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Abstract
We classify four-state spin models with interactions along the edges according

to their behaviour under a specific group of symmetry transformations. This

analysis uses the measure of complexity of the action of the symmetries, in the

spirit of the study of discrete dynamical systems on the space of parameters of

the models, and aims at uncovering solvable ones. We find that the action of

these symmetries has low complexity (polynomial growth, zero entropy). We

obtain natural parametrizations of various models, among which an unexpected

elliptic parametrization of the four-state chiral Potts model, which we use to

localize possible integrability conditions associated with high genus curves.

PACS numbers: 05.50.+q, 05.45.+b, 02.30.I

1. Introduction

Our purpose is to describe the structure of the set of spin models with interactions along the

edges, and propose a classification of the matrix of Boltzmann weights of such models.

The main tool we use is the action of a group of transformations which was exhibited

in previous works concerning integrable models [1–3], and which has its origin in the so-

called inversion relations [4]. They are generated by basic involutions, realized as birational

transformations of the parameters of the models (we will call this group of transformations

I-symmetries).

We analyse the behaviour of the realizations of I-symmetries, especially the iterates of

specific infinite order elements of the group. The guiding principle is that a chaotic behaviour

of the realization of I-symmetries, signalled by a measure of their complexity (entropy), is

preventing integrability of the corresponding statistical mechanical model.

We concentrate on the four-state models because of their richness, but the method applies

to all values of the number q of states.

The paper is organized as follows: we describe the models we have in mind and the action

of I-symmetries. We then describe the classification of the models according both to the
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dimension of their parameter space and to their behaviour under I-symmetries. We recover, in

the course of this classification, a number of known two-dimensional models which have been

studied in the literature, among which are the standard scalar Potts model [5], the Ashkin–

Teller model [6], the Kashiwara–Miwa model [7], and the four-state chiral Potts model [8].

One section is devoted to the analysis of definite models. Among other results, we give an

unexpected3 elliptic parametrization of the chiral Potts model. We give a constructive way

to write explicitly the algebraic locus where the group of I-symmetries degenerates into a

finite group, leaving room for solvability. We finally comment on the specificity of four-state

models as compared to three and five or more states.

2. Spin edge models, I-symmetries and admissible patterns

The models are defined on a D-dimensional regular lattice (square, triangle, honeycomb,

cubic, . . .), each vertex bearing a spin σ which can take q values. A model is defined by

giving the matrix of Boltzmann weights of local edge configurations: the state of an edge

is determined by the values of the spin at its ends. One arranges the weights in a matrix W

whose entry Wi,j is the weight of the edge configuration with one end in state i and the other

end in state j . Note that edges are oriented, and W is not necessarily symmetric. One may

furthermore distinguish different types of bonds, such as, for example, vertical and horizontal

ones on a square lattice, and the most general non-isotropic model is then associated with a

number of q × q matrices Wν , one for each type of bond.

Since the entries of the matrices W are Boltzmann weights, W is defined up to an overall

multiplicative factor. The most general matrix is then a collection of q2 homogeneous entries,

defined up to a factor.

Simple transformations may be defined, which act on the matrices W , forming the group

of I-symmetries. This group is generated by simple involutive generators, namely the matrix

inverse I, and the element by element inverse J , both taken up to a overall multiplicative factor.

They may be written

I : Wkl −→ Akl (1)

J : Wkl −→ 1/Wkl (2)

where Akl is the cofactor of Wkl in W . To have a well-defined action of J , we assume that

entries are non-vanishing.

The two generators are non-commuting involutions. They generate an infinite group

isomorphic to the dihedral group Z2 ⋉Z. Its infinite part is made of the iterations of ϕ = I ·J
and its inverse ϕ−1 = J · I .

We will build families of models by successive reductions of the number of parameters,

obtained by imposing equality relations on the entries of the Boltzmann matrix W .

To illustrate this, consider the chiral Potts model: its Boltzmann weight matrix is a cyclic

matrix W , where instead of keeping all q2 entries independent, one imposes the following

equality conditions:

Wu,v = Wu+1,v+1 (3)

getting for q = 4 a pattern of the form

W =









w0 w1 w2 w3

w3 w0 w1 w2

w2 w3 w0 w1

w1 w2 w3 w0









(4)

3 Especially in view of the occurrence of higher genus curves in the solutions of the star–triangle relations [9, 10].
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instead of the general 4 × 4 matrix. The number of parameters has gone down from 16 to 4

because we have imposed 12 equality relations.

The specificity of this type of relations is two-fold. Any relation of the form Wa,b = Wa′,b′

for some pairs of indices {a, b}, {a′, b′} defines a pattern of matrix which is automatically left

stable by the generator J of the group of I-symmetries.

Some pattern defined in this way will also be left stable by the matrix inversion I, but not

all of them. We will say that a pattern is admissible if its form is left stable by matrix inversion

[1].

Giving a pattern is equivalent to giving a partition of the q2 entries of W . The number of

possible patterns, that is to say the number P(q2) of partitions of q2 objects, is given by [1]

P(q2) =
q2

∑

s=1

s−1
∑

k=0

(−1)k
(s − k)(q

2−1)

k!(s − 1 − k)!
. (5)

It grows extremely rapidly with the number q of spin states. It is 21147 for q = 3,

10 480 142 147 ≃ 1010 for q = 4, and 4638 590 332 229 998 592 ≃ 4.6 × 1018 for q = 5.

Our first step is to determine which of the P(q2) patterns are admissible. For q = 4 this

was done by direct inspection of the P(16) ≃ 1010 patterns. The outcome is a list of 166

patterns. We have not considered vanishing conditions on the entries, and we restrict ourselves

to invertible matrices4, so that both I and J are defined and invertible.

There are trivial redundancies in this list because any of the q! permutations of the q values

of the spin, i.e. the same permutation acting on simultaneously on the rows and columns of

W will take an admissible pattern into an admissible pattern: it acts by similarity on W , and

commutes with I-symmetries. This reduces the list to only 42 different admissible patterns,

given in appendix A.

We see that there are no admissible patterns with 9,11, 12, 13, 14 or 15 free (homogeneous)

parameters.

A matrix of the form (4) belongs to the similarity class of pattern 17, which contains three

elements (see later):









w0 w1 w2 w3

w3 w0 w1 w2

w2 w3 w0 w1

w1 w2 w3 w0

















w0 w1 w2 w3

w2 w0 w3 w1

w1 w3 w0 w2

w3 w2 w1 w0

















w0 w1 w2 w3

w1 w0 w3 w2

w3 w2 w0 w1

w2 w3 w1 w0









.

These patterns have four homogeneous independent parameters [w0, w1, w2, w3]. Since they

are admissible, there is an action of the homogeneous matrix inversion I on [w0, w1, w2, w3],

which reads, when written for the first of the three representatives (cyclic matrix):

w0 −→ w3
0 − 2w0w1w3 − w0w

2
2 + w2w

2
3 + w2

1w2

w1 −→ −w3
1 + 2w0w1w2 + w1w

2
3 − w3w

2
0 − w2

2w3
(6)

w2 −→ w3
2 − 2w1w2w3 − w2w

2
0 + w0w

2
1 + w2

3w0

w3 −→ −w3
3 + 2w0w2w3 + w3w

2
1 − w1w

2
2 − w2

0w1.

The action of J reads, if we use the homogeneity of the entries:

[w0, w1, w2, w3] −→ [w1w3w2, w0w3w2, w0w1w3, w1w2w0].

4 Neither have we considered equality up to sign between entries [11].
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3. Complexity analysis

Since I-symmetries are essentially the iterates of ϕ = I · J , their action looks like a discrete

time-dynamical system defined on the parameter space of the model. The measure of

complexity we use is given by the rate of growth of the degrees of the iterates of ϕ. Indeed

once we have reduced the action of I and J to the pattern, the action of ϕ is a polynomial

transformation on the independent parameters. All expressions have a definite degree d. The

nth iterate naively has degree dn, but since we work with homogeneous coordinates, we should

factor out any common factor, so that the degree may drop to a lower value dn.

A measure of the complexity of the map is given by the entropy [12, 13]

ǫ = lim
n→∞

1

n
log(dn). (7)

If ǫ = 0 the growth of dn is polynomial in n and dn behaves like

dn = αnκ (1 + O(1/n)) (8)

and one may then define a secondary complexity index associated with the map, the integer

power κ .

The most compact way to encode the sequence of degrees dn is to write its generating

function:

g(s) =
n=∞
∑

n=0

dns
n. (9)

This function was conjectured to always be rational with integer coefficients, i.e. be of

the form:

g(s) =
P(s)

Q(s)
(10)

with P and Q some polynomials of degree p and q with integer coefficients. It is sufficient in

practice to calculate the p + q first terms of the sequence to infer this generating function5.

Any further degree calculation serves as a verification.

If the roots of the denominator of the generating function are all of modulus one, then the

entropy vanishes, and we may consider the secondary index κ .

To illustrate the method, we may look at pattern 17 as in the previous section. The degree

of ϕ is 9. The first iterations of ϕ yield the sequence of degrees:

[1, 9, 33, 73, 129, 201, 289, 393, 513, 723, . . .]. (11)

The beginning of the sequence (up to d6) may be fitted with the generating function

g(s) =
(1 + 3s)2

(1 − s)3
(12)

which is compatible with the above-mentioned conjecture. The subsequent terms are then

predicted correctly, and g17 is found. We see that the growth of the degree is polynomial

(ǫ = 0) and the secondary index is κ = 2.

For each pattern the different representatives yield the same transformations and

consequently the same generating function.

If the entropy ǫ vanishes, the secondary index may be read from the generating function

g: if g(s) has a pole of order γ at s = 1, then κ + 1 = γ .

We have written the realizations of ϕ = I · J for the admissible patterns, and calculated

the generating function for all of them. The result is that for all 42 admissible patterns the

5 The catch is that the values of p and q are not known in advance.
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growth of the degree is polynomial, i.e. the entropy vanishes, and the index κ takes values

0, 1, 2 and 3 (see the following sections, appendix A and appendix B).

The complexity can also be estimated using the following arithmetical procedure: start

with a matrix with random integer entries, and iterate ϕ, dividing all the coefficients by their

greatest common divisor. The complexity can be estimated from the growth of a typical entry.

In practice the number of digits of the entries grows like λn, with ǫ = log λ. Since the entries

of the matrix grow fast, one has to use a special representation of the integers allowing the

manipulation of arbitrary large values [14]. In practice one performs the iteration with several

initial random integer matrices. The average l(k) of the logarithm of the entries is recorded

as a function of the number of iterations k. The entropy ǫ or the secondary index κ are easily

deduced from l(k).

4. Structure of the set of admissible patterns

There exists a partial order relation on the set of patterns, induced by the partial order on the

partitions of the entries. Indeed a partition α = {α1, α2, . . . , αµ} may be finer than a partition

β = {β1, β2, . . . , βν}, if all parts constituting α are subsets of the constituents of β:

α ≺ β if ∀k = 1 . . . µ ∃ l s.t. αk ⊂ βl. (13)

If α ≺ β we will say that β is a descendant of α. We obtain a descendant by adding further

equality relations to the entries, i.e. merging parts together.

As an illustration, pattern 3, i.e. the standard scalar Potts model, is a descendant of pattern

17, i.e. the chiral Potts model. All patterns are descendants of pattern 42 which has the finest

partition.

The list of immediate descendants of the various patterns can be given with the notation

[Pattern number, {list of direct descendants}], where {} indicates an empty list

[4, {2}], [5, {1}], [6, {}], [7, {1, 3}], [8, {3}], [9, {2}], [10, {4, 5}],
[11, {4, 6}], [12, {4}], [13, {6}], [14, {5}], [15, {7}], [16, {5, 7}],
[17, {6, 7}], [18, {9}], [19, {8}], [20, {5, 6}], [21, {12}], [22, {8}],
[23, {4, 7}], [24, {9}], [25, {15}], [26, {16, 17, 20, 25}],
[27, {13, 14, 20}], [28, {19, 22}], [29, {12, 15, 23}], [30, {10, 14, 16, 23}],
[31, {11, 13, 17, 23}], [32, {18, 24}], [33, {10, 11, 20, 21}],
[34, {8, 9, 23}], [35, {21, 25, 29}], [36, {23}],
[37, {26, 27, 30, 31, 33, 35}] [38, {18, 22, 29, 34, 36}], [39, {24, 30, 34}],
[40, {26, 30, 36}], [41, {19, 31, 34, 36}], [42, {28, 32, 37, 38, 39, 40, 41}].

This yields the intricate graph of descent relations (figure 1).

5. Extended permutation classes

If two patterns 
1 and 
2 verify 
2 = L · 
1 · R, where both L and R are permutation

matrices, the realizations of ϕ1 = I1 · J1 (resp. ϕ2 = I2 · J2) we get from 
1 (resp. 
2)

are again of the same degree, even if L and R are not inverses of each other. We even have

ϕ2
1 = ϕ2

2 . This explains why in the table of generating functions, non-similar patterns may

share the same generating function. In the figures, we have used framing boxes to indicate

these equivalences, listed in the following table:
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No of param. Classes

2 Ŵ1 = {1, 2, 3}
3 Ŵ2 = {4, 5, 6, 7}
4 Ŵ3 = {8, 9}, Ŵ4 = {10, 17}

Ŵ5 = {11, 16}, Ŵ6 = {12, 13, 14, 15}
5 Ŵ7 = {18, 22}, Ŵ8 = {19, 24}

Ŵ9 = {20, 23}, Ŵ10 = {21, 25}
6 Ŵ11 ={26, 30, 31, 33}, Ŵ12 ={27, 29}, Ŵ13 = {28, 32}
7 Ŵ14 = {34, 36}, Ŵ15 = {35}
8 Ŵ16 = {37}
10 Ŵ17 = {38}, Ŵ18 = {39, 40, 41}
16 Ŵ19 = {42}

Remark. ϕ2 commutes with matrix transposition t as well. As a consequence, t acts on the

classes Ŵ. It actually acts trivially on these classes.

1 2 3

13 14 15

28 32

21 25

3026

12

2927

353634

31 33

6 754

37

41403938

42

20 2324192218

1710 161198

Figure 1. Diagram of descent relations.

6. Gauge equivalence

It is important to take into account the usual gauge symmetries of the Boltzmann weights.

Their action may be represented by a similarity transformation:

W −→ W ′ = g−1 · W · g with g =









s1 0 0 0

0 s2 0 0

0 0 s3 0

0 0 0 s4









. (14)
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They commute with the generator I of I-symmetries, but not with J . However, if two matrices

verify (14), then their images by J are automatically gauge related by

g′ =









1/s1 0 0 0

0 1/s2 0 0

0 0 1/s3 0

0 0 0 1/s4









.

This means that J has a well-defined induced action on the gauge equivalence classes, although

it does not commute with the gauge transformations. Transformations such as (14) yield the

following equivalences:

Ŵ6 = {12, 13, 14, 15} −→ Ŵ2 = {4, 5, 6, 7}
Ŵ7 = {18, 22} −→ Ŵ3 = {8, 9}
Ŵ12 = {27, 29} −→ Ŵ9 = {20, 23}
Ŵ13 = {28, 32} −→ Ŵ8 = {19, 24}.

Through these equivalences we have reductions by one unit of the number of parameters.

Moreover for all these reductions, there exists an I-invariant which can be changed by the action

of gauge transformations, and the reduction amounts to fixing the value of this invariant. Take

for example pattern 12. One of its representatives has Boltzmann matrix:

W12 =









w0 w1 w2 w2

w1 w0 w2 w2

w3 w3 w1 w0

w3 w3 w0 w1









.

The quantity

� =
1

2

(

w2

w3

+
w3

w2

)

is I-invariant. It can be brought to the value � = 1 by a gauge transformation of the form

(14) with s1 = s2, s3 = s4, and w2s
2
3 = w3s

2
2 . This makes W ′

12 = g−1 · W12 · g symmetric and

yields pattern 4, with Boltzmann matrix:

W ′
12 = W4 =









w0 w1 w2 w2

w1 w0 w2 w2

w2 w2 w1 w0

w2 w2 w0 w1









.

We may picture the gauge equivalences by the diagram given in figure 2.

The usual models which have been studied in the literature are present in the top of this

list (they have a low number of parameters). The standard scalar Potts model is pattern 3. The

symmetric Ashkin–Teller model is pattern 7. The Ashkin–Teller (alias Kashiwara–Miwa [7]

with N = 4) model is pattern 16. The chiral Potts model is pattern 17.
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38 39 40 41

42

1 2 3

10 178 9 12 13 14 15 11 16

4 5 6 7

34 36

18 22 19 24

28 32 27 29

20 23

26 30 31 33

35

37

21 25

Figure 2. Gauge reductions.

They all share the property that I-symmetries have rational invariants, i.e. the orbits of the

realization of I-symmetries are confined to algebraic varieties. Since we know how crucial is

the role played by these varieties in the solvability of the models, it is natural to look for the

structure of invariants of the admissible patterns.

7. Invariants of the action of I-symmetries

Since all elements in an extended class yield the same birational realizations, up to a

permutation of coordinates, invariants may associated with the classes Ŵ.

The descendance of a given pattern being obtained by adding relations among the entries

of W , descendants inherit induced invariants (rational or not). Some invariants will disappear

or coalesce in the process. What might also happen is that a transcendent invariant degenerates

to a rational one.

The value of κ is related to the existence of conserved algebraic varieties under the action

of I-symmetries. If there exist invariant algebraic curves, κ is necessarily 0, 1 or 2 [15, 16]. If

the curves are rational, κ = 0 or 1. The values of κ are shown in the diagram in figure 3.

All the values of κ are corroborated by the procedure presented in paragraph 3. A number

of iterations of the order of 30 and an averaging over a number of the order of ten initial

matrices is enough to get a good precision on the value of κ .

There exists an unbounded algorithm to find rational invariants [12]. There is however no

simple way to discover the non-rational ones, and it is an open problem to find all I-invariants.

When the number of parameters is small, a graphical approach may be extremely useful (see

later with pattern 25). In the next section we will examine in detail the structure of typical

patterns.
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18 22 19 24 20 23 21 25

38 39 40 41

42

1 2 3

27 29 28 32

10 178 9 12 13 14 15 11 16

4 5 6 7

3534 36

26 30 31 33

37

κ=1

κ=2

κ=3

κ=0

Figure 3. Values of the index κ .

8. Analysis of specific patterns

8.1. Pattern 3: Standard scalar Potts model

The Boltzmann matrix is

W3 =









w0 w1 w1 w1

w1 w0 w1 w1

w1 w1 w0 w1

w1 w1 w1 w0









.

In terms of the parameter w = w1/w0, the action of ϕ = I · J reduces to a homographic

transformation: I : w → −2 − w, J : w → 1/w, ϕ : w → −2 − 1/w. In terms of the

variable t = 1/(1 + w), ϕ is the translation t −→ t − 1.

8.2. Pattern 7: Symmetric Ashkin–Teller model

The Boltzmann matrix is

W7 =









w0 w1 w2 w2

w1 w0 w2 w2

w2 w2 w0 w1

w2 w2 w1 w0









and there is one algebraic invariant

�7 =
w0w1 − w2

2

w2(w1 − w0)
.
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The curves �7 = a have a rational parametrization

w0 = t w1 =
1 − at

t − a
w2 = 1.

8.3. Pattern 8

The Boltzmann matrix is

W8 =









w0 w1 w1 w1

w1 w2 w3 w3

w1 w3 w2 w3

w1 w3 w3 w2









. (15)

The quantity

�
(1)
8 =

w2w1
2 + 2w1

2w3 − 2w0w3w2 − w0w3
2

w2w1
2 − w0w3

2
(16)

is invariant by J and changes sign under the action of I. The action of ϕ exchanges the surfaces

+

(

�
(1)
8 = a

)

and −
(

�
(1)
8 = −a

)

. Since the condition �
(1)
8 = a may be solved rationally

in w0, we may write the action of ϕ2 on +, with coordinates w1, w2, w3. In terms of the

inhomogeneous variables x = w1/w3 and y = w3/(w2 + w3), it reads

x −→ x ′ = x ·
(b + by − y)

(2 + y)(by − 2y + b − 1)
(17)

y −→ y ′ = y + b (18)

with b = 2a/(1 + a), and the quantity

�
(2)

8 = x�(y) (19)

with

�(y) = Ŵ

(

y − 2 + b

b

)

Ŵ

(

y + 1

b

) /

Ŵ

(

y − 1 + b

b

)/

Ŵ
(y

b

)

(20)

is invariant by the action of ϕ2 on +. This example, where κ = 1, possesses a mixture of

algebraic and non-algebraic invariants, which can be evaluated exactly. The orbits of ϕ are

confined to non-algebraic curves, and the nth iterate may be written explicitly:

yn = y0 + nb xn = x0

�(y0)

�(yn)
. (21)

The orbits accumulate to the point (x∞, y∞) =
(

�
(2)

8 (x0, y0),∞
)

, which is a point on the line

w2 + w3 = 0.

Pattern 8 leads to pattern 3 if w3 = w1 and w2 = w0, in which case the above two

invariants take definite values: �
(1)

8 = ∞ and �
(2)

8 = 1.

8.4. Pattern 16: Ashkin–Teller model

This model coincides with the N = 4 Kashiwara–Miwa model [7]. The Boltzmann matrix is

W16 =









w0 w1 w2 w3

w1 w0 w3 w2

w2 w3 w0 w1

w3 w2 w1 w0









. (22)
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-4.58 3.75

-10.25

8.75

Figure 4. A typical orbit of ϕ = I · J for the chiral Potts model.

There are two independent algebraic I-invariants

�
(1)

16 =
w1w3 − w0w2

w0w1 − w3w2

�
(2)

16 =
w1w3 − w0w2

w0w3 − w1w2

. (23)

Fixing the values of these two invariants to a1 and a2 determines an elliptic curve in the space

of parameters. The equation of this curve is

a1x
2 − a1y

2 − a2x − a2a1y + a2y
2x + a2a1yx2 = 0

(24)
with

w1

w3

= x
w2

w3

= y
w0

w3

=
x + a1y

y + a1x
.

8.5. Pattern 17: chiral Potts model

The chiral Potts model is equivalent to pattern 17. Its Boltzmann matrix was already given

above (equation (4)). There exist two algebraically independent invariants

�
(1)

Potts =
w3w2 − w0w1

w1w2 − w0w3

(25)

�
(2)
Potts =

(

w0w2 − w1
2
) (

w0w2 − w3
2
)

(w0w3 − w1w2)2
. (26)

The condition �
(1)
Potts = a may be solved rationally in w0. Setting �

(2)
Potts = b, together with

x = w1/w2 and y = w3/w2, yields the equation of an elliptic curve to which the orbit is

confined:

(x − y)2(x + y)2b − (−yx2a + ax + x3 − y)(−y + ax + y2x − y3a) = 0. (27)

We may illustrate the efficiency of the graphical method in this case, since the set of the iterates

of ϕ is dense in a curve6. Figure 4 shows a typical orbit in the three-dimensional space of

6 Contrary to what happens in the example of pattern 8 above.
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parameters. The orbit is projected on a coordinate plane. The aspect of the picture is very

stable under changes of the starting point of the iteration.

The transformations I and J may be restricted to the quadrics a = cst . They may be

written on x and y, for fixed a:

Ia : x −→ x ′ = −
y3 − 2y2xa + 2ya + x2ya2 − a2x − x

1 − ay2 + a2yx − xy − a2 + ax2

(28)

y −→ y ′ =
y2x − 2x2ay − y − ya2 + 2ax + x3a2

1 − ay2 + a2yx − xy − a2 + ax2

Ja : x −→ x ′ = 1/x y −→ y ′ = 1/y. (29)

The transformations Ia and Ja leave the curves (27) globally invariant whatever a and b are.

The modular invariant of the elliptic curve (27) is given by

j = 1728
g3

2

g3
2 − 27g2

3

with

g2 = 1 + 256b4 − 512ab3 − 16b2a4 + 288b2a2 − 16b2 + 16a5b − 32a3b + 16ab

− 4a6 + a8 − 4a2 + 6a4 (30)

g3 = (1 − 32b2 + 32ab − 2a2 + a4)(1 + 16b2 − 16ab − 2a2 + a4)

× (1 − 8b2 + 8ab − 2a2 + a4)/(3
√

3).

The modular invariant (30) can be written

j = 256
(1 − M + M2)3

M2(1 − M)2

where

M =
(1 − 2a + a2 + 4b)(1 + 2a + a2 − 4b)

(1 − a)2(1 + a)2
(31)

is the square of the modulus of the elliptic functions parametrizing the curve. Note that

M is ambiguously defined by condition (31), and may be replaced by any of the six values

{M, 1 − M, 1/M, 1 − 1/M, 1/(1 − M),M/(M − 1)}.
There are equivalent symmetric biquadratic forms of the curve (27):

p2q2 − 2
(

Jx
2Jy

2 + Jy
2Jz

2 + Jx
2Jz

2
)

pq + 4Jx
2Jy

2Jz
2 (p + q) +

(

Jx
2Jy

2 + Jy
2Jz

2 + Jx
2Jz

2
)2

− 4Jx
2Jy

2Jz
2
(

Jx
2 + Jy

2 + Jz
2
)

= 0

and

(Jx − Jy)(p
2q2 + 1) − (Jx + Jy)(p

2 + q2) + 4Jzpq = 0

with

Jx = 2a Jy = 4b − 2a Jz = a2 + 1 and M =
Jz

2 − Jy
2

Jz
2 − Jx

2
.

Changing M to 1 − M or 1/M amounts to permuting Jx, Jy, and Jz.

Generic orbits of ϕ = I · J are infinite, but we know how important are the degenerate

cases where these orbits are finite: for two-dimensional lattice models, this is where non-trivial

star–triangle integrability takes place [9, 17]. For given values of a and b, the action of ϕ is a

shift on the curve (27).

It is possible to write down the Weierstrass form of the curve

X3 − αX − β + Y 2 = 0 (32)
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with7

α =
1

48

g2

(b − a)8
β =

√
3

288

g3

(b − a)12
(33)

and give an explicit coordinate transformation from the original variables (x, y) to [X,Y ]. We

obtained the transformation through Maple’s implementation of the van Hoeij algorithm [18],

after setting b = a + 1/u2.

The action of ϕ, when written on (32) is the addition8 of the point 
+ with coordinates

[Xπ+
, Yπ+

]:

Xπ+
= −1/12

1 + 16b2 + 8ab − 2a2 + 12b + 12a2b + a4

(b − a)4

Yπ+
= 1/2

b(1 + a)2(1 + 4b − 2a + a2)

(b − a)6
.

Although the change of coordinates depends on u, the [X,Y ] coordinates of the point 
+

depend only on u2 and may be written rationally in terms of a and b.

The inverse map ϕ−1 is the addition of the opposite point 
− = [Xπ+
,−Yπ+

]. Note

that both 
+ and 
− are obtained from the double point x = −1/au, y = ∞ of (27) in the

desingularization process which leads to the Weierstrass form (32).

The sum of 
± with itself, denoted 2 · 
±, is given by
[

−1/12
1 + a4 + 10a2 − 16ab + 16b2

(b − a)4
,±1/2

(1 + a2)(2b − a)a

(b − a)6

]

(34)

and the multiples n · 
± are then easily obtained by recurrence. Their [X,Y ] coordinates

depend only on u2 and may be re-expressed rationally in terms of a and b.

The point 2 · 
+ corresponds to the point

(x, y) =
(

(1 + a2)au

1 − u2a3 − a2
,

(2 + au2)a2u

1 − u2a3 − a2

)

of the original curve (27).

The condition ϕ(m+n) = id is just

X(n · 
+) = X(m · 
−) and Y (n · 
+) = −Y (m · 
−).

As an example, the condition that ϕ is of order 3 is

v3 = (1 + a)2b − a2 = 0 (35)

which is an algebraic condition on the entries of the Boltzmann matrix, and can be checked

directly.

The condition that ϕ is of order 4 is the vanishing of Y (2 · 
+) given in (34), i.e.

v4 = (1 + a2)(2b − a)a.

The condition 2b − a = 0 is precisely the condition appearing in [9, 17], where solutions of

the star–triangle relations related to higher genus curves were exhibited. The condition v3 = 0

is not known to yield similar integrability conditions and was not found to yield any transition

in the statistics for the random matrix theory approach (see [19]).

7 The normalizations could be changed, and the powers of 1/(b − a) could be absorbed in the definition of X and Y.
8 To add two points on the cubic (32), draw the straight line through the two points. Compute the third point of

intersection of the line with the curve, and take its symmetric under Y → −Y .
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-5.55 3.23

-16.66

9.69

Figure 5. A typical orbit of I-symmetries for pattern 25.

8.6. Pattern 25

This example is a good illustration of the mixed use of algorithmic research of algebraic

invariants, graphical method, and the knowledge of the entropy and index κ . The Boltzmann

matrix is

W25 =









w0 w1 w2 w3

w4 w0 w4 w2

w2 w3 w0 w1

w4 w2 w4 w0









. (36)

The number of inhomogeneous parameters is four. We found two independent algebraic

invariants

�
(1)

25 =
w0w1 − w3w2

w0w3 − w1w2

(37)

�
(2)

25 =
(

w4w3 − w0
2
) (

w1w4 − w2
2
)

(

w4w3 − w2
2
) (

w1w4 − w0
2
) . (38)

Drawing orbits of the iterates of ϕ leads, with a proper choice of starting point, to pictures like

figure 5. In contrast to what happens with pattern 17 (figure 4), the shape of the orbit is rather

unstable under changes of the starting point. Such a picture indicates that there exists another

independent invariant. Were that invariant to be algebraic, the stable curves would be elliptic,

and we know that the index κ would then be less than 3. Since κ = 3 we know this additional

invariant has to be non-algebraic.

Equation of the surface 1 : �
(1)

25 = a may be solved for w1. We get an expression of I

and J on 1. Changing variables to

[x, y, z, t] =
[

w2
0, w0w2, w0w3, w3w4

]



A classification of four-state spin edge Potts models 9265

we obtain

Ia([x, y, z, t]) = [x(x + ay − at − t)2(x + y)(x + ay),

(x + y)(−yx + xta + xt − y2a)(x + ay)(x + ay − at − t),

−z(x + y)(x2 + xta2 − xt − y2a2)(x + ay − at − t),

(x + ay)(x − y)t (x2 + xta2 − xt − y2a2)] (39)

with the remaining algebraic invariant

�a
25 =

x(t − y)(yt − yx − y2a + axt)

(x − y)2t (x + y)
. (40)

Note that in equation (39), the third coordinate z is just multiplied by a factor depending on the

other coordinates, and does not appear anywhere else in the induced transformation Ia nor in

the invariant �a
25. The curves �a

25 = b are elliptic curves in the variables (x, y, t), extending

to cylinders in [x, y, z, t]. The curve appearing in figure 5 is drawn on such a cylinder.

We may examine a particular value of b where the curve �a
25 = b degenerates to a

rational curve, but there exists a transcendent invariant for Ia . The rational parametrization of

the cylinder is

[x, y, z, t] =
[

s2t (1 + sa)

s + a
,
st (1 + sa)

s + a
, z, t

]

. (41)

The induced map (I · J )2 may be written

S −→ q2S z −→ z
T (S)

T (qS)
(42)

with T (S) =
(1 − S)(1 − q3S)

(1 − q2S)(1 − q5S)
and

S =
s − q−1

s − q
q = −1/2

a + 1 +
√

(1 − a)(1 + 3a)

a
.

If we introduce the infinite product


(S) =
k=∞
∏

k=0

T (q4kS)

T (q4k+1S)
(43)

then the 2nth iterate of (i.j ) reads

S2n = q4nS0 z2n = z0 ·

(S0)


(S2n)
(44)

i.e. the transcendent quantity � = z · 
(S) is invariant by (I · J )2. The convergence of these

Eulerian products is ensured when a ∈ (−1/3, 1). Such values of a would produce orbits with

accumulation points. If a is outside this interval, then q has unit modulus and the orbits are

similar to the one shown in figure 5. The quantity 
(S) is replaced by the standard analytic

prolongation.

9. Other values of q

We have investigated the structure of the set of admissible patterns for other values of q.

The value q = 4 is an important threshold. It is known to be one for the standard scalar

Potts model in statistical mechanics [5], and for the chromatic polynomials and colouring

problems. What we show is that it is the maximal value ensuring the vanishing of entropy,

whatever admissible pattern we choose.
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In the case of a cyclic matrix of size q (chiral Potts model), with entries [w0, . . . , wq−1],

there is a simple relation between matrix inverse and element by element inverse. Define the

linear transformation C (discrete Fourier transform, or Kramers–Wannier duality)

C : wk −→
q−1
∑

r=0

ωkrwr

where ω is the qth root of unity. We then have

I = C−1 · J · C.

It is possible to analyse the singularity structure of the transformations I and J , and prove that

the generating function for the degree of the iterates of ϕ for the chiral Potts model with q

states is [13]

fq(s) =
(1 + s(q − 1))2

(1 − s)(1 − s(q2 − 4q + 2) + s2)
. (45)

As soon as q � 5, the entropy becomes strictly positive for this family of admissible patterns.

For all sizes q, there exists a pattern depending on q(q + 1)/2 homogeneous parameters:

the symmetric matrix.

An open question is to decide whether or not there exist patterns depending on r

parameters, with q(q + 1)/2 < r < q2. For q = 3 and q = 4 there is a no man’s land

between q(q + 1)/2 parameters (symmetric matrix) and q2 parameters (generic q × q matrix).

Another open question is to know if there is anything between cyclic and symmetric

matrix when q is prime.

The value q = 2 is trivial and yields a finite group of symmetries. When q = 3, the same

analysis can be performed completely (see below). When q = 5, the number of patterns is too

large to be thoroughly examined, and we have restricted ourselves to patterns with only three

homogeneous parameters.

Of course there exist admissible patterns with larger values of q still yielding vanishing

entropy. They may have, for example, a block structure, the blocks being themselves

admissible patterns of smaller sizes [20–23].

9.1. Three-state models

The analysis can be made along the same lines as for the four-state models: enumeration,

calculation of the entropy, calculations of invariants, etc. It is summarized here.

The number of partitions of nine objects is 21 147 and the number of admissible patterns

is only 9, when equivalences are taken into account. The list of patterns is given in appendix

C. For patterns 1, 2, 3, 4 the group of I-symmetries is finite. Patterns 3 and 4 are related by

an extended permutation similarity as defined in section (5). Patterns 5 and 6 yield the same

generating function for the degrees of the iterates of ϕ

g5 = g6 =
(1 + 2s)(1 + s)2

(1 + s + s2)(1 − s)2

and the trajectories of ϕ are confined to algebraic curves. Patterns 7, 8, 9 yield the generating

function

g7 = g8 = g9 =
1 + 6s + 9s2 + 2s3 + 6s6 + 3s7 − 6s8 − 3s9

(1 + s + s2)(1 − s)2
. (46)

Patterns 7 and 8 (pattern 8 is the 3 × 3 symmetric matrix) are also related by an extended

permutation similarity. A list of algebraic invariants is given for the various patterns in

appendix D.
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For pattern 8 (symmetric 3 × 3 matrices), the Boltzmann matrix is

W8 =





w0 w1 w2

w1 w3 w4

w2 w4 w5



 . (47)

If we normalize the entries with the condition w0 = 1, the action of ϕ3 reduces to the following

homothetic transformation:

[1, w1, w2, w3, w4, w5] −→ [1,�1w1,�2w2,�3w3,�4w4,�5w5]

with

�1 =
(

w5 − w2
2
)

w3w4(−w1w2 + w4)
(

−w3w5 + w4
2
)

w2(−w2w3 + w1w4)

�2 =
(

w3 − w1
2
)

w5w4(−w1w2 + w4)
(

−w3w5 + w4
2
)

(−w1w5 + w4w2)w1

�3 = �2
1 �4 = �1�2 �5 = �2

2

where �1 and �2 are left invariant by the action of ϕ.

The appearance of the third root of unity in 46 has to do with the specificity of the third

power of ϕ.

There is a parametrization of the general three-state model (pattern 9) which simplifies

the action of I-symmetries. The matrix of Boltzmann weights reads

W =





w0 w1 w2

w3 w4 w5

w6 w7 w8



 .

If one introduces the quantities

α = w2
0 β = w2

4 γ = w2
8

δ = w1w3 ǫ = w2w6 ζ = w5w7

λ =
w1

w3

µ =
w6

w2

ν =
w5

w7

.

The array [α, β, γ, δ, ǫ, ζ ] transforms under ϕ3 by multiplication of its entries by factors

[kα, kβ, kγ , kδ, kǫ, kζ ]. One can check that all the ratios kα/kβ, . . . are invariants of ϕ3. In

a similar way, the three quantities [λ,µ, ν] transform under ϕ6 by multiplication by factors

[kλ, kµ, kν] which are all invariants of ϕ6.

This yields a system of algebraic invariants of rank four of ϕ3, for example:
[

w1w5w6

w2w3w7

,
w3w7w1w5

w4
2w6w2

,
w0

2w5w7

w1w2w3w6

,
w8

2w3w1

w2w6w5w7

]

.

9.2. Five-state models and beyond

The number of partitions of 25 objects is over 4 × 1018. To enumerate the configurations

is beyond reach. We have restricted our analysis in the following way: if one looks for

partitions with only three parts, that is to say five-state models with only three possible colours

(three homogeneous parameters), then there are ‘only’ 141 197 991 025 ≃ 141 ×109 patterns.

We have performed their full enumeration, and found the subset of admissible ones. The

interesting result is that there exists a unique admissible pattern, up to permutations of rows
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and columns: the symmetric Potts model, with symmetric cyclic 5 × 5 matrix of Boltzmann

weights

W =













w0 w1 w2 w2 w1

w1 w0 w1 w2 w2

w2 w1 w0 w1 w2

w2 w2 w1 w0 w1

w1 w2 w2 w1 w0













.

There are actually 72 representatives, all related by independent permutations of rows and

columns, as in section 5.

The trajectories of the iterations of ϕ are confined to algebraic curves. The entropy

vanishes and the secondary index κ has value 2 [15, 16]. The corresponding statistical

mechanical model is known to be integrable, via the star–triangle relation, when these curves

degenerate to rational curves and the symmetry group becomes finite [9, 10, 17, 24].

One should keep in mind that admissible patterns of size 5×5 easily yield transformations

with exponential growth of the degree. For example, the cyclic matrix (chiral Potts model, see

equation (45)) yields a map with non-vanishing entropy

ǫ = log

(

7 + 3
√

5

2

)

(48)

and the corresponding statistical mechanical model is generically not star–triangle integrable.

We have used the arithmetical method described in section 3 to evaluate the entropy for

both the symmetric pattern (symmetric 5 × 5 Boltzmann matrix) and the general five-state

model (5 × 5 Boltzmann matrix with no relations between the entries)9. We found the same

value for the entropy as for the cyclic matrix, given by equation (48).

In contrast, if one restricts the 5 × 5 Boltzmann matrix to be both cyclic and symmetric,

the entropy vanishes, and the transformation ϕ has one algebraic invariant [25].

One may wonder if the entropy calculated for the cyclic matrix, the symmetric matrix,

and the most general q × q matrix still identify for q � 6. One may also try to evaluate the

entropy for the cyclic-symmetric pattern, and provide a closed expression valid for all values

of q, and similar to (48).

10. Conclusion and perspectives

We have given a classification of four-state spin models according to the properties of the

realization of I-symmetries.

This preparatory work provides the optimal parametrizations of the models.

If one is looking for integrability via solutions of star–triangle equations, one should stick

to cases where the parameters live on invariant algebraic varieties. Those may be present for

generic values of the parameters, or appear by a collapse of the realization of the infinite group

to a finite group, or by the degeneration of transcendental invariants to algebraic ones.

The algebraic approach presented here may be complemented with random matrix theory,

as in [19], to locate solvability of the lattice models.

One may have to examine in detail the properties of both the matrix product and the

element by element product, and not just the stability by the corresponding inverses, when

mixed with matrix transposition. One should note that the Boltzmann matrices of the models

9 For a generic 5 × 5 matrix the coefficients got as large as 10720 000 after six iterations.
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which are known to be integrable via the star–triangle relation, i.e. Ŵ1, Ŵ2, Ŵ4, Ŵ5 with the

notations of section 5, are (bi)-stochastic matrices (sums of elements on lines and columns are

constant).

A detailed analysis of the star–triangle equations will then proceed on a case by case

basis, which is beyond the scope of this paper.

Appendix A. List of the 42 admissible patterns for q = 4

The sixteen entries of each 4 × 4 matrix are presented on one line in the order

[W11,W12,W13,W14,W21,W22, . . . ,W43,W44]. The choice of the representative is arbitrary,

and should be understood modulo permutations of lines and columns. The list is arranged

with increasing number of independent homogeneous parameters, and this number is indicated

after the list of entries. The last item of each line is the number of patterns in the similarity

class:

No 1 : [w0, w0, w0, w1, w0, w0, w1, w0, w0, w1, w0, w0, w1, w0, w0, w0] 2, 3

No 2 : [w0, w0, w1, w0, w0, w1, w0, w0, w1, w0, w0, w0, w0, w0, w0, w1] 2, 6

No 3 : [w0, w1, w1, w1, w1, w0, w1, w1, w1, w1, w0, w1, w1, w1, w1, w0] 2, 1

No 4 : [w0, w1, w2, w2, w1, w0, w2, w2, w2, w2, w1, w0, w2, w2, w0, w1] 3, 3

No 5 : [w0, w1, w2, w0, w1, w0, w0, w2, w2, w0, w0, w1, w0, w2, w1, w0] 3, 3

No 6 : [w0, w0, w1, w2, w0, w0, w2, w1, w2, w1, w0, w0, w1, w2, w0, w0] 3, 3

No 7 : [w0, w1, w2, w2, w1, w0, w2, w2, w2, w2, w0, w1, w2, w2, w1, w0] 3, 3

No 8 : [w0, w1, w1, w1, w1, w2, w3, w3, w1, w3, w2, w3, w1, w3, w3, w2] 4, 4

No 9 : [w0, w1, w1, w1, w1, w2, w3, w2, w1, w3, w2, w2, w1, w2, w2, w3] 4, 12

No 10 : [w0, w1, w2, w3, w1, w0, w3, w2, w2, w3, w1, w0, w3, w2, w0, w1] 4, 3

No 11 : [w0, w1, w2, w3, w1, w0, w3, w2, w3, w2, w1, w0, w2, w3, w0, w1] 4, 3

No 12 : [w0, w1, w1, w2, w3, w2, w0, w3, w3, w0, w2, w3, w2, w1, w1, w0] 4, 3

No 13 : [w0, w1, w0, w2, w2, w3, w1, w3, w0, w2, w0, w1, w1, w3, w2, w3] 4, 3

No 14 : [w0, w1, w2, w0, w1, w3, w3, w2, w2, w3, w3, w1, w0, w2, w1, w0] 4, 3

No 15 : [w0, w1, w1, w2, w3, w0, w2, w3, w3, w2, w0, w3, w2, w1, w1, w0] 4, 3

No 16 : [w0, w1, w2, w3, w1, w0, w3, w2, w2, w3, w0, w1, w3, w2, w1, w0] 4, 1

No 17 : [w0, w1, w2, w3, w1, w0, w3, w2, w3, w2, w0, w1, w2, w3, w1, w0] 4, 3

No 18 : [w0, w1, w2, w0, w3, w4, w3, w3, w2, w1, w0, w0, w0, w1, w0, w2] 5, 12

No 19 : [w0, w1, w2, w3, w1, w4, w1, w1, w3, w1, w0, w2, w2, w1, w3, w0] 5, 4

No 20 : [w0, w1, w2, w0, w3, w0, w0, w4, w4, w0, w0, w3, w0, w2, w1, w0] 5, 3

No 21 : [w0, w1, w2, w1, w3, w2, w4, w0, w2, w1, w0, w1, w4, w0, w3, w2] 5, 6

No 22 : [w0, w1, w1, w1, w2, w3, w4, w4, w2, w4, w3, w4, w2, w4, w4, w3] 5, 4

No 23 : [w0, w1, w2, w2, w1, w0, w2, w2, w2, w2, w3, w4, w2, w2, w4, w3] 5, 3

No 24 : [w0, w1, w1, w1, w1, w2, w3, w4, w1, w3, w4, w2, w1, w4, w2, w3] 5, 4

No 25 : [w0, w1, w2, w3, w4, w0, w4, w2, w2, w3, w0, w1, w4, w2, w4, w0] 5, 6

No 26 : [w0, w1, w2, w3, w4, w0, w3, w5, w5, w3, w0, w4, w3, w2, w1, w0] 6, 3

No 27 : [w0, w1, w0, w2, w3, w4, w5, w4, w0, w2, w0, w1, w5, w4, w3, w4] 6, 3

No 28 : [w0, w1, w1, w1, w2, w3, w4, w5, w2, w5, w3, w4, w2, w4, w5, w3] 6, 4

No 29 : [w0, w1, w2, w1, w3, w4, w3, w5, w2, w1, w0, w1, w3, w5, w3, w4] 6, 3

No 30 : [w0, w1, w2, w3, w1, w4, w3, w5, w2, w3, w0, w1, w3, w5, w1, w4] 6, 3

No 31 : [w0, w1, w2, w3, w3, w4, w1, w5, w2, w3, w0, w1, w1, w5, w3, w4] 6, 3
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No 32 : [w0, w1, w1, w1, w2, w3, w4, w5, w2, w4, w5, w3, w2, w5, w3, w4] 6, 4

No 33 : [w0, w1, w2, w3, w4, w2, w5, w0, w2, w3, w0, w1, w5, w0, w4, w2] 6, 3

No 34 : [w0, w1, w2, w1, w1, w3, w4, w5, w2, w4, w6, w4, w1, w5, w4, w3] 7, 6

No 35 : [w0, w1, w2, w2, w1, w0, w2, w2, w3, w4, w5, w6, w4, w3, w6, w5] 7, 6

No 36 : [w0, w1, w2, w2, w3, w0, w4, w4, w4, w2, w5, w6, w4, w2, w6, w5] 7, 6

No 37 : [w0, w1, w2, w3, w1, w0, w3, w2, w4, w5, w6, w7, w5, w4, w7, w6] 8, 3

No 38 : [w0, w1, w2, w2, w3, w4, w5, w5, w6, w7, w8, w9, w6, w7, w9, w8] 10, 6

No 39 : [w0, w1, w2, w3, w1, w4, w5, w6, w2, w5, w7, w8, w3, w6, w8, w9] 10, 1

No 40 : [w0, w1, w2, w3, w4, w0, w5, w6, w6, w3, w7, w8, w5, w2, w9, w7] 10, 3

No 41 : [w0, w1, w2, w3, w4, w5, w1, w6, w7, w4, w0, w8, w8, w6, w3, w9] 10, 6

No 42 : [w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15] 16, 1.

Appendix B. Generating functions

Pattern number Generating function

1, 2, 3
1

1 − s

4, 5, 6, 7
(1 + s)2

(1 − s)2

8, 9
(1 + s)(1 + 2s − s2 + s4)

(1 − s)2

10, 11, 16, 17
(1 + 3s)2

(1 − s)3

12, 13, 14, 15
1 + 3s

(1 − s)2

18, 22
1 + 4s − s2 + s4 + s5

(1 − s)2

19, 24
(1 + s)(1 + 6s + 3s2 − s3)

(1 − s)3

20, 23
(1 + s)(1 + 4s − s2)

(1 − s)3

21, 25
1 + 8s + 12s2 + 18s3 + 13s4 + 6s5 − 2s6

(1 + s)(1 + s + s2)(1 − s)4

26, 30, 31, 33
1 + 11s + 11s2 − 7s3

(1 − s)4

27, 29
1 + 5s + 4s2 − 3s3 + s4

(1 − s)3

28, 32
(1 + s + s2)(1 + 7s − 2s2)

(1 − s)3

34, 36
1 + 12s + 16s2 + 3s3 + 8s4 + 4s5 − 2s6

(1 + s)(1 − s)3
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35
1 + 12s + 24s2 + 34s3 + 27s4 + 14s5

(1 + s)(1 + s + s2)(1 − s)4

37
1 + 17s + 19s2 − 5s3

(1 − s)4

38
1 + 18s + 11s2 + 10s3 + 8s4 + 8s5

(1 + s)(1 − s)3

39, 40, 41
1 + 23s + 15s2 + 5s3 + 4s4

(1 − s)4

42
1 + 41s + 3s2 + 35s3 + 16s4

(1 − s)4
.

Appendix C. Admissible patterns for q = 3

No 1 : [w0, w1, w1, w1, w0, w1, w1, w1, w0]

No 2 : [w0, w0, w1, w0, w1, w0, w1, w0, w0]

No 3 : [w0, w1, w2, w2, w0, w1, w1, w2, w0]

No 4 : [w0, w1, w2, w1, w2, w0, w2, w0, w1]

No 5 : [w0, w1, w1, w1, w2, w3, w1, w3, w2]

No 6 : [w0, w1, w1, w2, w3, w4, w2, w4, w3]

No 7 : [w0, w1, w2, w2, w3, w4, w1, w5, w3]

No 8 : [w0, w1, w2, w1, w3, w4, w2, w4, w5]

No 9 : [w0, w1, w2, w3, w4, w5, w6, w7, w8].

Appendix D. Some algebraic invariants for q = 3

The lower index is the pattern number

�
(a)

5 =
(

w1
2w3 − w0w2

2
)2

w2

(

w1
2 − w0w2

) (

w2w1
2 − w0w3

2
)

�
(b)

5 =
(

w2w1
2 − w0w3

2
)2

w3

(

w1
2 − w0w3

) (

w1
2w3 − w0w2

2
)

�
(a)

6 =
w1w2

w2
2 + w1

2

�
(b)

6 =
(

w1w2w4 − w0w3
2
)2

w3(w1w2 − w0w3)
(

w1w2w3 − w4
2w0

)

�
(c)

6 =
(

w1w2w3 − w4
2w0

)2

w4(w1w2 − w0w4)
(

w1w2w4 − w0w3
2
)

�
(a)
8 =

w0

(

w3w5 − w4
2
)

(w4w2 − w1w5)w1

�
(b)
8 =

w0

(

w3w5 − w4
2
)

(w1w4 − w2w3)w2

�
(c)

8 =
w2w3

w1w4

.
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