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We study the classical integrability of the Adler-van Moerbeke model, describing in particular cases the motion on an ellipsoid 
with a central force. Classical integrability is associated with a generalized structure for the Poisson brackets of the Lax operator. 
The already known set of conserved quantities for this model turns out to follow straightforwardly from this structure. 

I. Introduction 

We have descr ibed in a previous paper  [ 1 ] an ex- 
ample,  drawn from classical mechanics,  of  the gen- 
eral D-matr ix  structure for classically integrable sys- 
tems a la Liouvil le  in t roduced in refs. [ 2 -5 ] .  This 
structure describes the Poisson brackets  between 
components  of  the L-matr ix ,  occurring in the Lax 
form of  the equat ions of  motion:  

L ( 2 ) = [ L ( 2 ) , M ( 2 ) ] ,  

2~C is the spectral p a r a m e t e r ,  ( 1 ) 

It was shown [3 ] that  for any integrable system a la 
Liouville ( that  is, when the eigenvalues of  L are in 
involu t ion) ,  the Poisson brackets  of  L can be de- 
scribed by a single "D-mat r ix"  ( " R - S  couple"  in the 
terminology of  another  approach descr ibed in ref. 
[ 2 ] ), such that  

{L(2)  ®L(/z)}  

= [D(2, /z) ,  L ( 2 ) ® l  ] - [DV(/t, 2),  I ® L ( / t )  ] ,  
(2a )  

where as usual 

{L(  2 )®L(~ t )  } g y = { L ( 2  )~ k, L( / t ) /}  (2b)  

and D acts in the tensor  product  of  spaces. D has no 
special symmetry  property;  if  it is an t i symmetr ic  one 
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recovers the R-matr ix  formal ism [ 6 ]. Besides, it may 
also depend  on the dynamical  variables [2,5 ]. 

The example described in ref. [1] allowed us to 
construct  a D-matr ix  for the Poisson bracket  o f  the 
L-opera tor  associated to the Mose r -Uhlenbeck  
model,  a par t icular  case of  which is the Neumann  
model  of  a part icle on a sphere submit ted  to har- 
monic  forces. We study here another  example in 
classical mechanics,  in t roduced by Adler  and van 
Moerbeke [7 ], which contains the case of  a part icle 
on an n-ell ipsoid with a central force. 

2. The Adler-van Moerbeke model 

Let us recall the main features of  this model  as they 
are descr ibed in ref. [7] .  The general equat ions of  
mot ion  derive from the hami l ton ian  H: 

H =  1 • (b~-bj)/(ai-aj)(J~j)z-# ~ bixiYi, (3) 
i~ j  

where a, b are any set of  posi t ive numbers,  ag # aj for 
i Cj,  J~j= x~y j -  xjyi, x,, yi are n canonical ly conjugate 
variables,  ~t is any real number  and can in fact be 
reabsorbed in a redefini t ion of  the set (a ) .  The equa- 
t ions of  mot ion  read 

Xk = OH/Oyk, Pk = -- OH/Oxk. (4)  

These equations for (xi, y~) can be described by in- 
t roducing the compact  nota t ion 

X =  (x i ) ,  Y =  (yi),  K =  (K~j) , 
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K~ = ( b , -bj)  / ( a,-a2) ( Ji2) , 

A=(Aij), Aij=aic~,j, B = ( B o ) ,  Bi2=b~dij. (5a) 

The equations of  motion are then 

J ( = - K X - B X ,  Y = - K Y + B Y .  (5b) 

They admit n integrals of  motion in involution under 
the Poisson bracket 

Gk=--2xkyk+ ~ (Jkz)z/(ak--az). (6) 
l ~ k  

Since ~k bkGk=2H(x,y) ,  the (x, y)  system is inte- 
grable in the sense of  Liouville. The motion of  a par- 
ticle on an n-ellipsoid with a central force corre- 
sponds to the choice b,= (ai) - ~ (see ref. [ 7 ] ). 

3. The coadjoint orbit formulation and integrability 

The Adler-van Moerbeke model can be described 
as a particular application of  the Adler -Kostant -  
Kirillov scheme [8 ] for the Lie group Gl (n) .  Any 
element of  its Lie algebra G can be decomposed as a 
pair (a, s) of  an antisymmetric matrix a and a sym- 
metric matrix s, with Lie bracket 

[ (a, s); (a ' ,  s ' ) ]  

=([a ,a ' ]+[s , s ' ] ;  [a , s ' ]+[a ' , s ] )  . (7) 

Considered simply as a vector space, G is then iden- 
tified with its dual G* using the bilinear form ( (a, 
s); (a ' ,  s' ) ) =Trace  ( a a ' )  + Trace (ss ' ) .  

A Poisson bracket is then defined for the functions 
on the dual G* by Kirillov's formula [ 6 ]: 

{F, G}KK(L)= (L ,  [OF, d G ] )  (8) 

(L is a point of  G*, d F ( L )  is identified with an ele- 
ment of  G.) This defines a symplectic structure on 
each coadjoint orbit of  the action of  G on G* [8],  
and one considers then the hamiltonian actions on 
these orbits defined by this symplectic structure, Note 
that the adjoint and coadjoint action are identical up 
to a sign for this Lie algebra. One then has to con- 
struct adequate hamiltonians and coadjoint orbits in 
G*, that is, hamiltonians belonging to a set of  quan- 
tities in involution under the Kirillov bracket, and 
orbits of  sufficiently low dimensions to describe a 

tractable physical system. 
The family of  integrable hamiltonians is obtained 

as follows: one starts from coadjoint-invariant func- 
tions F on the dual algebra (such as the trace of  any 
integer power of  the argument);  one then defines a 
suitable loop-algebra-valued function L(2; a, s) of  the 
point (a, s) of  the dual algebra which one plugs as 
the argument in the invariant function F. The coef- 
ficients of  the development in powers of  2 provide 
the demanded set of  integrals of  motion in involution 
thereby leading to an integrable system, and L is the 
Lax operator for this system (see ( 1 ) ). This follows 
in ref. [7] from a "computational  miracle" which 
enables to transform the Kirillov bracket of  the func- 
tions of  (a, s) of  the form F(f(a,  s) ) into a combi- 
nation of  expressions like [VF( f ) ,  f ]  which vanish 
due to the ad*-invariance of  F. This is in fact a con- 
sequence of  the existence of  a D-matrix structure as 
we shall comment  on later. 

A particularly interesting set of  low-dimensional 
coadjoint orbits of  this group is parametrized in the 
following form. We take a and s as 

a = x ® y - y ® x = J ,  

s= ~cxQx+xNy+yQx= Q, (9) 

x, y being n-dimensional vectors and x any real num- 
ber. Calculating now the coadjoint action of  an arbi- 
trary couple (a ' ,  s' ) on (a, s) induced by the Lie 
bracket (7),  one can show that the form (9) is pre- 
served with the following action on x and y: 

dx=ax+sx,  d v = a y - s y - t c s x .  (10) 

Notice now that the redefinitions 

y- ,y+cx,  x ~ x ,  . v~ l /dy ,  x ~ d x  (11) 

leave a invariant and transform s into s +  [2c+  
/¢(d 2 -  1 ) ]x®x; moreover, the coadjoint action of  G 
on (a, s) leaves the trace of  s invariant; hence the 
couple (x, y)  with arbitrary choice of  vectors con- 
tains in fact two degrees of  freedom more than the 
point (a, s) of  a coadjoint orbit, and this coadjoint 
orbit is of  dimension ( 2 n -  1 ). The two supplemen- 
tary degrees of  freedom can be eliminated by first set- 
ting the scalar product of  x and y to zero using the 
invariance ( 1 1 ) with 2c+tc(d 2 -  1 ) =0 :  the trace of  
s then becomes the norm o f x  and is an invariant of  
the orbit. When K= 0 this is not possible, but instead 
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one has invariance of  a and s under the redefinitions 
y~cy, x-,x/c; in this case one sets the norm o f x  to 1 
by this redefinition, and the conserved quantity is now 
the scalar product  o f  x and y. Since one can always 
set ~c=0 by the redefinition ( 11 ) with d #  1 and c =  
- K ( d  2 -  1 ) /2 ,  we shall from now on choose this pa- 
rametrization of  the coadjoint orbits denoted as (J, 
Q). Notice that the symplectic structure induced by 
the Kirillov bracket on this particular set o f  orbits is 
the same, up to a factor ½, as the one induced by the 
canonical Poisson structure on the variables x, y by 
the parametrization (9)  (see ref. [7 ] ) ,  hence the 
hamiltonian flows on these orbits can be described 
equivalently in the two frameworks. 

Let us now take as hamiltonian acting on these 
coadjoint orbits the following object: 

H(B; J, Q) = ¼ [ - T r ( J K +  2BQ) ] ,  (12) 

where J and Q are defined in (9) and K and B are 
defined in ( 5 ). H can indeed be expressed as a com- 
bination of  the previously described quantities in in- 
volution as we shall see soon. The equations o f  mo- 
tion for J and P induced by Kirillov's bracket are then 

dQ/dt= [Q, K] + [J, B] , 

dJ/dt= [Q, B] + [J, K].  (13) 

This is precisely the evolution induced on J, Q by the 
equations o f  motion o f x  and y in the general Adler-  
van Moerbeke model (compare for instance the 
coadjoint action on x, y in (10) with the ArM equa- 
tions (5) ). 

Finally eq. (13) can be combined in the Lax form 
( 1 ) with 

L = A ( 2 2 - 1 ) + J 2 + Q ,  M=J+2B.  (14) 

4. The Poisson structure of the Lax operator L 

Let us now describe the Poisson brackets of  the 
Lax operator L(2)  with itself, given the canonical 
Poisson structure of  the dynamical variables (x, y),  
or the equivalent Kirillov bracket structure of  (K, Q). 
We obtain that 

{L(2 )®L( / t ) }  

= [R, (2,/~), L ( 2 ) ® l  ] + [R2(I~, 2), I®L(/~)  ] ,  
(15) 

where {L(2)®L(lt)} lives in the space of  endo- 
morphisms of  the tensor product  E®E and E carries 
the fundamental  representation of  the Lie algebra 
G. The matrices Rl,2 are expressed in terms of  two 
natural endomorphisms of  E®E: the permutation 
operator T :  u®v-~v®u and the unitary covariant 
"Casimir"  operator C : u®v-~ ( u, v) ~ e~®e~. They 
read 

Rt.2 ()~, H) =F1.2 (2,/l) T +  GI,2 (J . , / / )C, (16a) 

where 

F, (2,/t) = ( 1 - 2 2 ) / ( 2 - / ~ ) ,  

G1 (J-, ]A) --- - ( 1 -;t~)/(2+ u), 

Fz(2 ,1 t )=(1-#z )  / (2-1t)  , 

G2(2, a )  = (1 - F t 2 ) / ( 2 + / ~ ) .  (16b) 

As it was the case for the Neumann-Moser  model 
[1] ,  RL2 do not depend only on the difference of  
spectral parameters, but also on their sum. Again there 
is no way to rewrite this structure as a genuine R-ma- 
trix structure by means of  a redefinition of  L. Finally, 
one encounters here the same type of  combination of  
a permutation plus a Casimir operator; this particu- 
lar type of  D structure shall be examined in a forth- 
coming paper [ 9 ]. 

Note that the existence of  particular functions 
solving some characteristic functional equations 
which allowed the manipulations in ref. [ 7 ] is equiv- 
alent to the existence of  the coefficient functions F, 
G as solutions of  related functional equations ena- 
bling to define the D matrix as above: in other words 
and as it should be expected, the fundamental  justi- 
fication of  the construction in ref. [7] is the exis- 
tence of  the D structure for the L matrices. 

The Poisson bracket relations between the matrix 
elements of  the Lax operator L then imply the exis- 
tence of  conserved quantities in involution. In fact 
one has the following set of  identities: 

{TrE(L ~(,~) ), TrE(Lm(/z) )} = TrE®E {L~(2), Lm (/t) } 

=nm TrE®E{L~-l(2)QLm-l(lZ ) 

X{[R,(2, I~);L(2)Q1]+[R2(~t,)~); 1@L(/t)  ] }} 

= 0  by cyclicity of  the trace.  (17) 

Hence all the coefficients o f T r ( L  ~ (2))  developed as 
c~k(J, P).  2 k are in involution: {c"k, cml) =0.  The 
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quantities Gk defined in (11) are combinat ions  of 
these objects via a Vandermonde matrix: 

c m  - -  a k  n -  I . 2 , , - 2 -  - n  ~ (Gk+ak) (18) 
k 

Since all ak are different the set {Gk, k =  1 ..... n} is 
equivalent to the set {Cm2m_2, m = 1, ..., n}. The ham- 
iltonians H (B; J, Q) in (12) are obtained as 
½ (ZkbkGk), hence they are contained in the set of 
Tr (Ln) .  One recovers in this way the set of action 
variables of the model. 

5. Relations between analytical and group-theoretic 
descriptions 

Let us now consider the "spectral curve" [ 10 ] de- 

fined by 

Det(L(2 ) - z ) = O  . (19) 

This curve is time independent  since L =  [L, M].  
Above any point (2, z) of the curve sits the one-di- 
mensional  eigenspace Ker (L(2)  - z ) .  This defines a 
complex line bundle over the spectral curve. As t ime 
evolves, its Chern class remains constant, and it is 
shown in ref. [ 10] that its evolution is given by mul- 
tiplication by a degree 0 line bundle, moving linearly 
on the jacobian of the curve. We shall show that this 
curve is birationally equivalent to a hyperelliptic 
curve. Dividing by 22n and setting t = z/22 and 2' = 1 / 

2, eq. (28) reads 

Det ( D + 2 ' J +  (2 ' )2Q) = 0 ,  

D =  ( 1 - 2 ' 2 ) A - t l .  (20) 

The symmetry properties of J and Q imply that only 
the powers 0, 2 and 4 of 2' will appear in (20).  Then 
the Grassmann algebra allows one to rewrite (20) as 

1-[ (ak--W) 
k 

= ( 2 ' ) 2 / ( 1 - 2  '2 ) IV[ ( a k - w )  • Gk/(ak--W) , 
k k 

w = t / ( l - 2  '2) . (21) 

Redefining s = 2 '  ]~l ( a l - w )  [ 1 + Zk Gk/(ak--W) ] 
finally gives the equation of the spectral curve as 
follows: 

s 2 = P 2 g + 2 ( w )  

=I~l(al--~')2(l'~-~kGk/(ak--W)). ( 2 2 )  

P2g+2  is a polynomial of degree 2 g + 2  and eq. (22) 
describes therefore a smooth hyperelliptic curve of 
genus g since ak ¢ az when k s  I. This curve is such that 
the equations of motion actually linearize on its ja- 
cobian toms, as it was the case in the N e u m a n n -  
Moser model [ 1 ]. 
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