Computer Algebra for Lattice Path Combinatorics

Alin Bostan

Research context

Computer algebra $=$ effective mathematics + algebraic complexity

- effective mathematics: what can be computed?
- algebraic complexity: how fast?

Efficient computer algebra for functional equations

- equations as data structures
- algorithmic proofs of identities
- complexity-driven algorithms

$$
\begin{array}{r}
\pm \sqrt{5} \text { as } t^{2}-5=0 \\
\sum_{k=0}^{n}\binom{n}{k}=2^{n} \\
3^{N} \text { in } \tilde{O}(N)
\end{array}
$$

Ultimate goals

- automatic computations on functional equations
- computer-driven resolution of difficult problems

Research context

Computer algebra $=$ effective mathematics + algebraic complexity

- effective mathematics: what can be computed?
- algebraic complexity: how fast?

Efficient computer algebra for functional equations

- equations as data structures
- algorithmic proofs of identities
- complexity-driven algorithms

$$
\begin{aligned}
& \exp (t) \text { as } y^{\prime}(t)=y(t), y(0)=1 \\
& \sum_{k}(-1)^{k}\binom{2 n}{k}^{3}=(-1)^{n}\binom{3 n}{n}\binom{2 n}{n} \\
& N!=1 \times 2 \times \cdots \times N \text { in } \tilde{O}(N)
\end{aligned}
$$

Ultimate goals

- automatic computations on functional equations
- computer-driven resolution of difficult problems

Research context

Computer algebra $=$ effective mathematics + algebraic complexity

- effective mathematics: what can be computed?
- algebraic complexity: how fast?

Efficient computer algebra for functional equations

- equations as data structures
- algorithmic proofs of identities
- complexity-driven algorithms

$$
\begin{aligned}
& \exp (t) \text { as } y^{\prime}(t)=y(t), y(0)=1 \\
& \sum_{k}(-1)^{k}\binom{2 n}{k}^{3}=(-1)^{n}\binom{3 n}{n}\binom{2 n}{n} \\
& N!=1 \times 2 \times \cdots \times N \text { in } \tilde{O}(N)
\end{aligned}
$$

Ultimate goals

- automatic computations on functional equations
- computer-driven resolution of difficult problems e.g., in combinatorics

An (innocent looking) combinatorial question

Let $\mathfrak{S}=\{\uparrow, \leftarrow, \searrow\}$. A \mathfrak{S}-walk is a path in \mathbb{Z}^{2} using only steps from \mathfrak{S}. Show that, for any integer n, the following quantities are equal:
(i) the number a_{n} of \mathfrak{S}-walks of length n confined to the upper half plane $\mathbb{Z} \times \mathbb{N}$ that start and end at the origin $(0,0)$;
(ii) the number b_{n} of \mathfrak{S}-walks of length n confined to the quarter plane \mathbb{N}^{2} that start at the origin $(0,0)$ and finish on the diagonal $x=y$.

An (innocent looking) combinatorial question

Let $\mathfrak{S}=\{\uparrow, \leftarrow, \searrow\}$. A \mathfrak{S}-walk is a path in \mathbb{Z}^{2} using only steps from \mathfrak{S}. Show that, for any integer n, the following quantities are equal:
(i) the number a_{n} of \mathfrak{S}-walks of length n confined to the upper half plane $\mathbb{Z} \times \mathbb{N}$ that start and end at the origin $(0,0)$;
(ii) the number b_{n} of \mathfrak{S}-walks of length n confined to the quarter plane \mathbb{N}^{2} that start at the origin $(0,0)$ and finish on the diagonal $x=y$.

For instance, for $n=3$, this common value is $a_{3}=b_{3}=3$:

Teasers

Teaser 1: This problem can be solved using computer algebra!

Teaser 2: The answer has a nice closed form!

$$
a_{3 n}=b_{3 n}=\frac{(3 n)!}{n!^{2} \cdot(n+1)!^{\prime}} \quad \text { and } \quad a_{m}=b_{m}=0 \quad \text { if } 3 \text { does not divide } m .
$$

Teaser 3: A certain group attached to the step set $\{\uparrow, \leftarrow, \searrow\}$ is finite!

Combinatorial context: lattice paths confined to cones

Let \mathfrak{S} be a subset of \mathbb{Z}^{d} (step set, or model) and $p_{0} \in \mathbb{Z}^{d}$ (starting point).

Example: $\mathfrak{S}=\{(1,0),(-1,0),(1,-1),(-1,1)\}, p_{0}=(0,0)$

Combinatorial context: lattice paths confined to cones

Let \mathfrak{S} be a subset of \mathbb{Z}^{d} (step set, or model) and $p_{0} \in \mathbb{Z}^{d}$ (starting point). A path (walk) of length n starting at p_{0} is a sequence ($p_{0}, p_{1}, \ldots, p_{n}$) of elements in \mathbb{Z}^{d} such that $p_{i+1}-p_{i} \in \mathfrak{S}$ for all i.

Example: $\mathfrak{S}=\{(1,0),(-1,0),(1,-1),(-1,1)\}, p_{0}=(0,0)$

Combinatorial context: lattice paths confined to cones

Let \mathfrak{S} be a subset of \mathbb{Z}^{d} (step set, or model) and $p_{0} \in \mathbb{Z}^{d}$ (starting point). A path (walk) of length n starting at p_{0} is a sequence ($p_{0}, p_{1}, \ldots, p_{n}$) of elements in \mathbb{Z}^{d} such that $p_{i+1}-p_{i} \in \mathfrak{S}$ for all i.

Let \mathfrak{C} be a cone of \mathbb{R}^{d} (if $x \in \mathfrak{C}$ and $r \geq 0$ then $r \cdot x \in \mathfrak{C}$).
Example: $\mathfrak{S}=\{(1,0),(-1,0),(1,-1),(-1,1)\}, p_{0}=(0,0)$ and $\mathfrak{C}=\mathbb{R}_{+}^{2}$

Combinatorial context: lattice paths confined to cones

Let \mathfrak{S} be a subset of \mathbb{Z}^{d} (step set, or model) and $p_{0} \in \mathbb{Z}^{d}$ (starting point).
A path (walk) of length n starting at p_{0} is a sequence $\left(p_{0}, p_{1}, \ldots, p_{n}\right)$ of elements in \mathbb{Z}^{d} such that $p_{i+1}-p_{i} \in \mathfrak{S}$ for all i.

Let \mathfrak{C} be a cone of \mathbb{R}^{d} (if $x \in \mathfrak{C}$ and $r \geq 0$ then $r \cdot x \in \mathfrak{C}$).
Example: $\mathfrak{S}=\{(1,0),(-1,0),(1,-1),(-1,1)\}, p_{0}=(0,0)$ and $\mathfrak{C}=\mathbb{R}_{+}^{2}$

Questions

- What is the number a_{n} of n-step walks contained in \mathfrak{C} ?
- For $i \in \mathfrak{C}$, what is the number $a_{n ; i}$ of such walks that end at i ?
- What about their GF's $A(t)=\sum_{n} a_{n} t^{n}$ and $A(t ; x)=\sum_{n, i} a_{n ; i} x^{i} t^{n}$?

Why count walks in cones?

Many discrete objects can be encoded in that way:

- discrete mathematics (permutations, trees, words, urns, ...)
- statistical physics (Ising model, ...)
- probability theory (branching processes, games of chance,...)
- operations research (queueing theory, ...)

Why count walks in cones？

Many discrete objects can be encoded in that way：
－discrete mathematics（permutations，trees，words，urns，．．．）
－statistical physics（Ising model，．．．）
－probability theory（branching processes，games of chance，．．．）
－operations research（queueing theory，．．．）

Journal of Statistical Planning and Inference 140 （2010）2237－2254

TOPICS to be covered include（but are not Imited to）：

 Lattice path enumeration Plane PartitionsYoung tableaux a－calculus Orthogonal polynomials

Random walks

Non parametric statistical inference Discrete distributions and urn models Queueing theory Queveing theory
Analysis of algorithms
Analysis of algorithms
Graph Theory and Ap
Graph Theory and Applications Self－dual codes and unimodular lattices Bjections between paths and other combinatoric structures

Contents lists available at ScienceDirect
Journal of Statistical Planning and Inference
此雨为

ELSEVIER journal homepage：www．elsevier．com／locate／jspi

A history and a survey of lattice path enumeration
Katherine Humphreys
Department of Mathematical Sciences，Fiorida Atiantic University，Boca Raton，FL 33431，USA

ARTICLEINFO ABSTRACT
Available online 21 January 2010
Keywords：
Lattice path
Lattice path
Reflection princi
Method of images

In celebration of the Sixth International Conterence on Lattice Path Counting and Applications，it is befitting to review the history of lattice path enumeration and to survey how the topic has progressed thus far．
We start the history with early games of chance specifically the ruin problern which ater appears as the ballot problem．We discuss Andre＇s Reflection Principle and its misnomer，its relation with the method of images and possible origins from physics and Brownian motion，and the earliest evidence of lattice path techniques and solutions．

In the survey，we give representative articles on lattice path enumeration found in
the literature in the last 35 years by the lattice，step set，boundary，characteristics counted，and solution method．Some of this work appears in the author＇s 2005 dissertation．

An old topic: ballot problem [Bertrand, 1887]

Suppose that candidates A and B are running in an election. If a votes are cast for A and b votes are cast for B, where $a>b$, then the probability that A stays ahead of B throughout the counting of the ballots is $(a-b) /(a+b)$.

Lattice path reformulation: find the number of paths that start at the origin and never touch the x-axis, consisting of a upsteps \nearrow and b downsteps \searrow Reflection principle [Aebly, 1923]: paths in \mathbb{N}^{2} from $(1,1)$ to $T(a+b, a-b)$ that do touch the x-axis are in bijection with paths in \mathbb{Z}^{2} from $(1,-1)$ to T

Answer: (paths in \mathbb{Z}^{2} from $(1,1)$ to $\left.T\right)$ - (paths in \mathbb{Z}^{2} from $(1,-1)$ to $\left.T\right)$

$$
\binom{a+b-1}{a-1}-\binom{a+b-1}{b-1}=\frac{a-b}{a+b}\binom{a+b}{a}
$$

An old topic: ballot problem [Bertrand, 1887]

Suppose that candidates A and B are running in an election. If a votes are cast for A and b votes are cast for B, where $a>b$, then the probability that A stays ahead of B throughout the counting of the ballots is $(a-b) /(a+b)$.

Lattice path reformulation: find the number of paths that start at the origin and never touch the x-axis, consisting of a upsteps \nearrow and b downsteps \searrow Reflection principle [Aebly, 1923]: paths in \mathbb{N}^{2} from $(1,1)$ to $T(a+b, a-b)$ that do touch the x-axis are in bijection with paths in \mathbb{Z}^{2} from $(1,-1)$ to T

Answer: when $a=n+1$ and $b=n$, this is the Catalan number

$$
C_{n}=\frac{1}{2 n+1}\binom{2 n+1}{n+1}=\frac{1}{n+1}\binom{2 n}{n}
$$

HANDBOOK OF ENUMERATIVE COMBINATORICS

Chapter 10

Lattice Path Enumeration

Christian Krattenthaler
Universităt Wien
CONTENTS
10.1 Introduction 589
10.2 Lattice paths without restrictions 592
10.3 Linear boundaries of slope 1 594
10.4 Simple paths with linear boundaries of rational slope, I 598
10.5 Simple paths with linear boundaries with rational slope, II 606
10.6 Simple paths with a piecewise linear boundary 611
10.7 Simple paths with general boundaries 612
10.8 Elementary results on Motzkin and Schröder paths 615
10.9 A continued fraction for the weighted counting of Motzkin paths 618
10.10 Lattice paths and orthogonal polynomials 622
10.11 Motzkin paths in a strip 629
10.12 Further results for lattice paths in the plane 633
10.13 Non-intersecting lattice paths 638
10.14 Lattice paths and their turns 651
10.15 Multidimensional lattice paths 657
10.16 Multidimensional lattice paths bounded by a hyperplane 658
10.17 Multidimensional paths with a general boundary 658
10.18 The reflection principle in full generality 659
$10.19 q$-Counting of lattice paths and Rogers-Ramanujan identities 667
10.20 Self-avoiding walks 670
References 670

A (very) basic cone: the full space

Rational series [folklore]
If $\mathfrak{S} \subset \mathbb{Z}^{d}$ is finite and $\mathfrak{C}=\mathbb{R}^{d}$, then

$$
a_{n}=|\mathfrak{S}|^{n}, \text { i.e. } \quad A(t)=\sum_{n \geq 0} a_{n} t^{n}=\frac{1}{1-|\mathfrak{S}| t}
$$

More generally:

$$
A(t ; x)=\sum_{n, i} a_{n ; i} x^{i} t^{n}=\frac{1}{1-t \sum_{s \in \mathfrak{S}} x^{s}}
$$

Also well-known: a (rational) half-space

Algebraic series [Bousquet-Mélou, Petkovšek, 2000]
If $\mathfrak{S} \subset \mathbb{Z}^{d}$ is finite and \mathfrak{C} is a rational half-space, then $A(t ; x)$ is algebraic, given by an explicit system of polynomial equations.

Example: For Dyck paths (ballot problem), $A(t ; 1)=\sum_{n \geq 0} C_{n} t^{n}=\frac{1-\sqrt{1-4 t}}{2 t}$

The "next" case: intersection of two half-spaces

The "next" case: intersection of two half-spaces

Approach: Experimental Mathematics using Computer Algebra

David H. Bailey
Jonathan M. Borwein
Neil J. Calkin
Roland Girgensohn
D. Russell Luke
Victor H. Moll

Approach: Experimental Mathematics using Computer Algebra

David H. Bailey
Jonathan M. Borwein
Neil J. Calkin
Roland Girgensohn
D. Russell Luke

Victor H. Moll

Experimental Mathematics in Action

Algorithmes Efficaces en Calcul Formel

Alin Bostan
Frédéric Chyzak
Marc Giusti
Romain Lebreton
Grégoire Lecerf
Bruno Salvy
Éric Schost

Lattice walks with small steps in the quarter plane

\triangleright From now on: we focus on nearest-neighbor walks in the quarter plane, i.e. walks in \mathbb{N}^{2} starting at $(0,0)$ and using steps in a fixed subset \mathfrak{S} of

$$
\{\swarrow, \leftarrow, \nwarrow, \uparrow, \nearrow, \rightarrow, \searrow, \downarrow\}
$$

\triangleright Example with $n=45, i=14, j=2$ for:

Lattice walks with small steps in the quarter plane

\triangleright From now on: we focus on nearest-neighbor walks in the quarter plane, i.e. walks in \mathbb{N}^{2} starting at $(0,0)$ and using steps in a fixed subset \mathfrak{S} of

$$
\{\swarrow, \leftarrow, \nwarrow, \uparrow, \nearrow, \rightarrow, \searrow, \downarrow\}
$$

\triangleright Example with $n=45, i=14, j=2$ for:

\triangleright Counting sequence: $f_{n ; i, j}=$ number of walks of length n ending at (i, j).

Lattice walks with small steps in the quarter plane

\triangleright From now on: we focus on nearest-neighbor walks in the quarter plane, i.e. walks in \mathbb{N}^{2} starting at $(0,0)$ and using steps in a fixed subset \mathfrak{S} of

$$
\{\swarrow, \leftarrow, \nwarrow, \uparrow, \nearrow, \rightarrow, \searrow, \downarrow\}
$$

\triangleright Example with $n=45, i=14, j=2$ for:

\triangleright Counting sequence: $f_{n ; i, j}=$ number of walks of length n ending at (i, j).
\triangleright Specializations:

- $f_{n ; 0,0}=$ number of walks of length n returning to origin ("excursions");
- $f_{n}=\sum_{i, j \geq 0} f_{n ; i, j}=$ number of walks with prescribed length n.

Generating functions and combinatorial problems

\triangleright Complete generating function:

$$
F(t ; x, y)=\sum_{n=0}^{\infty}\left(\sum_{i, j=0}^{\infty} f_{n ; i, j} x^{i} y^{j}\right) t^{n} \in \mathbb{Q}[x, y][[t]]
$$

Generating functions and combinatorial problems

\triangleright Complete generating function:

$$
F(t ; x, y)=\sum_{n=0}^{\infty}\left(\sum_{i, j=0}^{\infty} f_{n ; i, j} x^{i} y^{j}\right) t^{n} \in \mathbb{Q}[x, y][[t]] .
$$

\triangleright Specializations:

- GF of excursions:

$$
\begin{array}{r}
F(t ; 1,1)=\sum_{n \geq 0}^{F(t ; 0,0)} f_{n} t^{n} \\
F(t ; 1,0) \\
" F(t ; 0, \infty) ":=\left[x^{0}\right] F(t ; x, 1 / x)
\end{array}
$$

- GF of walks:
- GF of horizontal returns:
- GF of diagonal returns:

Generating functions and combinatorial problems

\triangleright Complete generating function:

$$
F(t ; x, y)=\sum_{n=0}^{\infty}\left(\sum_{i, j=0}^{\infty} f_{n ; i, j} x^{i} y^{j}\right) t^{n} \in \mathbb{Q}[x, y][[t]] .
$$

\triangleright Specializations:

- GF of excursions:

$$
\begin{array}{r}
F(t ; 1,1)=\sum_{n \geq 0}^{F(t ; 0,0)} f_{n} t^{n} ; \\
F(t ; 1,0) ; \\
" F(t ; 0, \infty) ":=\left[x^{0}\right] F(t ; x, 1 / x)
\end{array}
$$

- GF of walks:
- GF of horizontal returns:
- GF of diagonal returns:

Combinatorial questions:
Given \mathfrak{S}, what can be said about $F(t ; x, y)$, resp. $f_{n ; i, j}$, and their variants?

- Structure of F : algebraic? transcendental? solution of ODE?
- Explicit form: of F ? of $f_{n ; i, j}$?
- Asymptotics of $f_{n ; 0,0}$? of f_{n} ?

Generating functions and combinatorial problems

\triangleright Complete generating function:

$$
F(t ; x, y)=\sum_{n=0}^{\infty}\left(\sum_{i, j=0}^{\infty} f_{n ; i, j} x^{i} y^{j}\right) t^{n} \in \mathbb{Q}[x, y][[t]] .
$$

\triangleright Specializations:

- GF of excursions:
$F(t ; 0,0)$;
$F(t ; 1,0)$;
$" F(t ; 0, \infty) ":=\left[x^{0}\right] F(t ; x, 1 / x)$.
- GF of walks:
- GF of horizontal returns:
- GF of diagonal returns:

Combinatorial questions:
Given \mathfrak{S}, what can be said about $F(t ; x, y)$, resp. $f_{n ; i, j}$, and their variants?

- Structure of F : algebraic? transcendental? solution of ODE?
- Explicit form: of F ? of $f_{n ; i, j}$?
- Asymptotics of $f_{n ; 0,0}$? of f_{n} ?

Our goal: Use computer algebra to give computational answers.

Small-step models of interest

Among the 2^{8} step sets $\mathfrak{S} \subseteq\{-1,0,1\}^{2} \backslash\{(0,0)\}$, some are:

Small-step models of interest

Among the 2^{8} step sets $\mathfrak{S} \subseteq\{-1,0,1\}^{2} \backslash\{(0,0)\}$, some are:

trivial,

Small-step models of interest

Among the 2^{8} step sets $\mathfrak{S} \subseteq\{-1,0,1\}^{2} \backslash\{(0,0)\}$, some are:

trivial,

simple,

Small-step models of interest

Among the 2^{8} step sets $\mathfrak{S} \subseteq\{-1,0,1\}^{2} \backslash\{(0,0)\}$, some are:

trivial,

simple,

intrinsic to the half plane,

Small-step models of interest

Among the 2^{8} step sets $\mathfrak{S} \subseteq\{-1,0,1\}^{2} \backslash\{(0,0)\}$, some are:

trivial,

simple,

intrinsic to the half plane,

symmetrical.

Small-step models of interest

Among the 2^{8} step sets $\mathfrak{S} \subseteq\{-1,0,1\}^{2} \backslash\{(0,0)\}$, some are:

trivial,

simple,

intrinsic to the half plane,

symmetrical.

One is left with 79 interesting distinct models.

Small-step models of interest

Among the 2^{8} step sets $\mathfrak{S} \subseteq\{-1,0,1\}^{2} \backslash\{(0,0)\}$, some are:

trivial,

simple,

intrinsic to the half plane,

symmetrical.

One is left with 79 interesting distinct models.
Is any further classification possible?

The 79 models

The 79 models

/4/7x/7x/pu/x
Singular

Two important models: Kreweras and Gessel walks

$$
\begin{array}{ll}
\mathfrak{S}=\{\downarrow, \leftarrow, \nearrow\} & F_{\mathfrak{S}}(t ; x, y) \equiv K(t ; x, y) \\
\mathfrak{S}=\{\nearrow, \swarrow, \leftarrow, \rightarrow\} & F_{\mathfrak{S}}(t ; x, y) \equiv G(t ; x, y)
\end{array}
$$

Example: A Kreweras excursion.

"Special" models

Dyck:
Motzkin:

Pólya:

Kreweras:

Gouyou-Beauchamps:
King walks:

Tandem walks:

Algebraic reformulation: solving a functional equation

Generating function: $G(t ; x, y)=\sum_{n=0}^{\infty} \sum_{i=0}^{n} \sum_{j=0}^{n} g_{n ; i, j} t^{n} x^{i} y^{j} \in \mathbb{Q}[x, y][[t]]$
"Kernel equation":

$$
\begin{aligned}
G(t ; x, y)= & +t\left(x y+x+\frac{1}{x y}+\frac{1}{x}\right) G(t ; x, y) \\
& -t\left(\frac{1}{x}+\frac{1}{x} \frac{1}{y}\right) G(t ; 0, y)-t \frac{1}{x y}(G(t ; x, 0)-G(t ; 0,0))
\end{aligned}
$$

\ominus

Algebraic reformulation: solving a functional equation

Generating function: $G(t ; x, y)=\sum_{n=0}^{\infty} \sum_{i=0}^{n} \sum_{j=0}^{n} g_{n ; i, j} t^{n} x^{i} y^{j} \in \mathbb{Q}[x, y][[t]]$
"Kernel equation":

$$
\begin{aligned}
G(t ; x, y)= & +t\left(x y+x+\frac{1}{x y}+\frac{1}{x}\right) G(t ; x, y) \\
& -t\left(\frac{1}{x}+\frac{1}{x} \frac{1}{y}\right) G(t ; 0, y)-t \frac{1}{x y}(G(t ; x, 0)-G(t ; 0,0))
\end{aligned}
$$

Task: Solve this functional equation!

Algebraic reformulation: solving a functional equation

Generating function: $G(t ; x, y)=\sum_{n=0}^{\infty} \sum_{i=0}^{n} \sum_{j=0}^{n} g_{n ; i, j} t^{n} x^{i} y^{j} \in \mathbb{Q}[x, y][[t]]$
"Kernel equation":

$$
\begin{aligned}
G(t ; x, y)= & +t\left(x y+x+\frac{1}{x y}+\frac{1}{x}\right) G(t ; x, y) \\
& -t\left(\frac{1}{x}+\frac{1}{x} \frac{1}{y}\right) G(t ; 0, y)-t \frac{1}{x y}(G(t ; x, 0)-G(t ; 0,0))
\end{aligned}
$$

Task: For the other models - solve 78 similar equations!

Classification of univariate power series

Classification of univariate power series

$$
S(t)=\sum_{n=0}^{\infty} s_{n} t^{n} \in \mathbb{Q}[[t]] \text { is }
$$

\triangleright algebraic if $P(t, S(t))=0$ for some $P(x, y) \in \mathbb{Z}[x, y] \backslash\{0\}$;

Classification of univariate power series

$$
S(t)=\sum_{n=0}^{\infty} s_{n} t^{n} \in \mathbb{Q}[[t]] \text { is }
$$

\triangleright algebraic if $P(t, S(t))=0$ for some $P(x, y) \in \mathbb{Z}[x, y] \backslash\{0\}$;
$\triangleright D$-finite if $c_{r}(t) S^{(r)}(t)+\cdots+c_{0}(t) S(t)=0$ for some $c_{i} \in \mathbb{Z}[t]$, not all zero;

Classification of univariate power series

$$
S(t)=\sum_{n=0}^{\infty} s_{n} t^{n} \in \mathbb{Q}[[t]] \text { is }
$$

\triangleright algebraic if $P(t, S(t))=0$ for some $P(x, y) \in \mathbb{Z}[x, y] \backslash\{0\}$;
$\triangleright D$-finite if $c_{r}(t) S^{(r)}(t)+\cdots+c_{0}(t) S(t)=0$ for some $c_{i} \in \mathbb{Z}[t]$, not all zero;
\triangleright hypergeometric if $\frac{s_{n+1}}{s_{n}} \in \mathbb{Q}(n)$.

Classification of univariate power series

$$
S(t)=\sum_{n=0}^{\infty} s_{n} t^{n} \in \mathbb{Q}[[t]] \text { is }
$$

\triangleright algebraic if $P(t, S(t))=0$ for some $P(x, y) \in \mathbb{Z}[x, y] \backslash\{0\} ;$
$\triangleright D$-finite if $c_{r}(t) S^{(r)}(t)+\cdots+c_{0}(t) S(t)=0$ for some $c_{i} \in \mathbb{Z}[t]$, not all zero;
\triangleright hypergeometric if $\frac{s_{n+1}}{s_{n}} \in \mathbb{Q}(n)$. E.g.,

$$
\ln (1-t) ; \quad \frac{\arcsin (\sqrt{t})}{\sqrt{t}} ; \quad(1-t)^{\alpha}, \alpha \in \mathbb{Q}
$$

Classification of univariate power series

$$
S(t)=\sum_{n=0}^{\infty} s_{n} t^{n} \in \mathbb{Q}[[t]] \text { is }
$$

\triangleright algebraic if $P(t, S(t))=0$ for some $P(x, y) \in \mathbb{Z}[x, y] \backslash\{0\} ;$
$\triangleright D$-finite if $c_{r}(t) S^{(r)}(t)+\cdots+c_{0}(t) S(t)=0$ for some $c_{i} \in \mathbb{Z}[t]$, not all zero;
\triangleright hypergeometric if $\frac{s_{n+1}}{s_{n}} \in \mathbb{Q}(n)$. E.g.,

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c|}
a \\
c
\end{array} \right\rvert\, t\right)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{t^{n}}{n!}, \quad(a)_{n}=a(a+1) \cdots(a+n-1)
$$

Classification of univariate power series

$$
S(t)=\sum_{n=0}^{\infty} s_{n} t^{n} \in \mathbb{Q}[[t]] \text { is }
$$

\triangleright algebraic if $P(t, S(t))=0$ for some $P(x, y) \in \mathbb{Z}[x, y] \backslash\{0\} ;$
$\triangleright D$-finite if $c_{r}(t) S^{(r)}(t)+\cdots+c_{0}(t) S(t)=0$ for some $c_{i} \in \mathbb{Z}[t]$, not all zero;
\triangleright hypergeometric if $\frac{s_{n+1}}{s_{n}} \in \mathbb{Q}(n)$. E.g.,

$$
{ }_{3} F_{2}\left(\left.\begin{array}{c|}
a \\
a
\end{array} \right\rvert\, t\right)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}(c)_{n}}{(d)_{n}(e)_{n}} \frac{t^{n}}{n!}, \quad(a)_{n}=a(a+1) \cdots(a+n-1)
$$

Classification of univariate power series

$$
S(t)=\sum_{n=0}^{\infty} s_{n} t^{n} \in \mathbb{Q}[[t]] \text { is }
$$

\triangleright algebraic if $P(t, S(t))=0$ for some $P(x, y) \in \mathbb{Z}[x, y] \backslash\{0\} ;$
$\triangleright D$-finite if $c_{r}(t) S^{(r)}(t)+\cdots+c_{0}(t) S(t)=0$ for some $c_{i} \in \mathbb{Z}[t]$, not all zero;
\triangleright hypergeometric if $\frac{s_{n+1}}{s_{n}} \in \mathbb{Q}(n)$.

Theorem [Schwarz, 1873; Beukers, Heckman, 1989]
Characterization of $\{$ hypergeometric $\} \cap\{$ algebraic $\}$.

Classification of multivariate power series

$\triangleright S \in \mathbb{Q}[[x, y, t]]$ is algebraic if it is the root of a polynomial $P \in \mathbb{Q}[x, y, t, T]$.

Classification of multivariate power series

D-finite series

$\triangleright S \in \mathbb{Q}[[x, y, t]]$ is algebraic if it is the root of a polynomial $P \in \mathbb{Q}[x, y, t, T]$.
$\triangleright S \in \mathbb{Q}[[x, y, t]]$ is D-finite if it satisfies a system of linear partial differential equations with polynomial coefficients

$$
\sum_{i} a_{i}(t, x, y) \frac{\partial^{i} S}{\partial x^{i}}=0, \quad \sum_{i} b_{i}(t, x, y) \frac{\partial^{i} S}{\partial y^{i}}=0, \quad \sum_{i} c_{i}(t, x, y) \frac{\partial^{i} S}{\partial t^{i}}=0
$$

Main results (I): algebraicity of Gessel walks

Theorem [Kreweras, 1965; 100 pages long combinatorial proof!]
$K(t ; 0,0)={ }_{3} F_{2}\left(\begin{array}{ccc}1 / 3 & 2 / 3 & 1 \\ 3 / 2 & 2 & 27 t^{3}\end{array}\right)=\sum_{n=0}^{\infty} \frac{4^{n}\binom{3 n}{n}}{(n+1)(2 n+1)} t^{3 n}$.
Theorem [Kauers, Koutschan, Zeilberger, 2009: former Gessel's conj. 1]
$G(t ; 0,0)={ }_{3} F_{2}\left(\left.\begin{array}{ccc}5 / 6 & 1 / 2 & 1 \\ 5 / 3 & 2\end{array} \right\rvert\, 16 t^{2}\right)=\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(4 t)^{2 n}$.

Question: What about the structure of $K(t ; x, y)$ and $G(t ; x, y)$?

Main results (I): algebraicity of Gessel walks

Theorem [Kreweras, 1965; 100 pages long combinatorial proof!]
$K(t ; 0,0)={ }_{3} F_{2}\left(\begin{array}{ccc}1 / 3 & 2 / 3 & 1 \\ 3 / 2 & 2 & 27 t^{3}\end{array}\right)=\sum_{n=0}^{\infty} \frac{4^{n}\binom{3 n}{n}}{(n+1)(2 n+1)} t^{3 n}$.
Theorem [Kauers, Koutschan, Zeilberger, 2009: former Gessel's conj. 1]
$G(t ; 0,0)={ }_{3} F_{2}\left(\left.\begin{array}{ccc}5 / 6 & 1 / 2 & 1 \\ 5 / 3 & 2\end{array} \right\rvert\, 16 t^{2}\right)=\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(4 t)^{2 n}$.

Question: What about the structure of $K(t ; x, y)$ and $G(t ; x, y)$?

Theorem [Gessel, 1986; Bousquet-Mélou, 2005] $K(t ; x, y)$ is algebraic.
Theorem [B., Kauers, 2010: former Gessel's conj. 2] $G(t ; x, y)$ is algebraic.

Main results (I): algebraicity of Gessel walks

Theorem [Kreweras, 1965; 100 pages long combinatorial proof!]

$$
K(t ; 0,0)={ }_{3} F_{2}\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & 1 \\
3 / 2 & 2 & 27 t^{3}
\end{array}\right)=\sum_{n=0}^{\infty} \frac{4^{n}\binom{3 n}{n}}{(n+1)(2 n+1)} t^{3 n} .
$$

Theorem [Kauers, Koutschan, Zeilberger, 2009: former Gessel's conj. 1]
$G(t ; 0,0)={ }_{3} F_{2}\left(\begin{array}{ccc|c}5 / 6 & 1 / 2 & 1 & 16 t^{2} \\ 5 / 3 & 2 & \end{array}\right)=\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(4 t)^{2 n}$.

Question: What about the structure of $K(t ; x, y)$ and $G(t ; x, y)$?

Theorem [Gessel, 1986; Bousquet-Mélou, 2005] $K(t ; x, y)$ is algebraic.
Theorem [B., Kauers, 2010: former Gessel's conj. 2] $G(t ; x, y)$ is algebraic.
\triangleright Computer-driven discovery and proof.
\triangleright Guess'n'Prove method, using Hermite-Padé approximants ${ }^{\dagger}$
\dagger Minimal polynomial $P(x, y, t, G(t ; x, y))=0$ has $>10^{11}$ terms; $\approx 30 \mathrm{~Gb}(!)$

Main results (I): algebraicity of Gessel walks

Theorem [Kreweras, 1965; 100 pages long combinatorial proof!]
$K(t ; 0,0)={ }_{3} F_{2}\left(\begin{array}{ccc}1 / 3 & 2 / 3 & 1 \\ 3 / 2 & 2 & 27 t^{3}\end{array}\right)=\sum_{n=0}^{\infty} \frac{4^{n}\binom{3 n}{n}}{(n+1)(2 n+1)} t^{3 n}$.
Theorem [Kauers, Koutschan, Zeilberger, 2009: former Gessel's conj. 1]
$G(t ; 0,0)={ }_{3} F_{2}\left(\begin{array}{ccc|}5 / 6 & 1 / 2 & 1 \\ 5 / 3 & 2 & 16 t^{2}\end{array}\right)=\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(4 t)^{2 n}$.
Question: What about the structure of $K(t ; x, y)$ and $G(t ; x, y)$?
Theorem [Gessel, 1986; Bousquet-Mélou, 2005] $K(t ; x, y)$ is algebraic.
Theorem [B., Kauers, 2010: former Gessel's conj. 2] $G(t ; x, y)$ is algebraic.
\triangleright Computer-driven discovery and proof.
\triangleright Guess'n'Prove method, using Hermite-Padé approximants ${ }^{\dagger}$
\triangleright Recent (human) proofs [B., Kurkova, Raschel, 2013; Bousquet-Mélou, 2015]
\dagger Minimal polynomial $P(x, y, t, G(t ; x, y))=0$ has $>10^{11}$ terms; $\approx 30 \mathrm{~Gb}(!)$

Main results (II): Explicit form for $G(t ; x, y)$

Theorem [B., Kauers, van Hoeij, 2010]
Let $V=1+4 t^{2}+36 t^{4}+396 t^{6}+\cdots$ be a root of

$$
(V-1)(1+3 / V)^{3}=(16 t)^{2}
$$

let $U=1+2 t^{2}+16 t^{4}+2 x t^{5}+2\left(x^{2}+83\right) t^{6}+\cdots$ be a root of

$$
\begin{array}{r}
x(V-1)(V+1) U^{3}-2 V(3 x+5 x V-8 V t) U^{2} \\
-x V\left(V^{2}-24 V-9\right) U+2 V^{2}(x V-9 x-8 V t)=0,
\end{array}
$$

let $W=t^{2}+(y+8) t^{4}+2\left(y^{2}+8 y+41\right) t^{6}+\cdots$ be a root of

$$
y(1-V) W^{3}+y(V+3) W^{2}-(V+3) W+V-1=0 .
$$

Then $G(t ; x, y)$ is equal to

$$
\frac{\frac{64(U(V+1)-2 V) V^{3} / 2}{x\left(U^{2}-V\left(U^{2}-8 U+9-V\right)\right)^{2}}-\frac{y(W-1)^{4}(1-W y) V^{-3 / 2}}{t(y+1)(1-W)\left(W^{2} y+1\right)^{2}}}{\left(1+y+x^{2} y+x^{2} y^{2}\right) t-x y}-\frac{1}{t x(y+1)} .
$$

\triangleright Computer-driven discovery and proof.

Main results (II): Explicit form for $G(t ; x, y)$

Theorem [B., Kauers, van Hoeij, 2010]
Let $V=1+4 t^{2}+36 t^{4}+396 t^{6}+\cdots$ be a root of

$$
(V-1)(1+3 / V)^{3}=(16 t)^{2}
$$

let $U=1+2 t^{2}+16 t^{4}+2 x t^{5}+2\left(x^{2}+83\right) t^{6}+\cdots$ be a root of

$$
\begin{array}{r}
x(V-1)(V+1) U^{3}-2 V(3 x+5 x V-8 V t) U^{2} \\
-x V\left(V^{2}-24 V-9\right) U+2 V^{2}(x V-9 x-8 V t)=0,
\end{array}
$$

let $W=t^{2}+(y+8) t^{4}+2\left(y^{2}+8 y+41\right) t^{6}+\cdots$ be a root of

$$
y(1-V) W^{3}+y(V+3) W^{2}-(V+3) W+V-1=0 .
$$

Then $G(t ; x, y)$ is equal to

$$
\frac{\frac{64(U(V+1)-2 V) V^{3 / 2}}{x\left(U^{2}-V\left(U^{2}-8 U+9-V\right)\right)^{2}}-\frac{y(W-1)^{4}(1-W y) V^{-3 / 2}}{t(y+1)(1-W)\left(W^{2} y+1\right)^{2}}}{\left(1+y+x^{2} y+x^{2} y^{2}\right) t-x y}-\frac{1}{t x(y+1)} .
$$

\triangleright Computer-driven discovery and proof.
\triangleright Proof uses guessed minimal polynomials for $G(t ; x, 0)$ and $G(t ; 0, y)$.

Main results (II): Explicit form for $G(t ; x, y)$

Theorem [B., Kauers, van Hoeij, 2010]
Let $V=1+4 t^{2}+36 t^{4}+396 t^{6}+\cdots$ be a root of

$$
(V-1)(1+3 / V)^{3}=(16 t)^{2},
$$

let $U=1+2 t^{2}+16 t^{4}+2 x t^{5}+2\left(x^{2}+83\right) t^{6}+\cdots$ be a root of

$$
\begin{array}{r}
x(V-1)(V+1) U^{3}-2 V(3 x+5 x V-8 V t) U^{2} \\
-x V\left(V^{2}-24 V-9\right) U+2 V^{2}(x V-9 x-8 V t)=0,
\end{array}
$$

let $W=t^{2}+(y+8) t^{4}+2\left(y^{2}+8 y+41\right) t^{6}+\cdots$ be a root of

$$
y(1-V) W^{3}+y(V+3) W^{2}-(V+3) W+V-1=0 .
$$

Then $G(t ; x, y)$ is equal to

$$
\frac{\frac{64(U(V+1)-2 V) V^{3 / 2}}{x\left(U^{2}-V\left(U^{2}-8 U+9-V\right)\right)^{2}}-\frac{y(W-1)^{4}(1-W y) V^{-3 / 2}}{t(y+1)(1-W)\left(W^{2} y+1\right)^{2}}}{\left(1+y+x^{2} y+x^{2} y^{2}\right) t-x y}-\frac{1}{t x(y+1)} .
$$

\triangleright Computer-driven discovery and proof.
\triangleright Proof uses guessed minimal polynomials for $G(t ; x, 0)$ and $G(t ; 0, y)$.
\triangleright Recent (human) proofs [B., Kurkova, Raschel, 2013; Bousquet-Mélou, 2015]

First guess, then prove [Pólya, 1954]

Guessing and Proving

George Pólya

What is "scientific method"? Philosophers and non-philosophers have discussed this question and have not yet finished discussing it. Yet as a first introduction it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to confess it. They have, however, something which the other scientists cannot really have. For mathematicians the advice is

First guess, then prove.

A typical guess'n'prove algorithmic proof

Theorem
$g(t):=G(\sqrt{t} ; 0,0)=\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(16 t)^{n}$ is algebraic.

A typical guess'n'prove algorithmic proof

Theorem

$g(t):=G(\sqrt{t} ; 0,0)=\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(16 t)^{n}$ is algebraic.

Proof: First guess a polynomial $P(t, T)$ in $\mathbb{Q}[t, T]$, then prove that P admits the power series $g(t)=\sum_{n=0}^{\infty} g_{n} t^{n}$ as a root.

A typical guess'n'prove algorithmic proof

Theorem

$g(t):=G(\sqrt{t} ; 0,0)=\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(16 t)^{n} \quad$ is algebraic.

Proof: First guess a polynomial $P(t, T)$ in $\mathbb{Q}[t, T]$, then prove that P admits the power series $g(t)=\sum_{n=0}^{\infty} g_{n} t^{n}$ as a root.
(1) Find P such that $P(t, g(t))=0 \bmod t^{100}$ by (structured) linear algebra.

A typical guess'n'prove algorithmic proof

Theorem

$g(t):=G(\sqrt{t} ; 0,0)=\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(16 t)^{n}$ is algebraic.

Proof: First guess a polynomial $P(t, T)$ in $\mathbb{Q}[t, T]$, then prove that P admits the power series $g(t)=\sum_{n=0}^{\infty} g_{n} t^{n}$ as a root.
(1) Find P such that $P(t, g(t))=0 \bmod t^{100}$ by (structured) linear algebra.
(2) Implicit function theorem: $\exists!$ root $r(t) \in \mathbb{Q}[[t]]$ of P.

A typical guess'n'prove algorithmic proof

Theorem

$g(t):=G(\sqrt{t} ; 0,0)=\sum_{n=0}^{\infty} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}(16 t)^{n}$ is algebraic.

Proof: First guess a polynomial $P(t, T)$ in $\mathbb{Q}[t, T]$, then prove that P admits the power series $g(t)=\sum_{n=0}^{\infty} g_{n} t^{n}$ as a root.
(1) Find P such that $P(t, g(t))=0 \bmod t^{100}$ by (structured) linear algebra.
(2) Implicit function theorem: \exists ! root $r(t) \in \mathbb{Q}[[t]]$ of P.
(3) $r(t)=\sum_{n=0}^{\infty} r_{n} t^{n}$ being algebraic, it is D-finite, and so is $\left(r_{n}\right)$:

$$
(n+2)(3 n+5) r_{n+1}-4(6 n+5)(2 n+1) r_{n}=0, \quad r_{0}=1
$$

\Rightarrow solution $r_{n}=\frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}} 16^{n}=g_{n}$, thus $g(t)=r(t)$ is algebraic.

Main results (III): Models with D-Finite $F(t ; 1,1)$

Equation sizes $=($ order, degree $)$
\triangleright Computerized discovery: enumeration + guessing [B., Kauers, 2009]
$\triangleright 1$-22: Confirmed by human proofs in [Bousquet-Mélou, Mishna, 2010]
\triangleright 23: Confirmed by a human proof in [B., Kurkova, Raschel, 2013]

Main results（III）：Models with D－Finite $F(t ; 1,1)$

	OEIS \mathfrak{S}	algebra	asymptotics		OEIS	\mathfrak{S}	algebraic？	asymptotics
1	A005566 $\xrightarrow{\stackrel{\leftrightarrow}{*}}$	N	$\frac{4}{\pi} \frac{4}{n}$	13	A151275	－	N	$12 \sqrt{30} \frac{(2 \sqrt{6})^{n}}{n^{2}}$
2	A018224	N	$\frac{2}{\pi} \frac{4^{n}}{n}$	14	A151314	－	N	$\frac{\sqrt{6} \lambda \mu C^{5 / 2} n^{n^{2}}\left(\frac{2 C)^{n}}{5 \pi}\right.}{n^{2}}$
3	A151312 这	N	$\frac{\sqrt{6}}{\pi} \frac{6^{n}}{n}$	15	A151255	－	N	$\frac{24 \sqrt{2}}{\pi} \frac{(2 \sqrt{2})^{n}}{n^{2}}$
4	A151331	N	$\frac{8}{3 \pi} \frac{8}{n}$	16	A151287	英	N	$\frac{2 \sqrt{2} A^{7 / 2}}{\pi} \frac{(2 A)^{n}}{n^{2}}$
5	A151266	N	$\frac{1}{2} \sqrt{\frac{3}{\pi}} \frac{3}{n^{1 / 2}}$	17	A001006	呇	Y	$\frac{3}{2} \sqrt{\frac{3}{\pi}} \sqrt{3^{n}} \frac{3}{}_{n^{3} / 2}^{n}$
6	A151307	N	$\frac{1}{2} \sqrt{\frac{5}{2 \pi}} \frac{5^{n}}{n^{1 / 2}}$	18	A129400		Y	$\frac{3}{2} \sqrt{\frac{3}{\pi}} \frac{6^{n}}{n^{3 / 2}}$
7	A151291	N	$\frac{4}{3 \sqrt{\pi}} \frac{4^{n}}{n^{1 / 2}}$	19	A005558		N	$\frac{8}{\pi} \frac{4^{n}}{n^{2}}$
8	A151326	N	$\frac{2}{\sqrt{3 \pi}} \frac{6^{n}}{n^{1 / 2}}$					
9	A151302 这	N	$\frac{1}{3} \sqrt{\frac{5}{2 \pi} \frac{5^{n}}{n^{1 / 2}}}$	20	A151265	7	Y	$\frac{2 \sqrt{2}}{\Gamma(1 / 4)} \frac{3^{n}}{n^{3 / 4}}$
10	A151329 笭	N	$\frac{1}{3} \sqrt{\frac{7}{3 \pi} \frac{7^{n}}{n^{1 / 2}}}$	21	A151278	$\stackrel{\text { 岂 }}{ }$	Y	$\frac{3 \sqrt{3}}{\sqrt{2 \Gamma(1 / 4)}} \frac{3^{n}}{n^{n / 4}}$
11	A151261 准	N	$\frac{12 \sqrt{3}}{\pi} \frac{(2 \sqrt{3})^{n}}{n^{2}}$	22	A151323	㔝	Y	$\frac{\sqrt{2} 2^{3 / 4}}{\Gamma(1 / 4)} \frac{6^{n}}{n^{3 / 4}}$
12	A151297 気	N	$\begin{gathered} \sqrt{3} B^{7 / 2} \\ 2 \pi \\ \frac{n^{2}}{2} \frac{(2 B)^{n}}{n^{2}} \\ \hline \end{gathered}$	23	A060900	$\stackrel{\text { \％}}{\sim}$	Y	$\frac{4 \sqrt{3}}{3 \Gamma(1 / 3)} \frac{4^{n}}{n^{2} / 3}$

$$
A=1+\sqrt{2}, \quad B=1+\sqrt{3}, \quad C=1+\sqrt{6}, \lambda=7+3 \sqrt{6}, \mu=\sqrt{\frac{4 \sqrt{6}-1}{19}}
$$

\triangleright Computerized discovery：conv．acc．＋LLL／PSLQ［B．，Kauers，2009］
\triangleright Confirmed by human proofs using ACSV in［Melczer，Wilson，2015］

The group of a model: the simple walk case

Algorithmic Probability

 and CombinatoricsManuel E. Lladser Robert S. Maler Marni Mishno
Andrew Rechnitzer Editors

The characteristic polynomial $\quad \chi_{\mathfrak{S}}:=x+\frac{1}{x}+y+\frac{1}{y}$

The group of a model: the simple walk case

Algorithmic Probability and Combinatorics

Manuel E. Lladser Robert S. Maler Marni Mishna
Andrew Rechnitzer

The characteristic polynomial $\quad \chi_{\mathfrak{S}}:=x+\frac{1}{x}+y+\frac{1}{y}$ is left invariant under

$$
\psi(x, y)=\left(x, \frac{1}{y}\right), \quad \phi(x, y)=\left(\frac{1}{x}, y\right)
$$

The group of a model: the simple walk case

Algorithmic Probability and Combinatorics

Manvel E. Lladser Robert S. Maler Marni Mishna Andrew Rechnitzer

The characteristic polynomial $\quad \chi_{\mathfrak{S}}:=x+\frac{1}{x}+y+\frac{1}{y}$ is left invariant under

$$
\psi(x, y)=\left(x, \frac{1}{y}\right), \quad \phi(x, y)=\left(\frac{1}{x}, y\right)
$$

and thus under any element of the group

$$
\langle\psi, \phi\rangle=\left\{(x, y),\left(x, \frac{1}{y}\right),\left(\frac{1}{x}, \frac{1}{y}\right),\left(\frac{1}{x}, y\right)\right\} .
$$

The group of a model: the general case

CONTEMPORARY
MATHEMATICS

Algorithmic Probability and Combinatorics

Manuel E. Uadser Robert S. Maier Marni Mishna Andrew Rechnitzer Editors

The polynomial $\chi_{\mathfrak{S}}:=\sum_{(i, j) \in \mathfrak{S}} x^{i} y^{j}=\sum_{i=-1}^{1} B_{i}(y) x^{i}=\sum_{j=-1}^{1} A_{j}(x) y^{j}$

The group of a model: the general case

> Guy Fayolle Roudoll hasnogorer Vadim Malyshev
Random Walks in the Quarter-Plane
Algebruic Methods. Boundary Value Problems and Applications

CONTEMPORARY
MATHEMATICS

Algorithmic Probability

 and CombinatoricsManuel E. Uadser Robert S. Maier Marni Mishna Andrew Rechnitzer Editors

The polynomial $\chi_{\mathfrak{S}}:=\sum_{(i, j) \in \mathfrak{S}} x^{i} y^{j}=\sum_{i=-1}^{1} B_{i}(y) x^{i}=\sum_{j=-1}^{1} A_{j}(x) y^{j} \quad$ is left invariant under

$$
\psi(x, y)=\left(x, \frac{A_{-1}(x)}{A_{+1}(x)} \frac{1}{y}\right), \quad \phi(x, y)=\left(\frac{B_{-1}(y)}{B_{+1}(y)} \frac{1}{x}, y\right)
$$

The group of a model: the general case

Algorithmic Probability

 and CombinatoricsManuel E. Uadser Robert S. Maier Marni Mishna Andrew Rechnitzer

The polynomial $\chi_{\mathfrak{S}}:=\sum_{(i, j) \in \mathfrak{S}} x^{i} y^{j}=\sum_{i=-1}^{1} B_{i}(y) x^{i}=\sum_{j=-1}^{1} A_{j}(x) y^{j} \quad$ is left invariant under

$$
\psi(x, y)=\left(x, \frac{A_{-1}(x)}{A_{+1}(x)} \frac{1}{y}\right), \quad \phi(x, y)=\left(\frac{B_{-1}(y)}{B_{+1}(y)} \frac{1}{x}, y\right)
$$

and thus under any element of the group

$$
\mathcal{G}_{\mathfrak{S}}:=\langle\psi, \phi\rangle .
$$

Examples of groups

Order 4,

Examples of groups

Order 4,

order 6,

Examples of groups

Order 4,

order 6,

order 8,

Examples of groups

Order 4,

order 6,

order 8,

order ∞.

An important concept: the orbit sum (OS)

When $\mathcal{G}_{\mathfrak{S}}$ is finite, the orbit sum of \mathfrak{S} is the polynomial in $\mathrm{Q}\left[x, x^{-1}, y, y^{-1}\right]$:

$$
\mathrm{OS}_{\mathfrak{G}}:=\sum_{\theta \in \mathcal{G}_{\mathfrak{G}}}(-1)^{\theta} \theta(x y)
$$

\triangleright E.g., for the simple walk, with $\mathcal{G}_{\mathfrak{S}}=\left\{(x, y),\left(x, \frac{1}{y}\right),\left(\frac{1}{x}, \frac{1}{y}\right),\left(\frac{1}{x}, y\right)\right\}$:

$$
\mathrm{OS}_{4}=x \cdot y-\frac{1}{x} \cdot y+\frac{1}{x} \cdot \frac{1}{y}-x \cdot \frac{1}{y}
$$

\triangleright For 4 models, the orbit sum is zero:

E.g., for the Kreweras model:

$$
\text { OS }=x \cdot y-\frac{1}{x y} \cdot y+\frac{1}{x y} \cdot x-y \cdot x+y \cdot \frac{1}{x y}-x \cdot \frac{1}{x y}=0
$$

The 79 models: finite and infinite groups

79 models

The 79 models: finite and infinite groups

The 79 models: finite and infinite groups

56 have an infinite group
[Bousquet-Mélou, Mishna'10]

The 79 models: finite and infinite groups

D-Finiteness via the finite group [Bousquet-Mélou, Mishna, 2010]

The kernel $J=1-t \cdot \sum_{(i, j) \in \mathfrak{G}} x^{i} y^{j}=1-t\left(x+\frac{1}{x}+y+\frac{1}{y}\right)$ is invariant under the change of (x, y) into, respectively:

$$
\left(\frac{1}{x}, y\right),\left(\frac{1}{x}, \frac{1}{y}\right),\left(x, \frac{1}{y}\right) .
$$

D-Finiteness via the finite group [Bousquet-Mélou, Mishna, 2010]

The kernel $J=1-t \cdot \sum_{(i, j) \in \mathfrak{S}} x^{i} y^{j}=1-t\left(x+\frac{1}{x}+y+\frac{1}{y}\right)$ is invariant under the change of (x, y) into, respectively:

$$
\left(\frac{1}{x}, y\right),\left(\frac{1}{x}, \frac{1}{y}\right),\left(x, \frac{1}{y}\right)
$$

Kernel equation:

$$
J(t ; x, y) x y F(t ; x, y)=x y-t x F(t ; x, 0)-t y F(t ; 0, y)
$$

D-Finiteness via the finite group [Bousquet-Mélou, Mishna, 2010]

The kernel $J=1-t \cdot \sum_{(i, j) \in \mathfrak{S}} x^{i} y^{j}=1-t\left(x+\frac{1}{x}+y+\frac{1}{y}\right)$ is invariant under the change of (x, y) into, respectively:

$$
\left(\frac{1}{x}, y\right),\left(\frac{1}{x}, \frac{1}{y}\right),\left(x, \frac{1}{y}\right)
$$

Kernel equation:

$$
\begin{aligned}
J(t ; x, y) x y F(t ; x, y) & =x y-t x F(t ; x, 0)-t y F(t ; 0, y) \\
-J(t ; x, y) \frac{1}{x} y F\left(t ; \frac{1}{x}, y\right) & =-\frac{1}{x} y+t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)+t y F(t ; 0, y)
\end{aligned}
$$

D-Finiteness via the finite group [Bousquet-Mélou, Mishna, 2010]

The kernel $J=1-t \cdot \sum_{(i, j) \in \mathfrak{S}} x^{i} y^{j}=1-t\left(x+\frac{1}{x}+y+\frac{1}{y}\right)$ is invariant under the change of (x, y) into, respectively:

$$
\left(\frac{1}{x}, y\right),\left(\frac{1}{x}, \frac{1}{y}\right),\left(x, \frac{1}{y}\right)
$$

Kernel equation:

$$
\begin{aligned}
J(t ; x, y) x y F(t ; x, y) & =x y-t x F(t ; x, 0)-t y F(t ; 0, y) \\
-J(t ; x, y) \frac{1}{x} y F\left(t ; \frac{1}{x}, y\right) & =-\frac{1}{x} y+t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)+t y F(t ; 0, y) \\
J(t ; x, y) \frac{1}{x} \frac{1}{y} F\left(t ; \frac{1}{x}, \frac{1}{y}\right) & =\frac{1}{x} \frac{1}{y}-t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)-t \frac{1}{y} F\left(t ; 0, \frac{1}{y}\right)
\end{aligned}
$$

D-Finiteness via the finite group [Bousquet-Mélou, Mishna, 2010]

The kernel $J=1-t \cdot \sum_{(i, j) \in \mathfrak{G}} x^{i} y^{j}=1-t\left(x+\frac{1}{x}+y+\frac{1}{y}\right)$ is invariant under the change of (x, y) into, respectively:

$$
\left(\frac{1}{x}, y\right),\left(\frac{1}{x}, \frac{1}{y}\right),\left(x, \frac{1}{y}\right)
$$

Kernel equation:

$$
\begin{aligned}
J(t ; x, y) x y F(t ; x, y) & =x y-t x F(t ; x, 0)-t y F(t ; 0, y) \\
-J(t ; x, y) \frac{1}{x} y F\left(t ; \frac{1}{x}, y\right) & =-\frac{1}{x} y+t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)+t y F(t ; 0, y) \\
J(t ; x, y) \frac{1}{x} \frac{1}{y} F\left(t ; \frac{1}{x}, \frac{1}{y}\right) & =\frac{1}{x} \frac{1}{y}-t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)-t \frac{1}{y} F\left(t ; 0, \frac{1}{y}\right) \\
-J(t ; x, y) x \frac{1}{y} F\left(t ; x, \frac{1}{y}\right) & =-x \frac{1}{y}+t x F(t ; x, 0)+t \frac{1}{y} F\left(t ; 0, \frac{1}{y}\right)
\end{aligned}
$$

D-Finiteness via the finite group [Bousquet-Mélou, Mishna, 2010]

The kernel $J=1-t \cdot \sum_{(i, j) \in \mathfrak{G}} x^{i} y^{j}=1-t\left(x+\frac{1}{x}+y+\frac{1}{y}\right)$ is invariant under the change of (x, y) into, respectively:

$$
\left(\frac{1}{x}, y\right),\left(\frac{1}{x}, \frac{1}{y}\right),\left(x, \frac{1}{y}\right)
$$

Kernel equation:

$$
\begin{aligned}
J(t ; x, y) x y F(t ; x, y) & =x y-t x F(t ; x, 0)-t y F(t ; 0, y) \\
-J(t ; x, y) \frac{1}{x} y F\left(t ; \frac{1}{x}, y\right) & =-\frac{1}{x} y+t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)+t y F(t ; 0, y) \\
J(t ; x, y) \frac{1}{x} \frac{1}{y} F\left(t ; \frac{1}{x}, \frac{1}{y}\right) & =\frac{1}{x} \frac{1}{y}-t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)-t \frac{1}{y} F\left(t ; 0, \frac{1}{y}\right) \\
-J(t ; x, y) x \frac{1}{y} F\left(t ; x, \frac{1}{y}\right) & =-x \frac{1}{y}+t x F(t ; x, 0)+t \frac{1}{y} F\left(t ; 0, \frac{1}{y}\right)
\end{aligned}
$$

Summing up yields the orbit equation:

$$
\sum_{\theta \in \mathcal{G}}(-1)^{\theta} \theta(x y F(t ; x, y))=\quad \frac{x y-\frac{1}{x} y+\frac{1}{x} \frac{1}{y}-x \frac{1}{y}}{J(t ; x, y)}
$$

D-Finiteness via the finite group [Bousquet-Mélou, Mishna, 2010]

The kernel $J=1-t \cdot \sum_{(i, j) \in \mathfrak{G}} x^{i} y^{j}=1-t\left(x+\frac{1}{x}+y+\frac{1}{y}\right)$ is invariant under the change of (x, y) into, respectively:

$$
\left(\frac{1}{x}, y\right),\left(\frac{1}{x}, \frac{1}{y}\right),\left(x, \frac{1}{y}\right)
$$

Kernel equation:

$$
\begin{aligned}
J(t ; x, y) x y F(t ; x, y) & =x y-t x F(t ; x, 0)-t y F(t ; 0, y) \\
-J(t ; x, y) \frac{1}{x} y F\left(t ; \frac{1}{x}, y\right) & =-\frac{1}{x} y+t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)+t y F(t ; 0, y) \\
J(t ; x, y) \frac{1}{x} \frac{1}{y} F\left(t ; \frac{1}{x}, \frac{1}{y}\right) & =\frac{1}{x} \frac{1}{y}-t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)-t \frac{1}{y} F\left(t ; 0, \frac{1}{y}\right) \\
-J(t ; x, y) x \frac{1}{y} F\left(t ; x, \frac{1}{y}\right) & =-x \frac{1}{y}+t x F(t ; x, 0)+t \frac{1}{y} F\left(t ; 0, \frac{1}{y}\right)
\end{aligned}
$$

Taking positive parts yields:

$$
\left[x^{>} y^{>}\right] \sum_{\theta \in \mathcal{G}}(-1)^{\theta} \theta(x y F(t ; x, y))=\left[x^{>} y^{>}\right] \frac{x y-\frac{1}{x} y+\frac{1}{x} \frac{1}{y}-x \frac{1}{y}}{J(t ; x, y)}
$$

D-Finiteness via the finite group [Bousquet-Mélou, Mishna, 2010]

The kernel $J=1-t \cdot \sum_{(i, j) \in \mathfrak{G}} x^{i} y^{j}=1-t\left(x+\frac{1}{x}+y+\frac{1}{y}\right)$ is invariant under the change of (x, y) into, respectively:

$$
\left(\frac{1}{x}, y\right),\left(\frac{1}{x}, \frac{1}{y}\right),\left(x, \frac{1}{y}\right)
$$

Kernel equation:

$$
\begin{aligned}
J(t ; x, y) x y F(t ; x, y) & =x y-t x F(t ; x, 0)-t y F(t ; 0, y) \\
-J(t ; x, y) \frac{1}{x} y F\left(t ; \frac{1}{x}, y\right) & =-\frac{1}{x} y+t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)+t y F(t ; 0, y) \\
J(t ; x, y) \frac{1}{x} \frac{1}{y} F\left(t ; \frac{1}{x}, \frac{1}{y}\right) & =\frac{1}{x} \frac{1}{y}-t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)-t \frac{1}{y} F\left(t ; 0, \frac{1}{y}\right) \\
-J(t ; x, y) x \frac{1}{y} F\left(t ; x, \frac{1}{y}\right) & =-x \frac{1}{y}+t x F(t ; x, 0)+t \frac{1}{y} F\left(t ; 0, \frac{1}{y}\right)
\end{aligned}
$$

Summing up and taking positive parts yields:

$$
x y F(t ; x, y)=\left[x^{>} y^{>}\right] \frac{x y-\frac{1}{x} y+\frac{1}{x} \frac{1}{y}-x \frac{1}{y}}{J(t ; x, y)}
$$

D-Finiteness via the finite group [Bousquet-Mélou, Mishna, 2010]

The kernel $J=1-t \cdot \sum_{(i, j) \in \mathfrak{G}} x^{i} y^{j}=1-t\left(x+\frac{1}{x}+y+\frac{1}{y}\right)$ is invariant under the change of (x, y) into, respectively:

$$
\left(\frac{1}{x}, y\right),\left(\frac{1}{x}, \frac{1}{y}\right),\left(x, \frac{1}{y}\right)
$$

Kernel equation:

$$
\begin{aligned}
J(t ; x, y) x y F(t ; x, y) & =x y-t x F(t ; x, 0)-t y F(t ; 0, y) \\
-J(t ; x, y) \frac{1}{x} y F\left(t ; \frac{1}{x}, y\right) & =-\frac{1}{x} y+t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)+t y F(t ; 0, y) \\
J(t ; x, y) \frac{1}{x} \frac{1}{y} F\left(t ; \frac{1}{x}, \frac{1}{y}\right) & =\frac{1}{x} \frac{1}{y}-t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)-t \frac{1}{y} F\left(t ; 0, \frac{1}{y}\right) \\
-J(t ; x, y) x \frac{1}{y} F\left(t ; x, \frac{1}{y}\right) & =-x \frac{1}{y}+t x F(t ; x, 0)+t \frac{1}{y} F\left(t ; 0, \frac{1}{y}\right)
\end{aligned}
$$

$$
\mathrm{GF}=\operatorname{PosPart}\left(\frac{\mathrm{OS}}{\text { kernel }}\right)
$$

D-Finiteness via the finite group [Bousquet-Mélou, Mishna, 2010]

The kernel $J=1-t \cdot \sum_{(i, j) \in \mathfrak{G}} x^{i} y^{j}=1-t\left(x+\frac{1}{x}+y+\frac{1}{y}\right)$ is invariant under the change of (x, y) into, respectively:

$$
\left(\frac{1}{x}, y\right),\left(\frac{1}{x}, \frac{1}{y}\right),\left(x, \frac{1}{y}\right)
$$

Kernel equation:

$$
\begin{aligned}
J(t ; x, y) x y F(t ; x, y) & =x y-t x F(t ; x, 0)-t y F(t ; 0, y) \\
-J(t ; x, y) \frac{1}{x} y F\left(t ; \frac{1}{x}, y\right) & =-\frac{1}{x} y+t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)+t y F(t ; 0, y) \\
J(t ; x, y) \frac{1}{x} \frac{1}{y} F\left(t ; \frac{1}{x}, \frac{1}{y}\right) & =\frac{1}{x} \frac{1}{y}-t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)-t \frac{1}{y} F\left(t ; 0, \frac{1}{y}\right) \\
-J(t ; x, y) x \frac{1}{y} F\left(t ; x, \frac{1}{y}\right) & =-x \frac{1}{y}+t x F(t ; x, 0)+t \frac{1}{y} F\left(t ; 0, \frac{1}{y}\right)
\end{aligned}
$$

$$
\mathrm{GF}=\text { PosPart }\left(\frac{\mathrm{OS}}{\mathrm{ker}}\right)=\text { D-finite [Lipshitz, 1988] }
$$

D-Finiteness via the finite group [Bousquet-Mélou, Mishna, 2010]

The kernel $J=1-t \cdot \sum_{(i, j) \in \mathfrak{S}} x^{i} y^{j}=1-t\left(x+\frac{1}{x}+y+\frac{1}{y}\right)$ is invariant under the change of (x, y) into, respectively:

$$
\left(\frac{1}{x}, y\right),\left(\frac{1}{x}, \frac{1}{y}\right),\left(x, \frac{1}{y}\right)
$$

Kernel equation:

$$
\begin{aligned}
J(t ; x, y) x y F(t ; x, y) & =x y-t x F(t ; x, 0)-t y F(t ; 0, y) \\
-J(t ; x, y) \frac{1}{x} y F\left(t ; \frac{1}{x}, y\right) & =-\frac{1}{x} y+t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)+t y F(t ; 0, y) \\
J(t ; x, y) \frac{1}{x} \frac{1}{y} F\left(t ; \frac{1}{x}, \frac{1}{y}\right) & =\frac{1}{x} \frac{1}{y}-t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)-t \frac{1}{y} F\left(t ; 0, \frac{1}{y}\right) \\
-J(t ; x, y) x \frac{1}{y} F\left(t ; x, \frac{1}{y}\right) & =-x \frac{1}{y}+t x F(t ; x, 0)+t \frac{1}{y} F\left(t ; 0, \frac{1}{y}\right)
\end{aligned}
$$

$$
\mathrm{GF}=\text { PosPart }\left(\frac{\mathrm{OS}}{\mathrm{ker}}\right)=\text { D-finite [Lipshitz, 1988] }
$$

\triangleright Argument works if $O S \neq 0$: algebraic version of the reflection principle

D-Finiteness via the finite group [Bousquet-Mélou, Mishna, 2010]

The kernel $J=1-t \cdot \sum_{(i, j) \in \mathfrak{S}} x^{i} y^{j}=1-t\left(x+\frac{1}{x}+y+\frac{1}{y}\right)$ is invariant under the change of (x, y) into, respectively:

$$
\left(\frac{1}{x}, y\right),\left(\frac{1}{x}, \frac{1}{y}\right),\left(x, \frac{1}{y}\right)
$$

Kernel equation:

$$
\begin{aligned}
J(t ; x, y) x y F(t ; x, y) & =x y-t x F(t ; x, 0)-t y F(t ; 0, y) \\
-J(t ; x, y) \frac{1}{x} y F\left(t ; \frac{1}{x}, y\right) & =-\frac{1}{x} y+t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)+t y F(t ; 0, y) \\
J(t ; x, y) \frac{1}{x} \frac{1}{y} F\left(t ; \frac{1}{x}, \frac{1}{y}\right) & =\frac{1}{x} \frac{1}{y}-t \frac{1}{x} F\left(t ; \frac{1}{x}, 0\right)-t \frac{1}{y} F\left(t ; 0, \frac{1}{y}\right) \\
-J(t ; x, y) x \frac{1}{y} F\left(t ; x, \frac{1}{y}\right) & =-x \frac{1}{y}+t x F(t ; x, 0)+t \frac{1}{y} F\left(t ; 0, \frac{1}{y}\right)
\end{aligned}
$$

$$
\mathrm{GF}=\text { PosPart }\left(\frac{\mathrm{OS}}{\mathrm{ker}}\right)=\text { D-finite [Lipshitz, 1988] }
$$

\triangleright Creative Telescoping finds a differential equation for PosPart(OS/ker)

Main results (IV): explicit expressions for models 1-19

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2016]
Let \mathfrak{S} be one of the 19 models with finite group $\mathcal{G}_{\mathfrak{S}}$, and non-zero orbit sum. Then

- $F_{\mathfrak{S}}$ is expressible using iterated integrals of ${ }_{2} F_{1}$ expressions.
- Among the 19×4 specializations of $F_{\mathfrak{S}}(t ; x, y)$ at $(x, y) \in\{0,1\}^{2}$, only 4 are algebraic: for $\mathfrak{S}=\underset{\substack{\text { i }}}{ }$ at $(1,1)$, and $\mathfrak{S}=$ at $(1,0),(0,1),(1,1)$

Main results (IV): explicit expressions for models 1-19

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2016]
Let \mathfrak{S} be one of the 19 models with finite group $\mathcal{G}_{\mathfrak{S}}$, and non-zero orbit sum. Then

- $F_{\mathfrak{S}}$ is expressible using iterated integrals of ${ }_{2} F_{1}$ expressions.
- Among the 19×4 specializations of $F_{\mathfrak{S}}(t ; x, y)$ at $(x, y) \in\{0,1\}^{2}$, only 4 are algebraic: for $\mathfrak{S}=\mathfrak{i}$; at $(1,1)$, and $\mathfrak{S}=(1,0),(0,1),(1,1)$

Example (King walks in the quarter plane, A025595)

$$
\begin{aligned}
& \mathrm{F}_{\text {纸 }}(t ; 1,1)=\frac{1}{t} \int_{0}^{t} \frac{1}{(1+4 x)^{3}} \cdot{ }_{2} F_{1}\left(\left.\frac{3}{2}{ }_{2}^{\frac{3}{2}} \right\rvert\, \frac{16 x(1+x)}{(1+4 x)^{2}}\right) d x \\
&=1+3 t+18 t^{2}+105 t^{3}+684 t^{4}+4550 t^{5}+31340 t^{6}+219555 t^{7}+\cdots .
\end{aligned}
$$

Main results (IV): explicit expressions for models 1-19

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2016]
Let \mathfrak{S} be one of the 19 models with finite group $\mathcal{G}_{\mathfrak{S}}$, and non-zero orbit sum. Then

- $F_{\mathfrak{S}}$ is expressible using iterated integrals of ${ }_{2} F_{1}$ expressions.
- Among the 19×4 specializations of $F_{\mathfrak{S}}(t ; x, y)$ at $(x, y) \in\{0,1\}^{2}$, only 4 are algebraic: for $\mathfrak{S}=\mathfrak{i}$; at $(1,1)$, and $\mathfrak{S}=$ at $(1,0),(0,1),(1,1)$

Example (King walks in the quarter plane, A025595)

$$
\begin{aligned}
& \mathrm{F}_{\text {纸 }}(t ; 1,1)=\frac{1}{t} \int_{0}^{t} \frac{1}{(1+4 x)^{3}} \cdot{ }_{2} F_{1}\left(\left.\frac{3}{2}{ }_{2}^{\frac{3}{2}} \right\rvert\, \frac{16 x(1+x)}{(1+4 x)^{2}}\right) d x \\
&=1+3 t+18 t^{2}+105 t^{3}+684 t^{4}+4550 t^{5}+31340 t^{6}+219555 t^{7}+\cdots .
\end{aligned}
$$

\triangleright Computer-driven discovery and proof; no human proof yet.
\triangleright Proof uses creative telescoping, ODE factorization, ODE solving.

Hypergeometric Series Occurring in Explicit Expressions for $F(t ; x, y)$

	\mathfrak{S}	occurrin	${ }_{2} F_{1}$	w		\mathfrak{S}	occurring	${ }_{2} F_{1}$	w
1	$\stackrel{\downarrow}{\downarrow}$	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{2} \\ 1\end{array} \frac{1}{2}\right.$	$w)$	$16 t^{2}$	11	埌i	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{2} \\ 1\end{array}\right.$	$w)$	$\frac{16 t^{2}}{4 t^{2}+1}$
2	\Varangle	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{2} \\ \\ 1\end{array} \frac{1}{2}\right.$	$w)$	$16 t^{2}$	12	感	${ }_{2} F_{1}\left(\frac{1}{4} \frac{3}{4}\right.$	$w)$	$\frac{64 t^{3}(2 t+1)}{\left(8 t^{2}-1\right)^{2}}$
3	雌	${ }_{2} F_{1}\left(\frac{1}{4} \frac{3}{4}\right.$	$w)$	$\frac{64 t^{2}}{\left(12 t^{2}+1\right)^{2}}$	13	－	${ }_{2} F_{1}\left(\begin{array}{ll}1 & \frac{3}{4} \\ 1\end{array}\right.$	$w)$	$\frac{64 t^{2}\left(t^{2}+1\right)}{\left(16 t^{2}+1\right)^{2}}$
4	$\stackrel{5}{2-1}$	${ }_{2} F_{1}\left(\frac{1}{2} \frac{1}{2}\right.$	$w)$	$\frac{16 t(t+1)}{(4 t+1)^{2}}$	14	－	${ }_{2} F_{1}\left(\frac{1}{4} \frac{3}{4}\right.$	$w)$	$\frac{64 t^{2}\left(t^{2}+t+1\right)}{\left(12 t^{2}+1\right)^{2}}$
5	Ψ	${ }_{2} F_{1}\left(\begin{array}{ll}\frac{1}{4} & \frac{3}{4} \\ 1\end{array}\right.$	$w)$	$64 t^{4}$	15	凡	${ }_{2} F_{1}\left(\frac{1}{4} \frac{3}{4}\right.$	$w)$	$64 t^{4}$
6	$\stackrel{\rightharpoonup}{\downarrow}$	${ }_{2} F_{1}\left(\frac{1}{4} \frac{3}{4}\right.$	$w)$	$\frac{64 t^{3}(t+1)}{\left(1-4 t^{2}\right)^{2}}$	16	令	${ }_{2} F_{1}\left(\frac{1}{4} \frac{3}{4}\right.$	$w)$	$\frac{64 t^{3}(t+1)}{\left(1-4 t^{2}\right)^{2}}$
7	Ψ	${ }_{2} F_{1}\left(\frac{1}{2}{ }_{1}^{\frac{1}{2}}\right.$	$w)$	$\frac{16 t^{2}}{4 t^{2}+1}$	17	$\stackrel{\text { r }}{\sim}$	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{3} \\ \frac{2}{3} \\ 1\end{array}\right.$	$w)$	$27 t^{3}$
8	$\stackrel{\stackrel{5}{7} x}{\downarrow}$	${ }_{2} F_{1}\left(\begin{array}{ll}\frac{1}{4} & \frac{3}{4} \\ 1\end{array}\right.$	$w)$	$\frac{64 t^{3}(2 t+1)}{\left(8 t^{2}-1\right)^{2}}$	18	$\sqrt{4}$	${ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{3} \\ \\ 1\end{array}\right.$	$w)$	$27 t^{2}(2 t+1)$
9	Y	${ }_{2} F_{1}\left(\begin{array}{l}\frac{1}{4} \\ 1\end{array} \frac{3}{4}\right.$	$w)$	$\frac{64 t^{2}\left(t^{2}+1\right)}{\left(16 t^{2}+1\right)^{2}}$	19		${ }_{2} F_{1}\left(\frac{1}{2} \frac{1}{2}\right.$	$w)$	$16 t^{2}$
10	$\frac{5 \pi}{2 x}$	${ }_{2} F_{1}\left(\begin{array}{ll}1 & \frac{3}{4} \\ 1\end{array}\right.$	$w)$	$\frac{64 t^{2}\left(t^{2}+t+1\right)}{\left(12 t^{2}+1\right)^{2}}$					

\triangleright All related to the complete elliptic integrals $\int_{0}^{\pi / 2}\left(1-k^{2} \sin ^{2} \theta\right)^{ \pm \frac{1}{2}} d \theta$

Main results (V): non-D-finiteness for models with an infinite group

Theorem [B., Raschel, Salvy, 2013]
Let \mathfrak{S} be one of the 51 non-singular models with infinite group $\mathcal{G}_{\mathfrak{S}}$. Then $F_{\mathfrak{S}}(t ; 0,0)$, and in particular $F_{\mathfrak{S}}(t ; x, y)$, are non-D-finite.

Main results (V): non-D-finiteness for models with an infinite group

Theorem [B., Raschel, Salvy, 2013]
Let \mathfrak{S} be one of the 51 non-singular models with infinite group $\mathcal{G}_{\mathfrak{S}}$. Then $F_{\mathfrak{S}}(t ; 0,0)$, and in particular $F_{\mathfrak{S}}(t ; x, y)$, are non-D-finite.
\triangleright Algorithmic proof. Uses Gröbner basis computations, polynomial factorization, cyclotomy testing.
\triangleright Based on two ingredients: asymptotics + irrationality.
\triangleright [Kurkova, Raschel, 2013] Human proof that $F_{\mathfrak{S}}(t ; x, y)$ is non-D-finite.
\triangleright No human proof yet for $F_{\mathfrak{S}}(t ; 0,0)$ non-D-finite.

Main results (V): non-D-finiteness for models with an infinite group

Theorem [B., Raschel, Salvy, 2013]
Let \mathfrak{S} be one of the 51 non-singular models with infinite group $\mathcal{G}_{\mathfrak{S}}$. Then $F_{\mathfrak{S}}(t ; 0,0)$, and in particular $F_{\mathfrak{S}}(t ; x, y)$, are non-D-finite.
\triangleright Algorithmic proof. Uses Gröbner basis computations, polynomial factorization, cyclotomy testing.
\triangleright Based on two ingredients: asymptotics + irrationality.
$\triangleright\left[\right.$ Kurkova, Raschel, 2013] Human proof that $F_{\mathfrak{S}}(t ; x, y)$ is non-D-finite.
\triangleright No human proof yet for $F_{\mathfrak{S}}(t ; 0,0)$ non-D-finite.
\triangleright [Bernardi, Bousquet-Mélou, Raschel, 2016] For 9 of these 51 models, $F_{\mathfrak{S}}(t ; x, y)$ is nevertheless D-algebraic!
\triangleright [Dreyfus, Hardouin, Roques, Singer, 2017]: hypertranscendence of the remaining 42 models.

The 56 models with infinite group

In blue, non-singular models, solved by [B., Raschel, Salvy, 2013] In red, singular models, solved by [Melczer, Mishna, 2013]

Example: the scarecrows

[B., Raschel, Salvy, 2013]: $F_{\mathfrak{S}}(t ; 0,0)$ is not D-finite for the models

For the 1st and the 3rd, the excursions sequence $\left[t^{n}\right] F_{\mathfrak{S}}(t ; 0,0)$

$$
1,0,0,2,4,8,28,108,372, \ldots
$$

is $\sim K \cdot 5^{n} \cdot n^{-\alpha}$, with $\alpha=1+\pi / \arccos (1 / 4)=3.383396 \ldots$
[Denisov, Wachtel, 2013]
The irrationality of α prevents $F_{\mathfrak{S}}(t ; 0,0)$ from being D-finite.
[Katz, 1970; Chudnovsky, 1985; André, 1989]

Summary: Classification of 2D non-singular walks

The Main Theorem Let \mathfrak{S} be one of the 74 non-singular models. The following assertions are equivalent:
(1) The full generating function $F_{\mathfrak{S}}(t ; x, y)$ is D-finite
(2) the excursions generating function $F_{\mathfrak{S}}(t ; 0,0)$ is D-finite
(3) the excursions sequence $\left[t^{n}\right] F_{\mathfrak{S}}(t ; 0,0)$ is $\sim K \cdot \rho^{n} \cdot n^{\alpha}$, with $\alpha \in \mathbb{Q}$
(4) the group $\mathcal{G}_{\mathfrak{S}}$ is finite (and $\left|\mathcal{G}_{\mathfrak{S}}\right|=2 \cdot \min \left\{\ell \in \mathbb{N}^{\star} \left\lvert\, \frac{\ell}{\alpha+1} \in \mathbb{Z}\right.\right\}$)
(5) the step set \mathfrak{S} has either an axial symmetry, or zero drift and cardinality different from 5 .

Summary: Classification of 2D non-singular walks

The Main Theorem Let \mathfrak{S} be one of the 74 non-singular models. The following assertions are equivalent:
(1) The full generating function $F_{\mathfrak{S}}(t ; x, y)$ is D-finite
(2) the excursions generating function $F_{\mathfrak{S}}(t ; 0,0)$ is D-finite
(3) the excursions sequence $\left[t^{n}\right] F_{\mathfrak{S}}(t ; 0,0)$ is $\sim K \cdot \rho^{n} \cdot n^{\alpha}$, with $\alpha \in \mathbb{Q}$
(4) the group $\mathcal{G}_{\mathfrak{S}}$ is finite (and $\left|\mathcal{G}_{\mathfrak{S}}\right|=2 \cdot \min \left\{\ell \in \mathbb{N}^{\star} \left\lvert\, \frac{\ell}{\alpha+1} \in \mathbb{Z}\right.\right\}$)
(5) the step set \mathfrak{S} has either an axial symmetry, or zero drift and cardinality different from 5 .

Moreover, under (1)-(5), $F_{\mathfrak{S}}(t ; x, y)$ is algebraic if and only if the model \mathfrak{S} has positive covariance $\sum_{(i, j) \in \mathfrak{S}} i j-\sum_{(i, j) \in \mathfrak{S}} i \cdot \sum_{(i, j) \in \mathfrak{S}} j>0$, and iff it has $\mathrm{OS}=0$.

Summary: Classification of 2D non-singular walks

The Main Theorem Let \mathfrak{S} be one of the 74 non-singular models. The following assertions are equivalent:
(1) The full generating function $F_{\mathfrak{S}}(t ; x, y)$ is D-finite
(2) the excursions generating function $F_{\mathfrak{S}}(t ; 0,0)$ is D-finite
(3) the excursions sequence $\left[t^{n}\right] F_{\mathfrak{S}}(t ; 0,0)$ is $\sim K \cdot \rho^{n} \cdot n^{\alpha}$, with $\alpha \in \mathbb{Q}$
(4) the group $\mathcal{G}_{\mathfrak{S}}$ is finite (and $\left|\mathcal{G}_{\mathfrak{S}}\right|=2 \cdot \min \left\{\ell \in \mathbb{N}^{\star} \left\lvert\, \frac{\ell}{\alpha+1} \in \mathbb{Z}\right.\right\}$)
(5) the step set \mathfrak{S} has either an axial symmetry, or zero drift and cardinality different from 5 .

Moreover, under (1)-(5), $F_{\mathfrak{S}}(t ; x, y)$ is algebraic if and only if the model \mathfrak{S} has positive covariance $\sum_{(i, j) \in \mathfrak{S}} i j-\sum_{(i, j) \in \mathfrak{S}} i \cdot \sum_{(i, j) \in \mathfrak{S}} j>0$, and iff it has $\mathrm{OS}=0$.

In this case, $F_{\mathfrak{S}}(t ; x, y)$ is expressible using nested radicals.
If not, $F_{\mathfrak{S}}(t ; x, y)$ is expressible using iterated integrals of ${ }_{2} F_{1}$ expressions.

Summary: Walks with small steps in \mathbb{N}^{2}

Extensions: Walks in \mathbb{N}^{2} with small repeated steps

2D quadrant models: 527

[B., Bousquet-Mélou, Kauers, Melczer, 2015]

Extensions: Walks in \mathbb{N}^{2} with small repeated steps

2D quadrant models: 527

[B., Bousquet-Mélou, Kauers, Melczer, 2015]
\triangleright [Du, Hou, Wang, 2015]: proofs that groups are infinite in the 409 cases, and GF are non-D-finite in 366 cases.
\triangleright [Kauers, Yatchak, 2015]: extension to $4^{8}=65536$ models with mult. ≤ 3. 1457 D-finite, 79 algebraic, 3 pearls:
気

A pearl among models in \mathbb{N}^{2} with small but repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2015]

$$
\left(e_{n}\right)_{n \geq 0}=(1,0,3,0,26,0,323,0,4830,0,80910, \ldots)
$$

Then

$$
e_{2 n}=\frac{6(6 n+1)!(2 n+1)!}{(3 n)!(4 n+3)!(n+1)!} .
$$

\triangleright Current proof is computer-driven.
\triangleright Open problem: find a human proof.

Extensions: Walks in \mathbb{N}^{2} with large steps

quadrant models with steps in $\{-2,-1,0,1\}^{2}: 13110$

[B., Bousquet-Mélou, Melczer, 2017]

- Example: For the model

$$
x y F(t ; x, y)=\left[x^{>0} y^{>0}\right] \frac{\left(x-2 x^{-2}\right)\left(y-\left(x-x^{-2}\right) y^{-1}\right)}{1-t\left(x y^{-1}+y+x^{-2} y^{-1}\right)}
$$

Two pearls among the 9 difficult models with large steps

Conjecture 1 [B., Bousquet-Mélou, Melczer, 2017]

For the model $\breve{\square}$, writing $\phi(t)=\frac{108 t(1+4 t)^{2}}{(12 t-1)^{3}}$, then $F\left(t^{1 / 2} ; 0,0\right)$ is equal to

$$
\frac{1}{3 t}-\frac{\sqrt{1-12 t}}{6 t}\left({ }_{2} F_{1}\left(\left.\begin{array}{cc}
\frac{1}{6} & \frac{1}{3} \\
& 1
\end{array} \right\rvert\, \phi(t)\right)+{ }_{2} F_{1}\left(\begin{array}{rr|r}
-\frac{1}{6} & \frac{2}{3} & \phi(t))) . \\
1 & & \\
&
\end{array}\right.\right.
$$

Conjecture 2 [B., Bousquet-Mélou, Melczer, 2017]
For the model $\mathcal{L}^{7}, F(t ; 0,0)$ is equal to

$$
\frac{\left(1-24 U+120 U^{2}-144 U^{3}\right)(1-4 U)}{(1-3 U)(1-2 U)^{3 / 2}(1-6 U)^{9 / 2}},
$$

where $U=t^{4}+53 t^{8}+4363 t^{12}+\cdots$ is the unique series in $\mathbf{Q}[[t]]$ satisfying

$$
U(1-2 U)^{3}(1-3 U)^{3}(1-6 U)^{9}=t^{4}(1-4 U)^{4} .
$$

Extensions: Walks with small steps in \mathbb{N}^{3}

$2^{3^{3}-1} \approx 67$ million models, of which ≈ 11 million inherently 3D

[B., Bousquet-Mélou, Kauers, Melczer, 2015]
\triangleright Open question: are there non-D-finite models with a finite group?

Extensions: Walks with small steps in \mathbb{N}^{3}

$2^{3^{3}-1} \approx 67$ million models, of which ≈ 11 million inherently 3D

\triangleright Open question: are there non-D-finite models with a finite group?
\triangleright [Du, Hou, Wang, 2015]: proofs that groups are infinite in the 20634 cases
\triangleright [Bacher, Kauers, Yatchak, 2016]: extension to all 3D models; 170 models found with $\left|\mathcal{G}_{\mathfrak{S}}\right|<\infty$ and orbit sum 0 (instead of 19)

19 mysterious 3D-models

Open question: 3D Kreweras

Two different computations suggest:

$$
k_{4 n} \approx C \cdot 256^{n} / n^{3.3257570041744 \ldots},
$$

so excursions are very probably transcendental (and even non-D-finite)

Conclusion

Computer algebra may solve difficult combinatorial problems
Classification of $F(t ; x, y)$ fully completed for 2D small step walks
Robust algorithmic methods, based on efficient algorithms:

- Guess'n'Prove
- Creative Telescoping

Brute-force and/or use of naive algorithms = hopeless. E.g. size of algebraic equations for $G(t ; x, y) \approx 30 \mathrm{~Gb}$.

Conclusion

Computer algebra may solve difficult combinatorial problems
Classification of $F(t ; x, y)$ fully completed for 2D small step walks
Robust algorithmic methods, based on efficient algorithms:

- Guess'n'Prove
- Creative Telescoping

Brute-force and/or use of naive algorithms = hopeless. E.g. size of algebraic equations for $G(t ; x, y) \approx 30 \mathrm{~Gb}$.

Lack of "purely human" proofs for some results.

Open: is $F(t ; 1,1)$ non-D-finite for all 56 models with infinite group?

Many beautiful open questions for 2D models with repeated or large steps, and in dimension >2.

Future reasearch

Fundamental computer algebra

- structured power series and matrices
- basic operations on operators $(\bmod p)$
- factorization of operators $(\bmod p)$

Hermite-Padé approximants
\times and Hadamard \odot
p-curvature

Computer algebra for functional equations

- minimality of operators (order vs. total size)
- faster guessing
- faster Creative Telescoping
desingularisation structured and certified 4G, reduction-based

Applications

- Combinatorics
- lattice walks
- algorithmic hyper-transcendence
- other classes of combinatorial objects
solving discrete PDEs
symmetries, various groups diff. Galois and Tutte invariants urns, maps
- Number theory transcendence of values of E- and G-functions

Bibliography

- Automatic classification of restricted lattice walks, with M. Kauers. Proceedings FPSAC, 2009.
- The complete generating function for Gessel walks is algebraic, with M. Kauers. Proceedings of the American Mathematical Society, 2010.
- Explicit formula for the generating series of diagonal 3D Rook paths, with F. Chyzak, M. van Hoeij and L. Pech. Séminaire Lotharingien de Combinatoire, 2011.
- Non-D-finite excursions in the quarter plane, with K. Raschel and B. Salvy. Journal of Combinatorial Theory A, 2013.
- On 3-dimensional lattice walks confined to the positive octant, with M. Bousquet-Mélou, M. Kauers and S. Melczer. Annals of Comb., 2016.
- A human proof of Gessel's lattice path conjecture, with I. Kurkova, K. Raschel, Transactions of the American Mathematical Society, 2017.
- Hypergeometric expressions for generating functions of walks with small steps in the quarter plane, with F. Chyzak, M. van Hoeij, M. Kauers and L. Pech, European Journal of Combinatorics, 2017.
- Computer Algebra for Lattice Path Combinatorics, preprint, 2017.

The End

Thanks for your attention!

