar to (A.3) in Appendix A.

4.3. Invariant from finite-order analysis for o« =0: (i,v)-analysis

From the previous analysis, one gets a (finite) set of values of ¢ as possible candidate
for integrability for « =0. Let us now analyse these various values for ¢ and use the
method of Section 4.1 to find the corresponding algebraic invariants of the mapping
(3.5) in the (i,v)-plane.

Let us first remark that a simple covariant exists for arbitrary ¢. If one considers,
parabola P =i — v? +v=0, one can easily verify that it transforms covariantly under
k:

2 .
PGP owith 6= -8 (4.5)
v2-(v-1)

£= %: The ged’s at orders N =4,5 and 7 are trivial. At order six the ged of I and
Ve reads Gs = (3v—2)-(Biv—4i —v+02)-(3i+ 1 — ). It transforms under k as follows:
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Ge¢ — C - G, where the cofactor C reads

(Bv -4y .

C=——2 .
2703 - (v — 1)*

(4.6)

At order eight the gcd of I3 and Vi reads

Gy = 768iv + 35207 + 1944v*i* — 77760°1* + 32640°1 — 256002 + 448i%?
— 12807 — 1280i%0 + 5124% + 2264v* — 14400° + 20480%% — 2112i*
—16960° + 240% — 33120%% — 63361°1° + 8448i°v? — 4864i° 4 8320 iv
+6240° + 10244 + 20160° + 11232i*0% — 6912i* + 17280% — 192it®
—4321%% + 1536i* .

~ ~2 o
Gy transforms, under &, as follows: Gg — C - Gg, where the cofactor C is the same
as for Gg, namely (4.6). One thus gets immediately an invariant by transformation &:

_Gx

h=g

. ~. . G
or the simpler k-invariant /1, = )2 (4.7)
P —1)

Other values of ¢: A similar analysis can be performed for ¢ =0, —1, %

lations are detailed in Section A.2 of Appendix A. The results in Appendix A confirm

the graphical approach of Section 3. One can actually get the algebraic E-invariants, thus

showing that these values of ¢ lead to the integrability of the mapping. On the contrary,

one does not get any non-trivial gcd’s for the other values of ¢ that pop out in (A.3) in

Appendix A, for instance, e =11, e= — 5, the roots of: 4&* 435 — 83 +65¢—13=0

and so on. Apparently, when « =0, the only integrable cases are e= 1, ¢=0, ¢ =
I

&= 3.

1. The calcu-

P —

.

4.4. Invariant from finite-order analysis: (u,v)-analysis for arbitrary «

Let us now consider the general analysis where o is arbitrary. In that case, one
does not have an equation like (3.2) anymore and one must thus return to the original
variables # and v. In term of these variables transformation E, and its inverse E"',
read, respectively,

7. i -l —w)(v—a-u—c¢) 1—(1—u)(v—oc-u—£)>
G l—-(v—a-u—sg) u ’
R . 22
k' (u,v)—»(u,(v—oc-u+x+8)w).
v ur

o = 0 and arbitrary & Let us first assume that o =0. The (w,v) analysis of 2 =0
for various values of ¢, namely 1,—1,%,1, is given in Section A.3 of Appendix A.
One recovers results, similar to the one obtained in Section 3, when the Cremona
transformation is seen as a birational transformation in i and v.
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&£=0 and arbitrary o: Let us now assume that ¢ =0 and apply the same method as
before. For N =3 one gets two conditions (U3 =0 and V5 =0):
Us=(=140v) - (—vow — ou® + woa — v+ 0° — u + uv — w?)
Qo —au— 1 +v4u—2u),
V3:(uv—vocu—ozu2+uzva~v+vz—u—uvz)~(ocu—(xu2+ 1 —0)-(v—ou).
Remarkably, the gcd of these two expressions is non-trivial,’ for arbitrary o, and reads
Gy=u-(—v—u+uv)-a+ > —u+u—v—u?).
This fxpression of u and v, which is a-dependent, is actually covariant by transforma-
tion k:

- L1— 2
Gy— C-Gy where ¢ = 0T 20U~ 017 (4.8)
u-(1 —v+ au)

At order four one gets larger expressions for U and ¥ which factorize and remarkably
have a common factor. The ged of Uy and ¥, denoted Gy, reads

Ga=u? Quv—2u—20+1)-(—v—u+uv)-o?
—u-(u—1)-(=1 +0)duv? —4v? —4uv +v+u)-a
+v-(u—1)(=1+v) Quv® —20% = 2uv + 2v +u).

G, is actually covariant by transformation k: G4 — C? - Gy, where the cofactor C
is the same as (4.8). Therefore, for ¢=0, but arbitrary values of «, the algebraic
expression

L= (4.9)

is actually invariant under the iteration of the infinite-order transformation k. One
thus has an integrable birational mapping (depending on one continuous parameter o)
yielding a foliation of the (u,v) plane by a linear pencil of elliptic curves given by
Eq. (4.9).

In the following, it will be seen that one can actually associate to this mapping two
recursions of drastically different nature, bearing on a single variable: one amounts
to a simple change of variable (see (5.1) in Section 5 below), and the other one
amounts to introducing the x,’s (determinants of the iterates of R, previously intro-
duced, see (2.10)).

5. A recursion on a single variable for « =0

Let us consider o =0 for arbitrary &. The variable i (see (2.29)) is an invariant for
e¢=0. For arbitrary ¢ it has, a priori, no special property. However, if one restricts to
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a=0, one can actually write u and v as a function of i and v (see (3.2)). We will
use this property to describe the a =0 (and £ 0) situation. Paradoxically, one uses
the variable i, introduced for arbitrary 2 and £=0, to describe the x =0 for arbitrary
& situation.

One can choose, instead of (i,v), two other variables (s,#) defined by

i £
s:—-(l— ), r=t—¢. (5.1)
v v—1

Then, the action of k on (s,r) becomes

~ r-(s—e
k: . _—, 1-8)). 52
(S,V)—>< G+ D) s+( f)) (5.2)
The interest of these new variables (s,7) is that one can easily obtain a recursion
bearing on a single variable (s or r):

($ns1 —&)(sp —e+1) (rn — &) (rnp) — )

Span = or rpa=(1—¢)+ 5.3
: (e + 1) " A P )

showing that the quantity 7, — s, =1 — ¢ is independent of the iteration.
Let us analyse recursion (5.3). Any recursion of “length two” (i.c. one gets s,., as
a function of s,,( and s,) can be seen as a rational transformation on two variables:

Spe2 =F(sy,5,41) becomes (s,1) — (1, F(s,1)). (5.4)

Recursion (5.3) is straightforwardly associated to a new rational transformation k and
one verifies immediately that this rational transformation is birational. Transformation
k and its inverse k! read, respectively,

(t—s)-(s+1-£)>
t+1 ’

ki (s.0)— (z, (5.5)

N () (st+tAs+s::+{: — 82,s> ‘
s—¢
In order to integrate recursion (5.3) one can use the previous approach based on
the systematic analysis of the finite-order curves of the birational transformation (5.5).
Since the change of variables from (u,v) to s, (or ,) defined in (5.1) is only defined for
o =0, all the calculations in the following correspond to 2 =0 and to the “integrable”
values of &, namely e=1,—1,0,1,1.
Let us remark that, for any value of ¢, the line D, =¢ + t — s is covariant by the
action of transformation &:

- - ~ e —1
k: Dy — C-D; with cofactor C = :——ﬁ . (5.6)

Let us now revisit the integrability cases ¢=1,—1,0, %,

(5.3) or, equivalently, the (new) associated Cremona transformation (5.5).

1 for this very recursion
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Integration of the recursion for e = % Let us first consider ¢ = %, and use the method

of finite-order orbits analysis. Then, condition N = identity gives two conditions Sy =0
and Ty =0. Their ged’s are trivial for N =3,4,5,7,... One gets the first non-trivial
ged’'s Gy for N=6 and N =8, namely,

Ge=@s+1)-Bt+1)-(9s+9t+1—3s)
and

Gg = 2187r*s* + 5832¢%s® + 53461%s% + 19441%s + 243¢* + 19448°5> + 4501
+3240£35% + 1512835 + 2168° — 486s*2 — 6481%s> + 3241%s* + 360¢%s
—216ts> — 72ts? — T44ts + 2641 + 27s* + 378s% — 2565 + 43 .

These expressions transform as follows under k: (Gé, Gg)— (—C -G, C?. Gg) where
| .

C is cofactor (5.6) taken for £ = 3- One thus gets the k-invariants
G Gs\
I = G—% or more simply I,= <D—T) . 5.7)

Let us remark that these different expressions for the invariant are related to a large
set of identities on the covariants G,’s. If one calculates Gp, one sees that it is not
independent of Gs and G, namely Gio — 16-G3=—6-(2-Gs — G2)2. In fact, there
are an infinite number of such relations. Most of the time they are consequences of the
foliation of the two-dimensional parameter space into a linear pencil of elliptic curves:
an infinite set of finite-order curves, like Gy =0, corresponds to algebraic values of
the invariant, thus yielding many non-trivial relations between the Gy’s.

Other values of &: Similar calculations are performed in Appendix B for the other
integrable values of ¢, namely ¢ = %, 1,—1,0. Clearly, one recovers (as it should) similar
algebraic k-invariants associated with integrability.

6. Expression of ¢ and « in terms of entries of ¢ X ¢ matrices:
Recursions in the x,’s

The purpose of this section is to see if the integrability seen for k=K2in CPp_y,
that is, in the (u,v)-plane (or in the (i, v)-plane when «=0), can also be scen on the
determinants of the iterates of K.

6.1. Recursions in the x,’s: Parity discussion

Recalling Eqs. (2.21) and (2.27) one can express ¢ (related to the ratio of 4; and
42) and o as a function of the x,’s defined in (2.10) and thus as a function of the
entries of the ¢ X ¢ matrix M.
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Denoting L the ratio A;/4; one has the following results with n=0,2,4,...:

A LAl XX Xnp1Xne3 — 1) (xp — 1
b= with A ni2 (g1 Xnes — 1) (1 — 1)

B A2 A B Xn+1 Cuxpg2 = 1) - (epe2 — 1) 7

that is (with n=0,2,4,...):

(6.1)

¥ 3_xn'xn+2'(xn+l‘1)+xn+l'(xn+2_l)'(xn'xn+2‘1)'L (6.2)
n+3 — . .
Xn Xpgl Xny2 (pgy — 1)

Let us also remark that one gets at the next order

A A ] Xng -1)- -
boi =2 1 with 2 _ Xl Xnd ni2Xnra — 1) - (G 1), (63)
| Al Xnt2 (X1 Xp43 — 1) - (X3 — 1)
that is (with n=10,2,4,...)
Xpra = Xn+1 " Xpt3 - (xn—+—2 = 1)L+ Xxni2 - (Xpe3 — 1) (g1 - Xy3 — 1) . (6.4)
Xpt1* Xpg2  Xng3 (Xns2 — 1)L
One thus has g =¢ =g = --- and &) =¢; =& = - -. The fact that one “jumps” from

n to n+ 2 is a consequence of the fact that k=K2is singled out. The elimination of
the ratio A,/4; between (6.1) and (6.3) clearly gives (2.16). Let us introduce x,,:

o (1 + Xne1 = Xn2Xn41 — Xpa 1 X012 X043 W1 + X0 — XnXut1 — XnXng1Xn12)
n = .
Xpi1 s (XnXns2 — 1) (X2 — 1)

One should note that the successive values of «,’s are such that o, = o,,2, l.e. 0y =
o= ---,and o) =a3 = - - -. One can however have invariant expressions, independently
of the parity of n, namely,

2 2
( & ) :<f_ﬂ> =024, (6.5)
Ap+1 042

This is a straight consequence of a= — p; - p2/42 (see (2.27)). The expressions of «
and ¢ in (2.26) correspond in fact to a=0p= 2= ---and e=g =6 = - -.

6.2. The two oo=0 conditions

The vanishing condition of « yields for n even or odd,

Xpin = 1% = XnXost (6.6)
Xn * Xn41
One could analyse this very recursion (6.6) for itself (assuming that »n is not of a
fixed parity) using, for instance, the method developed in this paper to integrate it (if
integrable!) i.e. by associating a Cremona transformation (see (5.4)). One verifies that
this mapping is not integrable for itself: it has to be considered coupled with another
recursion on the x,’s.
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In fact, condition (6.6) valid for n =0 or n = 1, presents some remarkable compability
with the iteration of K and, furthermore, one can verify that, if it is valid for =0, it
will be verified for any n even and, on the contrary, if it 1s valid for n=1 it will be
verified for any n odd. There are thus two branches

Bi: 1 4+x, — xpXngt — XnXps1 X2 =0, n=0,2,4,..., (6.7)
By 14Xt — Xp2Xnp1 — X 1 Xng2Xn3 =0, n=0,2,4,.... (68)

Therefore, these two conditions should be seen as a part of a system recursions.
Condition (6.7) (or condition (6.8)) is actually compatible with the system of recursions
(6.1) and (6.3) for arbitrary value of the ratio i,/;. One thus has to consider two
situations corresponding to the two branches of « =0, namely B, and B;.

6.2.1. The first branch B,. non-integrable

Let us first consider the first branch B;. The system of recursions (6.2), (6.4) and
(6.7) is a compatible system. One can actually verify that (6.4) can be deduced
from (6.2) and (6.7). One can replace this compatible system of recursions ((6.2),
(6.4) and (6.7) taken only for n even) by

1 — 4n
xn+2:M’ (69)
Xn - Xp+1
Xoia = (xXn + 1) (=1 ~xp + 2xpXn 1) - L+ x5 - (1 4 X4 — XpXni1)
e (1 4+ Xy = XpXng1 ) X - Xnyi

k]

where n=0,2,4,... and where L denote the ratio of A; and 4, that is 1 +¢. Of course,
this interesting compatibility property (valid for arbitrary value of the ratio L that is
arbitrary value of &) is not sufficient to imply integrability.

Coming back to system (6.9), one can use the method developed in this paper to
integrate it (if integrable!). For this purpose let us again associate, to this system of
recursion, its corresponding Cremona transformation k and its inverse

~ l+x—xy (x+1)-(—x+2xy—1)-L+(14+x—xp)-x

ki (x,y)— , ,
Xy (I4+x—xy)-xpy

—L + xy + Lx? x )

L+x*—xy—Lx2+x"xy+L-x2—1

A x,y)— (

For the different integrable values of ¢ (or L), one gets that the successive ged’s of
the Xy and Yy conditions (corresponding to writing K =identity on the two (x,y)
coordinates) are just simple functions of x for N =3, 4, 5, 6, 7, 8, namely x and 1+x.
This suggests that this very system of recursions (6.9) is not integrable. Examples of
3 x 3-matrices corresponding to branch B; are given in Section D.2 of Appendix D.
The graphical analysis of their iterates confirm this non-integrability.
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6.2.2. The second branch B, : Integrable
Let us consider the second branch B,. One also has a compatible system of recursions
and one can replace the system of recursion (6.2), (6.4) and (6.8) by

1 T Xpt1 — Xpr1Xn42

Xny3 = ’
Xn+2 * Xnt1
ez — 1) Gz — 1)L 1
o3 = (Xn - Xpi2 ) (Xny2 ) ’ (6.10)
Xp* Xnt2 (xn+l - 1) Xn+1

where n=0,2,4,... It can also be rewritten climinating x,,3 between the two last
equations and x,,, from the first equation (6.10):
X - (1 —x3+1)+xn+1 <L

x,, 'x,,+| 'L

Xn+2 =

s

(xn + Xp - Xni "‘xn+l)'L+xn'(x31-+—l - 1)
x, - (1 ~x5+1)+x,,+1 -L

(6.11)

Xp+3 =

One can also associate to (6.11) the following Cremona transformation k and its
inverse k~!:

~ -xy*+Ly L Lx — 2 — Ly
By (IS DY LRI D) (6.12)
yLx x—xy*+ Ly
~_4 (yx—14+x)L 1
K (g y)— R
x-(VLx — L+ Lx —xy?+2y ~2yx+2 —x) yx - 1 +x

Let us assume that L = % (ie. e= %) in the system of recursion (6.11). The successive
ged’s Gy read

Ga=1+y, Ge=3(y—1)-(y+ 1)-(2yx —x + 3xp* —4y)-(yx — 2+ x),
Gs=(y+1)-Gs,
with

Gy = 64yx + 24x> + 520x2y? — 344x% )" + 256xy° + 12837 — 384x)7
—256y° + 5441°x% + 80yx> — 4323°x> — 64y%x® — 256)%x°
—16y°x> — 1657y + 384xy* 4 128y* — 3203°x + 60y°x* + 72y7x*
—144x3y7 +312x2 % + 27x*y® — 19223 % — 20x* 2 + 3x* 4 58x* !
—8x*y + 24x*y + 40x%y° — 16yx? .

The covariants are, respectively,

~

- 4 ~ Cil ~
Com i, Co= — 5, Cs=
3x —3x)y? +4y Xty

C4°
2

satisfying 6'4 . 6'5 = C~'62, yielding the k-invariant: Iy =(Gs - Gy )/Gf,.
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Similar calculations for ¢ = %,O, —1 are given in Appendix C.

The integrability seen for k=K? in the (u,v)-plane, or in the (i,v)-plane, can actu-
ally be also seen on the determinants of the iterates of k=K2.

Note that these calculations are also valid for the non-involutive permutation (2.17),
thus providing integrability cases for these quite non-trivial examples of birational
transformations.

Let us remark that all these calculations can be revisited on the original birational
transformations k = K2 bearing on the entries of ¢ x ¢ matrices. Sections D.1 and D.2
of Appendix D provide, respectively, a “dictionary” and some examples of the a =0
cases for 3 x 3 matrices.

6.3. Iteration of 3 x 3 matrices: Branch B,

For 3 x 3 matrices the « =0 conditions can be written explicitly (see also Section D.1
of Appendix D). Let us denote the initial matrix and its entries as follows:

b ¢
f1- (6.13)

i

My =

Q@ | R
> 0

Let us assume that the permutation of entries b and 4 represents the permutation ¢ of
class IV (see Section 2.2.1). Matrix M, belongs to the branch B, if one of these two
conditions is satisfied:

ae+ fh—ei—bd +bf —ce—dh+eg=0 and di— fg+af —cd=0.
For di — fg+ af — cd =0 the ratio 4,/4; simplifies and reads

A B ded(af — cd)

72 (f —d)efg+ged — fbd — fhd — eaf — bd? — hd® + 2ecd + ead)
(6.14)

For —ei + fh+ae — bd + bf — ce —dh + eg=0 the ratio 4;/4, simplifies and reads

A (bf + fh—bd +2ae — dh - 2ce)-(ae — dh — bd + ge) 615)
A2 (2afh +2a%e — 2abd + 2abf — 2ace — 2adh + 2age — 2egc)e '

The conditions for branch B; are given in Section D.1 of Appendix D.

Let us, for instance, consider the integrable value ¢ = % Section D.2 of Appendix D
gives an example of such a matrix (see (D.7)) corresponding to branch B; and ¢ = %
One can revisit the factorization scheme (similar to the one detailed for the birational
mappings of class IV detailed in Section 2.2.1, see (2.13)) in this very integrable
case. One actually see, similarly to a phenomenon already seen in the £¢ =0 integrable
case [7], that the (generic) factorization scheme (2.13)) is modified (occurrence of
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additional factorizations) yielding a polynomial growth® of the calculations [7]. The
factorization scheme reads

f1:det(Mo), M[ZK(M()), fzz#g,
det(M>)
M, =K(M = —
2 ( I)a f3 flzfz
K(M>) det(M3) det(My)
M = = — = _———
ETh e SE iy MesKOL). = mTaTa
K(My) det(Ms) K(Ms)
M= 74 - — ,
hha T A A TR (6.16)

Note that relation (2.14) is still valid for this new factorization scheme. When com-
pared to the factorization scheme of class IV (see (2.13)), one sees that, already for f3
and M3, an extra term factorizes namely f]. This term makes the whole difference be-
tween integrability and non-integrability. The successive degrees of the (homogeneous)
polynomials f,’s read, respectively, for f1, f>,...:3,3,3,6,6,6,9,9,12,12,18,15,24,21,
30,... The factorisation scheme and the associated (&= % integrable) recursions on the
fx’s are not very simple as a consequence of the fact that the branch B, is associated
with a system of two recursions (see (6.10)).

7. Conclusion

We have first analysed graphically a particular Cremona transformation depending
on two continuous parameters ¢ and «. This graphical method shows curves, globally
invariant, for which the Cremona transformation is of infinite order (the orbit of k
densifies an algebraic curve). The ged’s of the finite-order conditions yield algebraic
expressions which enable to get quickly the foliation of the integrable Cremona trans-
formations. When integrable the vanishing of these gcd’s happen to be particular curves
of the foliation. In fact, the graphical method enables to see both types of curves (the
finite- and the infinite-order ones).

We provided explicit and simple examples (Cremona transformation associated with
class IV) in order to show how a general method based on the analysis of the finite-
order conditions enables to actually integrate Cremona transformations.

The integrability cases of this Cremona transformation have been revisited using
various representations (Cremona transformation in (i,v), in (#,v), recursion in one
variable, Cremona transformations associated with this recursion in one variable, recur-
sion in the determinant of iterated matrices and Cremona transformation associated with
this last recursion). Fortunately, the integrability cases of these various representations

8 The relation between polynomial growth of the calculations and integrability has been discussed in detail
in [8,10,15].
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match. We have also obtained an algebraic invariant (4.9) of Cremona transformations
depending on one continuous parameter o.

In fact, all these calculations are not specific of the birational transformation of
class IV. They can be worked out on any Cremona transformation (birational trans-
formation in two variables). Actually, Appendix E shows another example of foliation
of the plane in algebraic elliptic curves obtained for an example of birational symme-
tries of the parameter space of a six-state chiral Potts model [1,16].
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Appendix A. Finite-order analysis for « =0 and various €’s
A.l. Integrable candidates for ¢: (i,v)-analysis for a=0

In order to get the possible “integrable” values of &, let us first eliminate ¢ in the
two equations corresponding to k" = identity. For instance, writing k® = identity yields

Ig=—¢-(G+1-2v+0) I, (A1)

where I is a polynomial in / and v, and an expression for Vg that is too large to be
reproduced here. After performing the elimination of ¢ between /g and V4, one obtains

Ro=i-v0 - (v4+2)-Bv—2)-(w=2P0w—-18 -G —v? 40y - (—v+14i)
X (iv—2i —24 50— 507 +20%) - Biv — 4i — v+ v2)(i + 3 — 50+ 20?)

X(i—v+ o) +4i - 5iv+20+20% =302 +0P) - (=1 +i+0v) -,
(A.2)

where the - - - denote eight other factors. Let us just consider, to illustrate the method,
one of the factors of Ry, namely

Ci=iv—2i-2+4+50—-502+20°=0.

The elimination of i between C; and ¥ gives Rj= — (v — 1)*(—e — 1 + 2v) - R
where

Ry = —=2320* — 3202 + 13607 + 2040° — 931° + 160e%0 — 489v'c + 2160° &2

—24v%% + 1807 — 166 + 219ev° — 54ev® — 3267 + 144ev — 1220%€* — 168°
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+426%0° + 607c + 36307 4 166707 — 96%v* + 166%0 — 440e0? + 624e®
— 240%0% — 96%1°.
The elimination of i between C, and IA(, gives Ry =2(v — 1)’ - (=& — 1 +2v) - R> where
Ry = 64 + 10668v* — 6400 + 28000% — 69920 — 92961 + 2745° — 9491¢°
420070 + 167907 4 12207¢'" — 14086* v + 64¢ + 1286 + 480°¢° + 832020
+ 2289660 — 8301er® — 25687 — 570"t — 90%e® 4+ 3480'26% - - - |

and --- denote 62 other monomials of ¢ and v. The elimination of v between R, and
R, gives a polynomial in ¢ which contains many factors:

Co=(+T7)-2e—1)- 3> —10e+11)- (¢ — D' - (e + 1)*°
X (4% + 44¢° — 236 — 6976 + 14316% — T11e + 104)
<(368° + 1866® — 126867 + 22346® — 15226° +257¢* 4+ 1186 — 3262 — 1)
(1262 =5+ 1) - (4* + 356> — 8362 + 656 — 13) - (=2 +38)> - (=1 4 35)°.
(A.3)

Of course, when one performs such sequence of eliminations one get many “spurious”
candidates: this set of possible values of ¢ have to be reintroduced in the original
equations to see the ones really yielding a common factorization for /s and ¥. In fact,
this set of possible values of & just correspond to factor C; in Ry and one has to
perform similar calculations for every other factor in Ry.

For higher values of the integer N the two conditions, for which one wants to see
a common factor to factorize, become quickly quite “large”, and the procedure to get
the common factor requires to calculate and combine many resultants. The calculations
become quickly very large.

.2. Finite-order analysis for o= various £’s: (I, v)-analysis
A.2. Finite-ord al a=0 and &8 v lysis

Let us consider the Cremona transformation (3.5) in / and v for 2 =0 and for ¢ = % l.
g= %: The calculations of Section 4.3 can be performed for ¢ = % The first non-trivial
ged’s are obtained for N =35,7 and &:

Gs = v? — v+ 2iv — 3i, Gs = (v—1)-(2v - 3), G, = Gy - Gy,
with
G; =80 — 160 + 6i° + 6i° — 9%v + Tiv + 6702 — 1002 + 30% + 503

— 60 — 2iv* + 30t
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transforming under % as G; — C;- G; with

P20 —3)(—v+142i)

_ (=0 v+ 20 =30
C4v-(v—- 12 (02— v+ 2iv =3Py

N o
Cs 8 2(v— 1)302

¢ _(u=3) - (—v?+v+2iv—3i)- P
T 3206 - (v — 1)

yielding the k-invariant

Gy Gy .
=G v =G 10 where P, =i — v? + v (see (4.5))

Iy

e¢=1: The first non-trivial gcd’s are for N =4,6,8:
Go=i -(w—1), Ge=1i-3i*v?— 620 +4> + 2iv — 20% + v* +v? — 20°),
Gs = Gy - (0% — 2i%0 + 217 — 20%i + 2iv + v* — 20° + 0?)
transforming under k as G, — C~’, - G; with

- i-(v—2) é*(u—2)5~i2

L St A L St A S O3
C4— 02.(0_1)2, 6 (U—l)4~l)5 and Cg C4.

Therefore one gets a first k-invariant by considering the ratio /o = Gs/G; or more
simply using parabola P: I} = G4/P).

&¢=0: For ¢ = 0, one remarks that, since i/ is invariant, the transformation amounts
to performing a homographic transformation on v (the parameters of the homographic
transformation depending on 7). The previous analysis is pointless: the invariant is
already known (namely /).

A.3. Finite-order analysis for o =0 and various ¢’s: (u,v)-analysis

a=0ande= %: Let us assume here that e = % The first non-trivial gcd’s are obtained
for N =6 and 8:

Ge=(—2+4+3v) - (—3u+3uv+4 —3v)  Buv —u—3v),

Gs = —9984uv? + 153607 + 512u% + 1024uv + 20 1604’ v* + 32 256uv’
+ 125284 v* — 54 144420® — 332840 + 39 1684’ 0° — 69120° — 2564°
+ 194415 — 46 656uv® + 72 1444v* — 163200 0% + 11 2320* — 7776u*°
— 492484 v* + 332810 — 77760 + 31 104uv’ — 46 656u%v° + 96u*
—1056u*v — 10368u*v® 4 31 1041°0° + 1944u*v® — 777643 0° — 7776u°

+ 11 6641%0° + 4632u*v? .
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These two covariants G¢ and Gy transform under % with the cofactors:
N 4-3v+3uv—u ~ ~
= e d C = C N

ST T(Cat3vy.a mE 8T e

yielding the k-invariant o = Gs/ G2.
% =0 and ¢ = }: Let us assume here that ¢ = 1. The first non-trivial gcd’s are deduced
for N=7 and 8:

Gr =2 — 12170 + 261° 0% — 2430 + 8Pv? — 2402 + 7200 - T6ute?
+240% + 33uPv — Su? + 24w — T2u0’ + T2uv? — 27uv + 6u — 8¢
— 220 + 60,
Gs = 144uv? — 440% — 54uv + 3u + 120 — 10u* — 1524707 + 664’0 + 48ur”
— 480" — 144uv’ + 144u%0® — 484307 + 5207 — 240 v + 480 + 4
—160* + 164°0* .
These two covariants G7 and Gg transform under k with the same cofactor:

G 3-2v+2uv—u
T 3-20)u
yielding the k-invariant I = Gg/Gj.

=0 and ¢=1: Let us now assume that ¢=1. The first non-trivial gcd’s are for
N =4,6 and 8:

Go=u-(1—-v)-(1—u),
Gg = 302 — 6uv? + 3uPv? — 60+ 12u0 — 6u%v + 4 — 6u + 31 ,
Gs = G4 - (1P0? — 200 + 1* + 4uv — 2uv? — 2u + 0% — 20+ 2).
Note that G is immediately an invariant, while the two covariants G4 and Gg transform
under k with the same cofactor C:
¢ 2—v+uv—u
(—2+40v)u
yielding the k-invariant Io = Gg/Gs = & (2 + Gg).
=0 and £¢=0: Let us assume ¢=0. The first non-trivial gcd’s are deduced for
N =3 and 4:
G3:—v2+uvz—uv+v+u, G4:2u0242vz~2uv+2v+u.

These two covariants G; and G4 transform under 7c\, with the same cofactor:
1 —v+uv

e S

yielding the k-invariant Iy = G4/Gs . (A4)
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Appendix B. Recursion in a single variable for e=1,1, —1,0

3

Let us consider the recursion in a single variable defined by (5.3) for the “integrable”
values of ¢ (¢ = %, 1,—1,0).

Recursion for ¢ = % Let us now consider ¢ = % and use the same analysis as before.
One gets the first non-trivial ged’s Gy for N =7 and 8, namely,

Gy = 32857 + 4885% + 1685 + 241%5% + 125 + 12
— 8155 — 225+ 12t + 1252 — 125 + 3,
Gy = 64£3s° — 1615 — 125> + 125 — 3 + 28ts — 12¢ + 48¢%7

+ 2415 — 1262 + 968°s* + 3285 .

These two expressions G7, Gg transform under k with the same cofactor:

N 2t—1
C= 2,
(52
that is, the square of (5.6). One thus gets the k-invariant Iy = Gg/G7 or more simply,
using D; (see (5.6)): [ = G;/D3.
Recursion for ¢=1: For ¢=1 the first non-trivial ged’s are obtained for N =4
and 6, namely, G4 =5t and Gg = 3t%s? — 2st + s> — 25+t + 2t + 1. These expressions

transform under k by the cofactors C4=(r — 1)/(t + 1) and Cs= C’ﬁ. One thus gets
the k-invariants

G _ Gs\’
Iy =— ormoresimply I, =(—] .
0 GZ ply /£ <D1)

Recursion for ¢e= — 1. Let us consider e = — 1. In these variables, transformation
K2, for e= — 1, is quite trivial (translation): Ez(s,t):(s -+ 2,¢t +2). All the ged’s are
trivial. The foliation of the (s,¢) plane corresponds to the lines: s — ¢ = constant.

Recursion for ¢=0: For ¢=0, one gets the first non-trivial gcd’s Gy for N =3,4,
namely, Gy =(st +t+1)-(t+ —s) and G4 =(2st + 2t + 1) - (¢ — s5). These expressions
transform under k with the same cofactor C, yielding a A-invariant J; or more simply
1. They read, respectively,

.t Ga G;
C=—", Iy = — I =—.
0 ' D,

Appendix C. Branch B, for €= 1,0

Let us consider the birational mapping (6.12), associated with the system of the two
compatible recursions (6.11).
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Let us consider L:% (i.e. 8—_—%). The successive ged’s Gy, read, respectively,
Gs=1+y and

Gr=—15yx + 12x + 18y — 45p% + 72xy? — 2x% + 2x%y? — 42¢% "
—77y*x% + 18y3 — 29 42930 — 1023 + 75x)° + 2700
+16y*% + 8y°x® + 8x?1° — 24xy* + 247,

GgZ(}’-f-l)-ag,

with

Gs =51yx — 3x — 18y + 45y — 18xy? + 8x% — 14x2y? — 39x)?
—15px* +29y°x* — 18y% + 2px° — 61°x° 4 33xy* —
+4ye® — 7y 4458 + 4x3y6 - 20):2)»5 .

The calculation of the corresponding cofactors yield an invariant Jy. They read,
respectively,

- 3x . ¢ ~ Ci Gy

C:——————, C: s s 1:
YT —2xpZ 43y TT Xy X3y T Gy G

Let us assume L=1 (i.e. £¢=0) in the system of recursion (6.11). The successive
ged’s Gy are given by

Gi=(mx—1)-Ox+x+y), Ga=(y+1)-(x—1)-(—=x+xy*=2y).
Gs= (v +31°2 +26%p2 — yx* —x? = 3yx —dxy? — y2 —xp?) - (vx - 1).
G(,:(y+1)-(yx—1)~(2xy2+yx—x—3y)-(yx+x+y).

The cofactors read

- 1 N N
Cy= , Cq=C? ., C C2x%, Ce=Ci x>y
3T o (=it 4 =Cyx" -y, Cs=0Cy- 6 =C3y-x -y

yielding the k-invariant Iy=Gg - G3/G4 - Gs or more simply, [; =Gs - (x- y — 1)/G3.

Appendix D. 3 X 3 matrices
D.1. Branch By in terms of entries of 3 X 3 matrices
We use the notations of Section 6.3 and assume that the permutation of entries b

and £ represent the permutation ¢ of class IV. Branch B,, reads (besides a singular
condition of non invertibility of My, det(Mp) = 0 and an algebraic condition which does
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not survive for higher values of »n):

(a—i—c+g)-(d+ f)=0. (D.1)
In the d = — f case the ratio 4,/4, simplifies and reads
2:_1:(a+l—g—_0)(a+l+0+g) (D2)
A2 4ai — 4cg
which yields, for instance, the following conditions for ¢=0 and ¢= — 1:
e=0—(a—i—c+g) {(a—g+c—i)=0,
e=—l—(a+i—-g-c)-(a+i+c+g)=0. (D.3)
Quadratic relations among the entries of My hold for ¢ = %, %, L.
In the a =i+ ¢ — g case the ratio 4,/4; simplifies and reads
Ao 2e-(i+c) (D4)

J  bf+ fh+bd —2ei—2ce +dh

which yields the following conditions for ¢=0 and ¢= — 1:

e=0—>(B+h)-(d+ f)=0, e=—1—-e-(i+c¢)=0.
D.2. Some examples

Branch B,: If one plots the iteration of k=K 2, or of the associated Cremona trans-
formation in (s,t) (see (5.5)), for the various “integrable” values of &, one gets quite
chaotic orbits for the successive (s,¢) or (s,,s,.1) for branch B;. This can be seen
iterating with & = K2 the 3 x 3 initial matrices:

—262 3 —258 —40 3 -36
My=| 5 -1 7 or 5 —1 2
-2 8 -6 2 1 -6

which correspond to branch B; and, respectively, & :% and ¢ :% (and more precisely
a=c+i— g see Section D.1).

The simplicity of e=— 1 can be seen on matrix
2 3 6
My(m)y={ 5 —-1+32-m 2 (D.5)

-2 1-32-m -6

which also corresponds to branch B;. In fact, matrix (D.5) gives x, =1 for n even,
x, =13 for n=2,6,10,14,... and x, = % for n=4,8,12,16,... This transformation of
order four in the x,’s, is however a simple translation on the matrices My(m) : m —
m+ 1.
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Branch B,: The following matrix My(k) depending on one parameter 4, corresponds
to branch B;:
—40 3 -7
My=1| 13 1 2 . (D.6)
-5 h —-11A-71

z;:% 1s then equivalent to A= — 1-39 or h=— %
An example of matrix associated with branch B;, iterated in the factorization scheme

(6.16) of Section 6.3 is, for instance,
—255428 423041 515 317
My(f)= 111 1 ., (D.7)
A 1789

where 7= — 242701372 — 1765520640/ + 15925248 /2, and: pu= — 243212861 —
17655160321 + 15925248 12,

Appendix E. Analysis of birational symmetries of a six-state chiral Potts model

Let us consider a six-state chiral Potts model [1,16]. It is known that there exists an
infinite group of birational symmetries of the two-dimensional parameter space [1,16].

This group is, for instance, generated by an (infinite-order) birational transformation K
(or its inverse K ')

14 x+2y—x2=2xy—y> T+x+2y—x>—2xy—y?
2y? —x2—x ’ X4 xy—yi—vy '

£ -

2% — y2x — y2

K" (x,y)a(

22y + y2x + y2x2 — x2 — 2xy — 2’

—(x* +x*y —xy — y?)
22y + y2x 4+ y2x? —x2 - 2y — 32 )7

These birational transformations are integrable and have the following invariant [1,16]:
B (23 + 32+ 2%y — 2xy — y2x — 2p2) - (x — y2)
Gty —1D-(1—yp)y '

Using the previously detailed systematic method one gets

B

(E.1)

Gi=x-y) Gi=(y-1)-(x-1)-(x+yy,

Gs = —8y%x2 — y* —31)% +3x° +2)° — 6y — dxy® + Oy + 4y’
— 13x*y? — 23y + 8%yt —20x°y® + 11x3y? + 6y°x?
— 1% + 8x*y +20x%y* — 8y°x + 13yx,
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Go=(y—1)-(x+y)- (2 +x" + 27y = 2xy — y’x = 2y%) - (x — ¥*),

Gy =—48x"y® + 18x7y + y*x!% — 170x% 3?2 — 60x°y + 40x%y7 — 184x?y°
+40x% )% — 6xy® — 70xy° + 8)7x + 14)y%%% — 14°x® — 59x*y* — 164x7
+18x%y + 2x0y* — 22%° 1% — 156x* y0 + 117x% 0 — 2245 y7 — 164x°)°
+300x° y® + 246x8y° + 2% 4+ 90x*y” — 8x19y2 + 24510y
—130x° y® — 9x!¢
—70x% p + 115x° p? — 184x® y* + 300x" y* — 224x7°
+81x°y* — 80— 4,°
—156x°3° — 22x°y7 + 90x°y° + 122x%y° — 170x* y'® + 246x%y° — 60xy"!
+115xy'% + 9y + 18y 1x? +9p!1%% — 6)%°
+40y°x% + 11757 — 9p'?
+122y7x% + 9322 + 1813 + 8y°x” + 1488 + 9x® + 9x7y? + 241!
—14y7x7 + 40x*y° — 4x'0)3 + 81)c5y8 —598x6 — 48)%x% + ox® + 18

with covariants

2,02 .2 3@ 45
ORI A O S i N S i)
At A Aep
3, 4,5.52 6 . 6.8.52
AS AV

with
a=y—1, B=3y+2x+1, y=1+x+2p—x>-2xp— %
d=x—1, A=x+x-2y%  u=xt+xy—yi—y.

From these covariants it is straightforward to see that it was necessary to go up to
order seven to get the algebraic k-invariant:

0= (E2)

The expresston of this invariant is slightly more complicated than (E.1) but it is related
to (E.2) by a very simple (rational) relation

Q_1—7B+B2_ 9B
B+ (1+B)F

(E3)
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