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Abstract

We have introduced a simple family of birational transformations in the complex projective spatieaCare generated by
the product of the Hadamard inverse and an (involutive) collineation. We have been able to find the integrable subcases of the
model and also interesting cases of transcendental integrability. Beyond these integrable subcases, we have been able to descrik
the degree growth-complexity of the iteration calculations of these birational mappings. These degree growth-complexities
appear to be algebraic numbers. We also obtained some simple conjectures for the growth-complexity degrees of these
birational transformations in GPfor arbitrary values of:. For the two-dimensional mappings, an equality between the
(degree) growth-complexity and the topological entropy was found and we have given some conjectured closed expressions
for the dynamical zeta functions.
© 2003 Elsevier B.V. All rights reserved.

PACS:05.50; 05.20; 02.10; 02.20
MSC:82A68; 82A69; 14E05; 14J50; 16A46; 16A24; 11D41
Keywords:Castelnuovo—Noether theorem; Discrete dynamical systems; Iterations; Integrable and non-integrable mappings; Elliptic curves;

Cremona transformation; Birational transformations; Complexity of iterations; Polynomial growth; Diller—Favre cohomological approach;
Topological entropy; Dynamical zeta functions

1. Introduction

The theory of discrete dynamical systems has developed extensively during this last decade. However few results
are available in the literature for rational mappings in two dimendibhsnd very few are available for mappings
in more than two dimensions. Here we describe a family of birational mappings in-divaensional complex
projective space GR that are built by the composition of Hadamard inverses and collineations.

To motivate this analysis, let us recall some results. Previous pgad@] have analyzedirational representa-
tions of infinite discrete symmetry groups generatethlaglutions which have their origin in the theory of exactly
solvable models in lattice statistical mechanics. These involutive birational mappings, which generate these discrete
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symmetries of the parameter space of the models, are associated with the soveatidn relationg11] on vertex
models, or spin models.

For vertex models, these involutions correspond, respectively, to two kinds of transformatiprsyanatrices:
the inversion of they x ¢ matrix and a permutatidrof the entries of the matrix (corresponding to the parameter
space of the model).

Foredgespin modelg17,18], the two involutions one composes correspond, fpixag matrix M with complex
homogeneousentriesm;j, to the matrix inversiond : M — M~1, together with the transformatiah that inverts
each entry of the matrix, i.eJ, : mj — 1/mjj (Hadamard inverse).

For instance, for a & 6 matrix of the form

Xy zy z 2
Z Xy z Vy 2
y z x z z Yy , (1)
y z z x z Yy
zZy z ¥y x Z
Z z2 Yy zZ Yy X

which is a stable pattern bfy(andJ of course) and corresponds to a six-state chiral Potts model in lattice statistical
mechanic$17]. The explicit formula for the inversiohis given explicitly, in terms of the inhomogeneous variables
u = y/x andv = z/x, by:

2 2 2 2
—uc—u-+2v uc+ovu—ov°—v
>~ 2

I (u,v) > s
(@, v) (1+u+2v—u2—2uv—v2 14 u+2v—u? — 2uv — v?
The transformation’ reads:(u, v) — (1/u, 1/v).

One finds that’ and J and, thus, the birational transformatiéh = I - J composition of the two previous
involutions, preserves the algebraic invariant
(2v2 + 20U — u? — 2uB — 2002 + vZu) (u — v?)?

W+ w*A—-uwl—v)? ’

which yields afoliation of CP, (the two-dimensional projective space associated wiéimdv) in elliptic curves,
where each curve has an infinite set of birational automorpHhisibjsintroducing an (infinite order) collineatiati

C: v 1—u 1—v )
: —
v 1+2u+30 1+2u+3v)’

A(u,v) =

®3)

one can immediately verify that intertwines/ andJ since one has the following relations:
I=ct.J.C (5)

Alternatively, the infinite-order birational transformatién= 1 - J can be written as the produkt= C~1.J7.C- J,
which is reminiscent oNoether’s theorenfl9—22,72]concerning the factorization of Cremona transformations
into products of quadratif7 3] transformations abd collineations. (The transformation(u, v) — (1/u, 1/v) is
the archetype of quadrafitransformations in Cf)

For many (non-chiral) spin-edge models (see for instdh8§, the collineationC that intertwines the matrix
inversion/ and the Hadamard inversion (entries inversidig an involutiorf and, thus, the iteration of the birational

1 Most of the time, the permutations consideredtlig—16]are involutive.

2 The transformationy in CPs is calledquadraticbecause, written with homogeneous variables, it re@dss, 1) — (vt, ut, uv).

3 Related to the Kramers—Wannier duality, that is, t@aFourier transforn{18,23,24] In this spin-edge models duality framework, the
collineation is an involution (for non-chiral models) most of the time, and sometimes is even a transformation of{@5dler 4
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transformatiork = I.J = (C-J)?reduces to the iteration of the (generically infinite-order) birational transformation
C-J.

In the following, we will consider a family of examples afdimensional birational transformations that cor-
respond to the product of a simple (involutive) collineation with the transformationnj — 1/mjj and that
generalize the quadratic transformation of,G& CPB,. We will analyze the complexity of the mapping iteration
by studying the degrees of the successive birational expressions that correspond to the iteration of our mappings.
Here we will use a method that was introduced in previous pgd@érs?8] and is based on the examination of
successive birational expressions corresponding to the iteration of some given birational mappings. When one con-
siders the degred(N) of the numerators (or denominators) of the corresponding successive rational expressions
for the Nth iterate, the growth of this degree is (generically) exponential Witll(N) ~ AY. The constant has
been called thgrowth-complexityj29]. For CR, it is closely related to the Arnold complexif$0,31] Let us
also recall that two universal (or “topological”) measures of the complexities were found to identify on specific
two-dimensional examplg27-29] namely, the previous growth-complexity or the (asymptotic of the) Arnold
complexity[26,27,30,31] and the (exponential of the) topological entrd@$—28,32] The topological entropy,

In(h), is associated with the exponential growit of the number of fixed points (real or complex) of tiveh

iterate of the mappinfR7,28,33] These papers show that the growth-compléxitys analgebraicinteger (i.e., a

solution of a polynomial expression with integer coefficients). This is related to the fact that the generating functions
of the degrees of the successive birational expressions that correspond to the iteration of these birational mappings
are quite simple rational expressions with integer coefficients. We will show that similar results also hold for the
n-dimensional mappings analyzed here.

1.1. Towards higher-dimensional generalizations: the Diller—Favre method and Noether’s theorem

In the framework of birational transformations of &£Miller and Favre[34] have recently introduced a co-
homological approachthat can reproduce, in practice, all the values of the parameters of the mapping, where
the degree growth-complexity is diminished. Thiscohomology of curveanalysis reduces to the consideration
of the spectrum of a finite dimensional matrix, which explains why the previous degree growth-complexity
is an algebraic integer. The results and theorems of Diller and Hadjeesemble the singularity approaches
performed by various authors for specific exam{l&s-38] the idea being to encode the growth-complexity
in the analysis of a “finite object”, or a “skeleton”, namely, the graph of singularities, or the cohomology
HID(X).

Unfortunately, this cohomological approach becomes extremely difficult to generalize,iwi@iPn > 2.

Any cohomological consideration of birational transformations i @Rdrastically more complicated. This can

be understood, heuristically, by recalling the Noether’s transformation théaredecomposition of birational
transformations in CRthatis, Cremonatransformations (gemendix A). The method of factorization of birational

maps dates back to Noether and Fano. The problem of factoring birational maps, whose origin was Noether's theorem
[21,22] on the decompositidrof Cremona transformations of a pldrsee also pp. 497-498 j42]) in a product

of quadratic transformations, is simple as compared to the three-dimensionf gase

4 Which identifies withi for the specific mapping if27].

5 Basically the study of the cohomology of curves, thatH$-? (X), whereX is a bimeromorphic map of a Kéhler surface.

6 Noether’s transformation theorem: any irreducible curve may be carried, by a factorable Cremona transf{@8jatitin one with none
but ordinary singular pointg!0,41].

7 Note that this theorem is not an effective theorem: it says that this decomposition exists but does not give an algorithm to actually obtain this
decomposition.

8 For plane transformations this is a result of Rosanes, Clifford, Noether, and later, but more rigorously, Castelnuovo.
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Cremona transformations of higher-dimensional projective spaces also exist, but they no longer share with the
plane transformations the property of being generated by those of order 2 (the so-called quadratic transformations
[43,44] The richer behavior of higher-dimensional Cremona transformations is connected with the greater variety
of singularities that a surface can hg#®—48] as Noether and Cremona remarked. In this direction, Sarkisov
announced a three-dimensional generalization of the Castelnuovo—Noether theorem, the so-called Sarkisov prograr
[49,50] These works show that one can decompose birational maps with four types of elementary links (see
Appendix A).

Naively, one can imagine that the subset of birational maps such that the Noether's decomposition still holds
(i.e., birational maps that are products of collineations and generalizations, tof@e quadratic transformation
of CP,, namely(x1, ..., x,) — (1/x1,...,1/x,)) is a singled-out subset of mappings that should have simpler
sets of singularities as compared to the most general birational mappingg.ifl@befully, one can generalize the
cohomological approach of Diller and Favre for this subset of birational maps.

In the following, we will introduce a simple family of birational transformations in,Gr = 2,3,4,...)
generated by the simple products of the Hadamard inverse and (involutive) collineations. Remarkable results for the
growth-complexity, and the topological entropy, will be obtained for these “Noetherian” birational transformations.
Furthermore, we will also give a list of the integrability subcases of these mappings.

2. A CP5 birational transfor mation associated with an involutive collineation

Let us construct a mapping as product of two involutiafisand J, acting on CB. We consider the standard
guadratic involution/ (or Hadamard inverse) defined as follows on the three homogeneous variablep
associated with CP

J o, x,y) = (XY, ty, tX). (6)
We also introduce the following 8 3 matrix, acting on the three homogeneous variatiles y):
a—1 b c
C= a b—1 c (7

a b c—1

and the associated collineation which reads, in terms of the two inhomogeneous variahlgs andv = y/¢

a+b—1Du+cv a+bu+(c— 2D
(@a—1+but+cv’ (@a—1)+butcv/’

(u,v) = (', V) = ( (8)

In the following, since there is no possible ambiguity, we will use the same not&tjaa,denote a matrix lik€7)
or the associated collineati@8).

If one sets the condition = 2 — a — b, the matrixC becomes a “stochastic-like” matfiXthe sum of the
entries in each row is equal to 1) and an involutive mat€i% {s the identity 3x 3 matrix /;). Furthermore, its
determinant is equal t&1. Under these three conditioné4 = I,;, detC) = +1 and the “stochasticity” condition,
i.e., the sum of the entries in each row equals 1), it appears that the unique non-tsivizisdlution, which is
non-straightforwardly reducible to a2 2 matrix!’ compatible with these conditions, is given by the mafix

9 The entries of stochastic matrices, associated with Markov chains, are probabilities and therefore are non-negative. We do not require suct
an assumption here and in the following.

10 Thus yielding “separable” mappings such that, for instanceutbemponent of the two-dimensional mapping is a function anly:
K(u,v) = (Ky(u), Ky(u, v)).
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Fig. 1. Phase portrait far = 0.498 andb = ¢ = 0.751.

(When one sets detf) = —1 instead of d&tC) = +1, one obtains another interesting family of mappings, which
will be addressed elsewhere.)

The birational mappin = C - J, corresponding to the product of these two involutions, reads as follows, in
terms of the two inhomogeneous variahles: x/r andv = y/t

)

-1 -1
K:(u’v)_)(u,,v,)=<aw+(b Yv+cu auw + bv + (¢ )u)’

(a—Duv+vb+cu (a— Luv+ bv+cu

where one sets = 2 — a — b. Note, however, that many of the results obtained in the following are independent of
this condition as will be seen below. Generically, the birational map{@hig notan integrable mapping, as can be
seen, for arbitrary values afandbp, in Fig. 1

The successive iteratés" (1, v) of the birational mapping9) are birational expressions. Their numerators and
denominators are polynomial expressions andv whose degrees grow exponentially with the number of iterations
when the mapping is not anintegrafilé,51] One can introduce various generating functions of these successive de-
grees of the numerators or denominaférs51] The growth of these degrees, also calledree growth-complexity
gives a “magnitude” of the topological complexity of the mapping. The degree growth-complexity will be analyzed
in Section 4
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2.1. Parameter symmetries @)

Due to the symmetry induced by the group of permutations of the homogeneous vatiables one deduces
the following equivalence between mappings with different paraméiets c)

w=v,v=u)—> (d=ab =c, =b),

1 1
(M:—,l/:E)—>(a/=b,b/=a,c/=c), (L/:B,v/z—)—>(a/=b,b/=c,c/=a),
u u u u
/ 1 / u / / / / u / 1 / / /
W=-v=-)—>@=c,b=acd =0>), UW=—VvV=-)—>@@=c,b =bc =a). (20)
v v v v

For instance, if the mapping has a given growth-complexity for the parametgbsc), it will have the same
growth-complexity for the parametefs, c, b), ..., (¢, b, a).

2.2. Mapping(9) as a measure-preserving mapping

Let us note that — 1, v — 1 andu — v are covariant under transformati(®) and, thus, the three lines— 1 = 0,
v—1=0, andu — v = 0 are globally invariant under transformati®) even if conditionc = 2 — a — b is not
verified. Restricted to these (globally) invariant lines, transformg@preduces to a linear fractional transformation
and a translation for = 2 — a — b (see below). The singled-out role played by these three lines is cl&g.id
If one considers the produgi(u, v) = (u — 1)(v — 1)(u — v), a straightforward calculation shows that daw),
the Jacobian of9), is actually equal to

Jadu.v) = (a+b+c — PV _ deyoy PV (11)
p(u, v) p(u, v)

where (u’, V) is the image of(x, v) under the birational transformatid@). The conditionc = 2 —a — b is
sufficient to have a measure-preserving transform4g82r52] the measure that is preserved by transformgi®n

isdu = du dv/p(u, v). This measure is shown clearlykigs. 1 and 2where there is a spray of points concentrated

near the three lines— 1 = 0,v— 1 = 0, andu — v = 0. Because the mapping is two-dimensional, the relgtiap

means that the birational mapping can be transformed (up to a continuous change of variable) into an area-preservini
map[32,52]

When the determinant def) is equal to+1, the restriction of mappin®) to the three globally invariant lines
u=1,v =1, andu = v reduces to a translation. On the line= 1, the mapping can be written as the simple
translatiorw, — v, + a + b — 1 wherev is replaced by, = 1/(v — 1). On the linev = 1, the mapping becomes
u, — u,+1—b,whereu is replaced by, = 1/(u —1). On the lineu = v, the mapping becomes — u, +a—1,
whereu = vis replaced by, = v, = 1/(u — 1).

It may happen that for some particular values of the parameters, another measutedd dv/p2(u, v), is also
preserved

o', v) _ p2(u’, V) (12)

Jadu, v) = - .
A =" T e v)

It is then clear that the mapping is integrable (Seetion §. For invariance, the invariant of the transformation is
the ratiop/ p2.
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0.0

Fig. 2. Zoom of a phase portrait far= 0.498 andb = ¢ = 0.751.

2.3. A systemati@, v)-symmetric analysis

One can try to find, systematically, all the collineatiansuch that the Jacobian of transformatikn= C - J
satisfieq11). Instead, let us consider an easier problem, namely, finding the colline&tisunsh that the algebraic
covariant expressions(u, v) are rational expressions that aso covariant by the Hadamard invergé:, v) =
(1/u, 1/v). To perform an exhaustive classification of these collineations, let us restrict ourselves even further, by
considering all the collineatior@that yield a given covariant(u, v); for instance, théu, v)-symmetrié¢! covariant
expressiorp(u, v) of the mapping9), namely,po(u, v) = (v — 1)(v — 1)(u — v). In this case, one obtains a set of
six 3 x 3 matrices which are given iippendix B thet areC 4 to Cg and the matriX7). These matrices reduce, up
to equivalences, to only three different collineations associated witt8 3natrices given ilAppendix B namely
the matriceg7), C4, andCp. One easily verifies that these matrices are “stochastic-like” (the vektrl) is an
eigenvector). When one requires that the determinantheone finds that their characteristic polynomials read,
respectively(t — 1)(¢ + 1)? for C4, Cg, Cc, and(7), and(r — 1)(:2 — ¢ + 1) for Cp andC of Appendix B

11 et us remark thap(u, v) = (1 — 1)(v — 1)(u — v) is not the only covariant of8) which is also a/-covariant; the individual factons — 1,
v—1andu — v are also covariant(= 1,v = 1 andu = v are invariant lines), but these factors, or even the product of only two of these factors,
can hardly satisfy11).
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One easily finds that matrif’) is an involution when its determinantsl, and that matrice€p andCg are
matrices of order 6 when their determinantti$. In contrast, the matricaS4, Cp, Cc and(7) are infinite-order
matrices when their determinant are equattb(the matrix(7) is also infinite order when its determinantid).

If one requires that the determinant, @, be equal to-1, then one obtains Jac v) = —p(u’, v')/p(u, v);
thus, the magk 2, rather thark, must be measure-preservitiWhen the determinant is equal4d., the restriction
of mappingk? (which is the square d®)) to the three invariant lines = 1, v = 1, andu = v, is no longer a
translation on these three lines: each point of these three lines is a fixed p&ifit of

3. TheDiller—Favre method and criterion

In the following, out aim is to describe more quantitatively the growth-complexity in terms of the parameters
a, b, ¢, of the mappingg9). Many methods are availabJ27—29,51] such as counting the degrees, counting the
fixed points, studying the singularities, calculating gcd’s, etc. In this section, we use the Diller—Favre [Béthod
to describe the singularities of the mapping. For the map(@hgve give the equivalent of Lemmas 9.1 and 9.2 in
[34].

Among the cases where the complexity is diminished, the integrable cases play a special role. The integrable case
are deduced from an integrability criterif84] using mathematical considerations in dealing with the indeterminacy
sets and exceptional s¢8l] of mappingk, and theanalytical stability{34] of the mapping. In that way, one obtains
all the integrable cases, together with the cases of lower degree growth-complexity. Let us apply the method to our
particular mapping.

The Jacobians of transformatioksand K —* are given by:

Uv
((a — Huv + cu+ bw)3’
(a—1)+bu+cv
(a+ (b — Du + cv)(a + bu+ (c — Hv)2’

Here we assume that the condition= 2 — a — b is satisfied (meaning that the first facto# b + ¢ — 1, in the
previous expressions of the Jacobians, is equal to 1). The JacftKarvanishes o« = 0 and onv = 0, and
becomes infinite when = (a + b — 2)u/((a — L)u + b) = —cu/((a — L)u + b). The Jacobian oK1, namely
J(K~1), vanishes om = —((a — 1) +bu)/c and becomes infinite when= (a+bu)/(a+b—1) = (a+bu)/(1—c)
orv=(@+@W—-Du)y/(a+b—-2)=—(a+ (b —Du)/c.

Using the same terminology as[iB4], one can show that the exceptional loEusf K is given by:

—CU
EK) = {(u=0); (v=0); (” = m>}

JK)=(a+b+c—1)

JK Y =@+b+c—1)>2

and the indeterminacy loc(i84] of K is given by:

b
I(K) = { (0, 0); <le, 1) ; (1, — 1)} .

Actually, for (u, v) = (0, 0), theu andv components oK are both of the form (0, for (u, v) = (b/(b — 1), 1) the
v component o is of the form Q0 and for(u, v) = (1, ¢/(c — 1)), theu component o is of the form ¢/0.

12 More generally, fork ™ (u, v) = (u’, V'), one obtains J&& ™) (u, v) = (a + b +c — DN p(u’, v')/ p(u, v) which yields measure-preserving
maps but with complex values of the parameters: 1 — a — b + o with o = 1.
13 Corresponding td(K) = 0 or J(K) = oc.



S. Boukraa et al./ Physica D 185 (2003) 3-44 11

Similarly, for K~1, the exceptional locus and the indeterminacy locus read, respectively, as

g(K1):{(vz_(a—l)—i—bu);(Uza—i—bu);(v:a—i—(b—l)u)}’
c 1-c¢ c
T(K™Y = {(oo, 0); (b;l, 1) ; (1, - 1)} .

b c

To check whetheK is analytically stabl¢34], one must compute the orbit of the exceptional&df). This can be
easily done using the fact that — 1)(v — 1)(# — v) = O is invariant byk.
It is easy to see that the successive imagesef0 by K give

b-1 b-1 nb-1
—.1 2—— .1 — 1 1
(O’”)ﬁ( b ’>_><2b—1’>_> _)<nb—(n—1)’>’ 13)
that the successive imageswof 0 by K give
a+b—-1 at+b—1
1, —— 1,2——Mmm——
@0 - ( ’a+b—2) - ( ’ 2(a+b)—3)
na+b—1) n(c—1)
— .= (1 =1, —
na+b)—n+1 nc— (-1
and that the successive imagesowpf v = (a + b — 2u/((a — Du + b) = —cu/((a — Du + b) give

—cu a a 12a—-1 12a—-1
U, ——— | = (00, 0) = , - =—, =
(a—Du+b a—1 a-1 2a—-1 2a-1

m—1Da—m—-2 m—Da—n-2)
( n—D@-1) ~ (-D@-1 )

— e —>

(14)

On the other hand, the successive images-of—((a — 1) + bu)/c by K1 give
(a—1) +bu ©.0) a—1 a-1 2@—1) 2(a—1)
—_ ) = — —
" c ’ a B a 20—1" 2a—1

( n(a—1) n(a—1) )
— e > s s
na—(n—1) na—@n-1)

the successive images of= (a + bu)/(a +b — 1) = (a + bu)/(1 — ¢) by K1 give

ub+a 1-b+ub c 12c-1
Uy, —— | > — 0| = (L, — )=~ (1], =
—1+a+b ua—a—u c—1 2c—-1

n c—1

and the successive imageswt (a + (b — Du)/(a+b —2) = —(a + (b — Du)/c by K1 give

( _a—i—(b—l)u)_)( B clu—1) )_)( b 1)_)(1219—11)
" c o u—La—u b—-1 2bh-1"

<1nb—(n—1) )
- s |- 1).
n b—1

Forn > 2, all thesenth iterates (byk or K1) belong to one of the threk-invariant linesy = 1,v = 1, oru = v.
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The Diller—Favre methofB4] focus on the analytical stability of the birational mappings. The Diller and Favre
statement is that the mappirig is analytically stable if and only iK"(£(K)) ¢ Z(K) (resp.K (E(K1)) ¢
Z(K~Y)forall n > 1. The inspection of these constraints singles out the values of the paramétarsic, of the
form (N — 1)/N whereN is a positive integer. For instance, recallifi) and (14)an image o€(K) by K can
become one of the three indeterminacy pointg(@):

nb-1 _ b _n
(nb—(n—l)’l>_<b—1’1):>b_n+1’

((n—l)a—(n—Z) (n—l)a—(n—Z)) n—2

(n—l)(a—l) ’ (n—l)(a—l) =(0,0)$a=m

and similarly withk 1.

In the following, we will say that the parameterb, or ¢ is genericif it is not of the form(N — 1)/N, where
N is a positive integer. One immediately deduces from the condRI&E(K)) ¢ Z(K) that the mappintf K is
analytically stable if the parameters do not belong to threeSset$ or S3 given by:

M—=1 ) N-1 .
S1: a= 7 b,cgeneric a+b+c =2, S2: b= N a,cgeneric a+b+c =2,
S3: c=-—=, a/bgeneric a+b+c=2,

whereM, N, and P arepositiveintegers. These three sets actually correspond to three independent dases of
complexity. One has a reduction of complexity fr, S» or S3. For S1 N S2, S2 N S3 andS1 N S3 one gets further
reductions of complexities. In the next section, we will see this reduction of complexity more quantitatively, by
calculating, for every case, the corresponding degree growth-complexity (Arnold comp|8Ri]]

Integrability takes place fa$1 N S»> N S3, which corresponds to a finite number of cases. This means that one has
to find three positive integer®, N, P such that

M-1 N-1 P-1
M N P
There is a finite set of solutions @f5), which are(M, N, P) = (3, 3, 3), (2,4, 4), (2, 3, 6), (0, 2, 2), (00, 00, 1),
and, also, all the equivalent casgk 2, 4), (4,4, 2), (2,6, 3), (3,6,2), (3,2,6), (6,2,3) ,(6,3,2), (2,0, 2),
(2,2, 00), (00, 1, 00), (1, 00, 00); seeEgs. (10) Cases likg1, co, co) give trivial mappings and will not be con-
sidered. The cases such@s2, co) correspond to reductions to @Hor instance?2, 2, co0), i.e.,a = b = 1/2,
¢ =1, corresponds to

2

0. (15)

Uv — 2 1
K:@wv)— W, vV)=|—- vov u,— @+ Do . (16)
w—v—2u Uw—v—2u
Introducing the variable
Dv+2 2
=(u+ v+ (u+v)’ 17)
2(u + v2)
the transformatiorf16) reduces to a linear fractional transformation
v+ D(w—-1
Ku) . (U, w) ad (U/, w/) = <((1—Z)%’ w) . (18)

14 et us remark that the same séfcan be obtained when applying the method to mapging instead ofk. This is not true for a general
mapping.
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Note that wherk 2, but notkK , is a measure-preserving map (@dt= —1, i.e.,c = —a— b), the singularity analysis
is quite different and will be considered elsewhere.

Remark. A more “pedestrian” approach to find these singled-out valiés- 1)/N amounts to considering
finite-order conditions fok and seeking curves (not points) that are solutions of these conditions (a phenomenon
that occurs on the integrable mappings). Let us denot&®y),, (u, v) and(K™), (u, v) theu andv components of
KN, respectively, and consider the two polynomial conditions corresponding to the numerators of the two equations
(KM)u(u,v) —u = 0and(KN),(u, v) — v = 0. The resultant (in for instance) of these polynomial conditions
factorizes into polynomial expressions in(corresponding to finite-order points) and also into expressions that
do not depend om, like for instance, 2 + b) — 3 for K4, 3(a + b) — 4 for K°, etc., which mean precisely
1-2¢,2—3c,...,(N—1) —Nc

Another “pedestrian” approach to find these singled-out valtyes 1)/ N, which is related not to integrability
but, rather, to a straightforward analysis of the degree growth-complexity, amounts to seeking a common polynomial
factor in the numerator and the denominatort &f¥),, (x, v) (resp. the numerator and denominatox &f"),) and
calculating the resultant (im for instance) of the numerator and the denominatatkdY),, (x, v). For K3 (N = 3)
this resultant factorizes into polynomial expressions @nd into expressions that do not dependvptike, for
instance forKg’: (a+b) —2,2a+ b) — 3, and 3a + b) — 4. More details on these two approaches can be found
in [16].

4. Degree growth-complexity of the mapping (9)

It has beenrecalled, in the introduction, that the (topological) complexity of a birational mapping can be evaluated
by considering the degreg&N) ~ AN of the numerators (or denominators) of the corresponding successive rational
expressions for th&/th iterate of the mappinf26—28] In this respect, the introduction of the generating functions
of these successive degra&V) has been seen to be a powerful tool to encode this complexity, to evaluate or
conjecture closed algebraic formula for this degree growth-compléx[89], which is closely related, in two
dimensions, to the Arnold complexit{30,31] The introduction of these generating functions is motivated by
the fact that they have been found to be rational expressions for all the birational mappings (and even rational)
mappings we have studig¢f1,53], yielding the degree growth-complexityto be simple algebraic integers. Let
us recall, again, that the previous growth-complex#9] . (or the Arnold complexity{26,27,30,31)] and the
(exponential of the) topological entrofi§6—28,32] associated with the exponential growith of the number of
fixed points (real or complex) of th€th iterate of the mapping, were found to identify for specific two-dimensional
birational example$27,28]. Similarly, the evaluation of requires the introduction of an important generating
function, namely thdynamical zeta functiofsee below). The identification between these two topological quantities
for evaluating the complexity, the degree growth-complexitfArnold complexity in two dimensions) and the
topological entropy is not totally understood. Thése & identifications will be considered in the next section for
mapping(9).

For mapping(9), the degree growth-complexity can be calculated either from the iteration of maf®)irgy
from a recursion (se€C.3)in Appendix Q. The same singularity in the degree generating functions must occur in
both cases.

Let us denote b, andK, the two components of the iterate @f, v) by K: K(u, v) = (K, (u, v), K,(u, v)).
Expression€,, andK, are rational functions af andv given by(9). The generating functiorG, (x) (resp.G,(x))
of the successive degreesofresp.v) in the numerator ok Y (u, v) (which is equivalent to the iteration of the line
v = constant (respu = constant)) read, respectively,
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e For the generic case (b, c = 2 — a — b generic):

X
Gu(x) = Gy(x) = 1o 19)
e Whena = (M — 1)/M (M a positive integerp, andc = 2 — a — b generic:
= = al 20
Gux) = Gylx) = [T (20)

For various values of the positive integkf, the value ofs, which characterizes the growth of the successive
degrees¥ "), belongs to the intervall + +/5)/2 < A < 2, thatis, 1618034< 1 < 2.

e Whena = (M —1)/M andb = (N —1)/N (M andN positive integers) and = 2—a — b generic, the generating
functions read as

N+1 N+3

X —X
1— 2x + xM+1 f yN+1 _ yM+N’

X —X
1— 2x + xM+1 4y yN+1 _ yM+N"

Gulx) = Gy(x) = (21)

The largest of the inverse of the zeros of polynonial- 2x + x”+1 4 xN+1 _ xM+N) in terms ofM andN corre-
sponds to the growth-complexity For various values of the positive integdrand N, one has 324718< 1 < 2.
Itappears fronkq. (21)that thesex| < 1 singularities of the othétq. (20)are obtained as the lim — oo of (21).

Egs. (19)-(21have been checkéd,up to order 8 of the iterationk®), for many values off and N. When
one uses recursigi€.3) of Appendix Cto evaluate this degree growth-complexity, one recovers exactly the same
singularity as in(19)—(21)(seeAppendix Cfor more details).

5. Dynamical zeta functions

It is interesting to compare the previous results, giving the generating functions for the successive degrees of the
iterates (Arnold complexity or growth-complexity), with the corresponding dynamical zeta functions to see if the
singularities of these two sets of generating functions identify, thus yielding an identification between these two
(topological) complexities: the Arnold complexity and the topological entf@gy-28]

Let us just briefly recall here, that, by analogy with the Riemafumction, Artin and Mazuf54] introduced a
powerful object, the so-calledlynamical zeta function

S ) . XM
o(x) = exp(Z #Hix(K );) , (22)

m=1

where #fix K), denotes the numb¥rof fixed points of order:.

Similarly to the previous section, the calculations of the dynamical zeta functions have been performeéd for
andc generic, also fou = (M — 1)/M andb andc generic, and finally = (M — 1)/M andb = (N — 1)/N
(M and N positive integers) witle generic. The results are as follows. FFoandb generic, the expansion of the
dynamical zeta function has been calculated, up to order 10, and is agreement with
1—x
1—2x
Fora = (M — 1)/M, for M a positiveodd integer, andb and ¢ generic, the expansion of the dynamical zeta
functions have been calculated for various valuesafM = 3,5, 7, ...), up to order 10, and are agreement with

(23)

{(x) =

15 And numerically iterating variousational points up to order 15. See alé@pendix C The rapid convergence of these results conforts this
conjecture.
16 |f one of these numbers is infinite the definition breaks down.
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the expansion of

1—x _ 1
1—2x+xM+Hl 1 x—x2—x3... —xM’

tm(x) = (24)

Fora = (M —1)/M andb = (N —1)/N,where both\/ andN are positive odd integers, the expansion of the dynam-
ical zeta functions have been calculated for varioddvalues ofM andN ((M, N) = (3,5), (3,7), (3,9), (5, 7),

(5,9, (7,9),...) the dynamical zeta function, calculated up to order 10, are in agreement with the expansion of

1—x
1— 2x 4 xM+L 4 xN+1 _ yM+N"

CmN(X) = (25)
For even values oM and N, the exact expressions for the dynamical zeta functions seem to be more involved,
and difficult, to “guess” (seédppendix Dwith expansions of the dynamical zeta function Mr= 2 and 4, with
2 —a — b, b generic).

However, all these results also indicate Hamesingularities as those of the degree generating func(i2d)s
and (21) namely 1— 2x 4+ xM*1 and 1— 2x + xM+1 4 xN+1 _ xM+N _Thjs confirms the identification between
the Arnold complexity and topological entropy, early seen on specific examp]26-28] In this paper, we will
not try to give the dynamical zeta functions for higher-dimensional mappings ¢inAC® 3) but only the degree
generating functions for these mappings, since the counting of fixed points for mappings of more than two variables
yields larger, and more subtle, calculations (Seetion 8.%.

6. Cases of integrability of mapping (9)

For the integrable cases, the generating functiGpér) and G, (x) degenerate into rational expressions with
root-of-unity singularities:

x(l+x2+x3—x4+x5) x(1+x+x2)(1—x—|—x2)

G248 () — ’ G2AY () — ’

B e ) v = T T B o D)
G(2’3’6)(_x) _ x(l+x2 _x3+_x4) G(2,3,6)(x) _ x(l+x+x2+x3+x4)

u A—-x)31+x+x2)° v A—-x3A+x+x)A+x)’
G(3’3’3)(_x) — x(l+x2 _x3+_x4) G(3’3’3)(x) _ x(l+x)(l—x+x2)

u A-=x)3A+x+x2)° v A—-x)31+x+x2’

1+x?)

G220y — ’ G220 (1) — x(

" (x) 1 _n2 Y (x) 12

The last two simple generating functior(sﬁ,z’z"”) (x) and G§2’2’°°) (x), correspond to linear fractional transfor-
mations (se€18)). Let us remark that for the integrable cases, the conjeq®tgdoes not yield the correct
denominators. For example, one obtains the singulatity x — x3) for (2,4,4) and (2,3,6), andl — x — x?) for
(3,3,3). However, this is not a problem since the integrable cases are singled-out situationsnbabbtained
continuously from the other non-generic cases.

In these integrable cases, one can even calculate the corresponding algebraic invariants of the mapping. For
instance, fotM = N = 2 (P = o0o) the algebraic invariant of transformati@®) reads(17) or equivalently:

v(u + 1)

u—-—v)(v—1" (26)

132 00(u,v) =
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ForM = N = P = 3, the algebraic invariant of transformati¢®) reads:
A4+u+v)(UW+u+v)
w—-—Dw—-Du—v
ForM =2,N =3, P =6, itreads:
wW+DW+ 34+ 2u)(v+ 2u)(2v + u)(3vu+ 2v + u)
v—12u — D —v)3
andM =2, N = P = 4, itreads:

w+2+u)(w+2vu+u)(v+u)
w—Dw— D —v)?

I333(u,v) =

Ip36(u,v) =

Ip.44(u,v) =

(27)

The invariants that correspond to the other equivalent cases can be obtained from the invariants given above by usini
the correspondencés0). As it has been remarked above, all these integrable cases correspond to the appearance

of a new invariant measure for the mappi84

Pictorially, the various orbits associated with the algebraic curves corresponding to different valges of
(u, v), intersect at sombase points Therefore, these base points must correspond to indeterminacy values of

(NRIRAN

‘\\\@

\\
AN

\

\
\
W)

W
0\
)

N

NN
AN

N

Fig. 3. The integrable cas¥ = 3, N = 3, P = 3: a linear pencil of fifty algebraic curves.
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I333(u, v). Actually the base points are the points for which the numerator and the denominator of the al-
gebraic invariant(27) are simultaneously equal to zero, yielding an indeterminate value of the algebraic
invariant.

Fig. 3shows a set of 50 orbits corresponding to the integrable #ase3, N = 3, P = 3. They make clear the
existence of a foliation of Chin (algebraic) curves. These curves correspond to a so-delést pencilof curves.
On this figure, the existence of the so-called base points of the linear pencil is also quite clear. Itis also clear that the
base points are located on the three globally invariant lined = 0,v — 1 = 0 andu — v = 0, which correspond
to the denominator of the algebraic invariavr).

When one considers the birational mappii®j for the parametera, b, and ¢ near the previous integrable
values, namely: = 0.66667 andb = 0.6666633 { = 2 — a — b), one sees, witlirig. 4, that asingle orbit of
this non-integrable mapping gives a “spray” of points reminiscent of the integrable foliatiBiy.08 The base
points of the integrable foliation dfig. 3 can clearly still be seen on the orbit Bfg. 4. Furthermore, one sees
that this spray of points has a higher density on alinge v + 1 = 0 and a hyperbolav + u + v = 0, which
actually correspond to the numerator of algebraic invar{@i). One recovers the fact that the base points are
located on the simultaneous vanishing conditions of the numerators and denominators of the algebraic invariants
(here(27)).

3.0

-4.0

-4.0 3.0

Fig. 4. Deformation of the integrable cage= 3, N = 3, andP = 3: a single orbit fou = 0.66667,h = 0.6666633 and = 0.6666667.
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7. Transcendental integrability of (9)

Let us consider the mapping defined (@, for ¢ = 0 (or equivalentlys = 0 orb = 0)

K:(u,v)—>< au+1—a aw+ 2—a)v—u )

a@a—Du+@2—-a) vi(ea—Du+ 2—a)

In this case, a simplification of the mapping can be done by performing the following change of variables:

(28)

o 1 _ u—v
“wu-10 T w-vo-1
One obtains a new mapping in these new variables, given by:

—1+1t
KS:(t,s)—>(t’:a—1+t,s/=%). (29)

One sees that the action ois just a translation bya — 1). The action ofk N can be easily expressed by:
I'((t+a—-1/(a-1)+ NIt +1)/(a— 1)))
Nt+a-1/@-= NI+ /(a=D)+N))’
whereI” denotes the usual Gamma function. The following quariiy ¢, s), defined forc = 0, given in terms of
Gamma functions, is invariant by transformati@0)
It +1)/(a—-1)
Nt+a—1/@—-1)’

Kfv 2(t,s) = (ty, sy) = (N(a —D+41ts (30)

I(a,t,s) =s (31)

thus providing an exampté of a transcendental invariangéxpressed in terms of transcendental functions. In this

“transcendental integrability” case, however, the degrees of the numerators of the successive iterates of the mapping

have a polynomial growth, and the generating function of these degrees reads:
X

(1-x)2

For the values of: of the form(M — 1)/ M, whereM is a positiveor negativeinteger, one has a simplification of

the Gamma functions, and the invarigB1), defined forc = 0, becomes a rational expression. For example,

Ggans(x) — (32)

1(5/4,1,5) = s(4 + )2t + D)4t +3),  1(4/3,1,5) = s(3t + 1)(3 + 2),

S
1(3/2,t,5) = s(2t + 1), 1(2,t,5) =s, 1(0,1,5) = m,
S S
P TG A L o [ve i Ty P 1

We remark that this “transcendental” integrability cases is not given by the Diller—Favre condBigjnsf
Section 3

1(1/2,1,5) =

8. A CP3 birational transfor mation associated with an involutive collineation

To see how the previous results extend tq, dBt us introduce a collineation associated with the 4 matrix,
similarly to Section 2

17 Other similar examples of transcendental invariants, associated with birational mappings, have also been of&]ned in
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a—1 b c d
C= ¢ : (33)
a b c d—1

whered = 2 — a — b — ¢. Similarly to(7), this 4 x 4 matrix is also afnvolutivematrix whend =2 —a — b — c.
Its determinant is equal te1. Furthermore( is also a “stochastic-like” matrix when conditidh=2—a — b — ¢
is imposed: the sum of the entries in a row is equaj-fo

Introducing, again, the Hadamard inverde, v, w) = (1/u, 1/v, 1/w), the birational mappink = C - J,
corresponding to the product of the two involutiafigind J, reads:

aww + (b — Dovw + cuw + dw aww + vwb + (¢ — Duw + duww
(a — DHuvw + vwb + cuw + dw’ (a — Duvw + bvw + cuw + duw’
aww + bvw + cuw + (d — 1)uv

(a — Duvw + bvw + cuw + duv> '

w,v,w) > @, v, w) = (

(34)

In contrast with the previous Ghirational mappind9), the elimination ofw andv doesnotyield a recursion on
the successive’s (we can denotea,,, u,1, u,+2 andu,43) but yields a polynomial algebraic relation:

PQuy, upy1, upns2, Upny3) = 0,

whereP is a polynomial of degree 2 im, andu, .3 and of degree 6 in, 11 andu,2 with integer coefficients.
8.1. Mapping(34) as a measure-invariant mapping

As for mapping(9) in CP., one can show that the expressians 1,v—1,w —1,u — v, v — w andw — u are
all covariantunder transformatio(B4). If one consider(u, v, w) = (Cov(u, v, w))%3 where:

Coviu,v,w)=u—-1D@w—-—D(w—-Du—v)(v—w)(u —w), (35)

a straightforward calculation shows, whée= 2 —a — b — ¢, that the Jacobian of transformati(84), Jacu, v, w),
is actually equal to:
o', v, w)

Jadu, v, w) = ,
o, v, w)

(36)
where(u’, v/, w') is the image ofu, v, w) under the birational transformatigB4). Condition(36) is a sufficient
to have a measure-preserving transformaf?52} the measure preserved by transformat{4) is actually
du dvdw/p(u, v, w).

The three-dimensional mappili84) is measure-preserving which means, again, that, up to a continuous change
of variable (sed32]), the birational mapping34) can be changed intowlumepreserving map. The fact that,
up to change of variables, one is no longer area-preserving @esdtion 2.2 but volume-preserving is clear on
the “texture” of orbits of the mapping as can be seeffrig. 5 which displays 50 orbits corresponding to the
iteration of(34) with parametera = 0.7529,b = 0.75 andc = 0.4999999, wherd being deduced by the relation
d=2—a—b—c, namelyd = —0.0028999. Let us recall that, in tlile— O limit, the mapping34) degenerates
into the two-dimensional mappir{), which is, up to a change of variable, equivalent to an area-preserving map. If,
instead of the previous values f@rb andc one considers values such tatecomes “smaller”, the mappiri@4)
tends to become, up to a change of variables, equivalent to an area-preserving map. This is clegr Barhich
corresponds to a phase portrait (50 orbits) typical of area-preserving Figpsis intermediate between the phase
portraits of area-preserving maps and volume-preserving maps.



20 S. Boukraa et al./ Physica D 185 (2003) 3-44

1.99

1.77

2.82 3.00

Fig. 5. Phase portrait of the volume-preserving map8#, up to a change of variables.

8.2. Anintegrable case

Inthe framework of such families of measure-preserving maps, the integrability cases can be seen as the occurrenc
of another preserved measure. Actually, whea b = ¢ = d = 1/2, the mappind34) becomes integrable and
one can easily see that another independent measure is preserved. In that case, the Jd¢aobaisof

Jadu, v, w) =16, :j}wjuui) 5 37)
Let us introduce

H, =+ 1)2(1) + w)z, H,=(w+ 1)2(14 + w)z, Hy,=w+ 1)2(u + v)2
These three expressions are covariant expressions for transforifgt)@md are such that

Jadu, v, w) = Hy(u',v',w')  Hyw' v, w)  Hy@', v, w) (38)

Hu(uv v, U)) B Hv(u7 v, w) B Hw(u’ v, w) '
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1.98

1.78

2.82 3.00

Fig. 6. Phase portrait of mappirt84): the area-preserving limit.

where(u’, v/, w’) is the image ofu, v, w) under the birational transformati¢®4). From these equaliti€88), one
deduces easily the following algebraic invariants of transformg8di
=(w—i—l)(u+v) I _ w+DHv+w) _ (w+DHu+w)
W+ D+ w)’ T wH Dty YT @D+ w)’
the product of these three expressions being equalltd, I, 1,, = 1. Therefore, the orbits of the iteration (¥4)

are algebraicurveshaving the following equations; = p and/, = © wherep andu are two constants depending
on the initial point(u, v, w) in the iteration.

If one uses the second equatibn= u to eliminate the variable, one obtains a reduced integrable (birational!)
mapping inu andv

u

(39)

;mz —v2ul % — ;wz
v2u? — 2uou? — 2uv2u — v2 4 2puvu 4 pv? + pu?’
wv? — v2u? — 2v2u — v2 + 2u?v + 2vu — pu?
v2u2 — 2pou? — 2pvu — v2 + 2pou + po? + /Lu2>

with the following algebraic invariant (deduced frafpafter elimination ofw):

u,v) > W, v) = <

(40)
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1.99

2.82 3.00

Fig. 7. Phase portrait of mappirf84). towards area-preserving limit.

wu+vyv—1Dwm+121)
(nu? —u?2 —u+ pou+ovu+v—uu — pv)(v+1)°
From this invariant, one can obtain the base points of the projection otuthg plane of the orbits o{34).
(u,v) = (0,0), (-1,1), (1, 1), (-1,1) and(—1, —-1).
Fig. 8shows a set of 50 orbits of mappilig4), which make clear the integrability of the mapping and, again,
make clear the existence of base points for the (two-dimensipr@§ctionof these orbits.

Ireducedu, v) =

8.3. Growth-complexity of mappir{g4)

The following calculations of the degree generating functions have been obtained by iterating a parametric curve
inz, (u(?), v(®), w()) (which is a line most of the time), and then counting the intersections of its iterates with
another fixed line{ = u, for example, wherg: is a constant). This amounts to calculating the degreearothe
numerator of(r), for example.

Semi-numerical results, detailedAppendix E show that one has, as an extension of the Diller—Favre conditions
of Section 3diminished complexities for the various valuesafb, ¢, d) = (a, b, ¢, 2—a—b — ¢) wherea, b, ¢, or
d are of the form(N — 1)/N (N a positive integer). One has the following denominators for the degree generating
functions for the various values ¢4, b, ¢, d) = (a,b,¢c,2—a — b — ¢):
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5.0

m‘\‘” \

Fig. 8. Projection of 50 orbits df34): an integrable foliation fo(40).

a,b,candd = 2—a — b — c all generic:(1 — 3x), yieldingx = 3.

a = (N — 1)/N and all the other parametdssc andd = 2 — a — b — ¢ generic:

o N=2,ie.,a=1/2:(1-3x+ 2x%), giving a growthx ~ 2.73205,

o N =3,ie.,a=2/3:(1-3x+ 2x*), giving a growthx. ~ 2.91963,

o N =4,ie.a=3/4:(1-3x+ 2x°), giving a growthx ~ 2.97445,

We conjecture that the denominators of the generating functions should be, for arhitrdry- 3x 4+ 2xV+1).
a=b= (N —-1)/N andc, d generic:

o N=2,i.e.,a=b=1/2:(1—3x+ 43— x* — x5, giving A ~ 2.41421,

o N=3,i.e.,a=b=2/3:(1—3x+4x* — x®—x"), giving » ~ 2.83118,

o N=4,ie.,a=b=23/4(1—3x+4x°>— x%—x7), givingr ~ 2.94771.

a=(N—-1/N,b=(M —1)/M andc, d generic:

o N=2andM =3,i.e.,,a=1/2,b =2/3: (1 — 3x + 2x3 + 2x* — x° — x5), giving A ~ 2.62966,

o N=3andM =4, i.e.,a=2/3,b=3/4: (1 —3x + 2x* + 2x° — x’ — x8), giving A ~ 2.89089,

o N=2andM =4,i.e.,a=1/2,b=3/4:(1—3x+ 2x3 4+ 2x° — xb — x7), giving » ~ 2.69679,

o N=2andM =5,i.e.,a=1/2,b=4/5: (1 —3x + 2x3 4+ 248 — x7 — x8), gwmg,\~271951

We conjecture for these two previous cases((N —1)/N,b= (M —1)/M andc,d = 2 —a — b — ¢ generic)
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that the polynomial
PN,M(X) —1— 3y — _XN+M _ xN+M+l + sz+1 + 2xM+1

is the denominator of the degree generating function.
ea=b=(N—-1)/N,c=(P-1)/Pandd =2 —a— b — c generic:
oa=b=1/2,c=2/3:(1—3x + x% + x3 4+ 2x* — 2x%) with 1 ~ 2.26953.
e a, b, ¢, d, all of the form(N — 1)/N: These are all integrable cases. Except a new solyfiod, 2, 2) (i.e.,
a=b=c=d = 1/2), all the other integrable cases correspond to having one of the paramétarsd equal
to 0; the mapping thus reduces to an integrable map@hig CP.. One thus obtains the extensions of solutions
already obtained for CR up to the previous new genuinely €Bolution(2, 2, 2, 2).

For more detail on these semi-numerical calculationsAggeendix E

Let us finally note that these results are completely in agreement with the Diller—Favre conj@itibrnghich
have been proved only for GPeven-though they also seem to apply for our class of particular mappings,of CP
constructed as products of collineations and Hadamard inverses.

8.4. Conjectures on complexities

Conjecture 1. In view of all the previous semi-numerical resulige conjecturefor CPs, that the denominators
of the generating function@vhich corresponds to the polynomial associated to the complexgiesuld be for
a=M-1)/M,b=(N—1)/N,c= (P —1)/P andd generic as follows(M, N, P positive integers

Dy p(0) =1 —3x — (L4 x)(xMFP — xN+M _ yPENy L oo N+L | G MAL y (PHL) 4 o NEMAP (47
Dy m, p(x) becomes foP = 1 (i.e, for ¢ = 0, corresponding to a reduction to a two-dimensional mapjing
Dyma(x) = (1 — ¢ + xN T4 xMHL_(NEMy (1 — ). (42)
One recovers, in this = 0 limit, the CP, conjecture(seeEq. (21).
Conjecture 2. The caset = (M —1)/M,b = (N — 1)/N (M, N are positive integeis c andd generic can be
obtained by setting th@ = oo limit in (41), namely
Dup(x) = 1— 3x — xNHM _ (N+MH+L | o N+1 | o M+l (43)
The caser = (M —1)/M, b, ¢, d generic can be obtained by setting the linfits= co and P = oo in (41), namely
Dy (x) = 1 — 3x + 2xM+1, (44)
When considering all the possible values of(jhesitivg integers, M, and P, one finds that the growth-complexity
A belongs for(41)to the interval?.26953< A < 3,for (43)t02.41421< A < 3,and for(44)t02.73205< 1 < 3.

Let us remark that all these conjectures are valid in “generic enough” cases, that is, when the complexity is
reduced fromh. = 3 to various algebraic integers according as one of the three paramebeksis of the form
(M — 1)/ M. However, when the mapping beconietegrable these conjectures an® longer valid For instance,
whenM = N = P = 2 (which is the only new integrable case beyond reductions to the mafirg CP.),
conjecturg41)is not valid. In that case, the conjectured polynortddl) factorizes inta(1 — 2x) (1 + x)%(1 — x)3,
which is not compatible with the integrability of the mapping (Seetion 8.2, similarly to what happened with the
two-dimensional mappin®) (see als&@ection §. Another integrable case is, for instance, wi\ee=- M = P = 3,
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which corresponds td = 2 —a — b — ¢ = 0, and, thus, to a reduction to the mapp(8yof two variables of CP
(seeSection 8.6andFig. 3). The conjectured polynomi§f1)is not valid in this integrable case, since it factorizes
as(1— 2x — 2x?)(1+ x4+ x?)?(1— x)3: a polynomial growth of the calculations gives only singularities on the unit
circle.

8.5. Dynamical zeta functions for the three-dimensional mappings

Similarly to the calculations performed 8ection 5it is tempting to try to calculate the dynamical zeta function
for the three-dimensional mappirg84), andif the dynamical zeta function is a simple enougtional function,
compare the denominators of this rational function with the ones previously conjectured for the degree generating
functions(41)—(44) When performing these calculations, one immediately faces the problem that the Weil cycle
decomposition way of calculating the expansions of the dynamical zeta funf&jrisecomes much more subfi@,
and involved, in more than two dimensions. Basically, one finds in three dimensions (and it is even more complicated
in higher dimensions) that the set of fixed points of the mappings is “stratified” in algebraic varieties of various
dimensions. Actually, for the three-dimensional mapp(84) the set of fixed points is isolated points aaldo
algebraic curves of fixed points.

Before sketching a specific example (mapp{Bg) for N = 2, M = 2 andP = 3), let us recall the Weil cycle
decomposition of dynamical zeta functid2€]. An alternative way of writing the dynamical zeta functions relies
on the decomposition of the fixed points iratgcles which corresponds to the Weil conjectufg8]. Let us introduce
N,, the number of irreducible cycles &f": for instance, forN1,, we count the number of fixed points &f2 that
are not fixed points ok, K2, K3, K* or K%, and divide by 12. One can write the dynamical zeta function as

1 1 1 1
L—0MQ-xD)M2 1-xHM  A—x)N

$x) = (45)
The combination of théy,’s, inherited from the produd¢i5), automatically takes into account the fact that the total
number of fixed points ok” can be obtained from fixed points &, wherep dividesr, and from irreducible fixed
points of K" itself (seg[56] for more details).

Let us now consider, for instanc&p»3, which denotes the mappir(4)for N = 2, M = 2, andP = 3. The
fixed points ofK»23 arenot isolated points but arell the points of the lingu, v, w) = (1, 1, 7). Instead of the
(complex and real) isolated points one could expect for the fixed poirﬂéégf one finds aurveof fixed points of
K3,,, namely the rational curve':

(42—

u(t) = U(t)_(t~l—3)(1—t)

P (t+3)(+2
3+5 T Ae+1

R

(46)
Eachpoint of I' is a fixed point ofK%zs. One could imagine, at first sight, and in a naive cycle viewpoint, that the
rational curvel” transforms byK 223 into another (rational) curv&”, this curve being also transformed infoby
K>23. In fact, one finds the following action &3 0n I

- L L 1 47
223 (u(n), v(1), w(®) — (% o)’ m> ' -

In other words, on the rational cur¢46), the action ofK»,3 identifies with the action of the Hadamard inverse
Furthermore, the point&l/u(z), 1/v(¢), 1/w(f)) do not correspond to a new curyg but actually belong t¢46).
The transformatiolk 223, or the Hadamard inversk is, in fact, represented ¢A6) by the involutive automorphism:

18 This can also be seen in the Diller—Favre cohomological appri@hthe cohomology is drastically more complicated.
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t+7
=1
However, sinc&K 223is the product of the involutiort and of a collineatioit,23, the rational curvé46) must be a set

of fixed points ofC223. The fixed points of the collineatiaf»3 correspond to the hyperplang 3 4v+2w+3 = 0.

The rational curvé46) thus corresponds to points belonging to this hyperplane and such that Hadamard inverse
alsobelongs to this hyperplane

Kopzor Jit—1t = (48)

3 4 2
Ju+d+2w+3=0 and - +-+—+3=0.
u v ow

With this example, one sees that the counting of cycles of “fixed algebraic curves” has to be performed carefully:
the action of a birational mapping on algebraic curve™ of fixed points ofK"™ can, for instance, generate
different curved, (@ = 1, ..., n), each of these curves being preserved by automorphisms ofmerder

For the three-dimensional mappi(@y), one sees from the previous calculatiga6) that it may be interesting
to define two dynamical zeta functions: a dynamical zeta fundfigi: associated with counting the number of
isolated fixed pointg45), and a dynamical zeta functiofune associated with counting the number of “fixed
algebraic curves” such #46).

In the generic case, one obtains one fixed poinkphamely(u, v, w) = (1, 1, 1). For K2, one could expect,
at first sight, at least six cycles of isolated points, corresponding to the six reducti¢®@®) afto (9) for u = v,
w=v,u=w,u=1v=1 andw = 1, on which(34) becomes the generic mappi(®) which has one cycle for
K2. In fact, one finds that these six cycles belong to a generalization of the rationa(46jveamely an algebraic
(elliptic) curve of fixed points ok, defined by the equations:

u b+c—2+2a+cv+bu

= Uv s

(b+c— 2+ 2a)uv + cu+ bv

E(u, v) = b(c + av)u? + b(a + cv)v + ac(l + v2)u — 2((@ab+bc+ca) — 2(a+ b +c) +2Quw = 0. (49)

A straightforward calculation shows the&chpoint of the algebraic curvgt9)is a fixed point ofk?. One easily
verifies that the second equati@itu, v) = 0 is an algebraic curve of genus 1, the involutianv) — (1/u, 1/v),
leaving E(u, v) = 0O invariant, and changing, given by(49), into 1/w. The elliptic curve(49) is thus globally
invariant by the Hadamard inverdeand, thus, by the involutiog - J - C.

The study of the fixed points dt2 or K* yields quite large formal calculations. With the analysis of the fixed
points of K or K2 our expansions of the “point” or “curve” dynamical zeta functiofjint and Scurve, OF their
product, are too short to compare them with simple expressions generg#i3iriike

1—x or 1-—2x
1—3x 1-3x" """

Preliminary calculations of dynamical zeta functions of the three-dimensional ma@di)will be detailed else-
where.

{3 (x) =

8.6. Reductions and symmetries of the mapping

Similarly to mappind9), one has a set of symmetries of permutations of the parameters, andd of mapping
(34). This comes from the fact that the four lines and columns of tlkematrix (33) are on the same footing.
Among these permutations of the four parameters, ¢, d, one must distinguish the permutations of the three
parameters, c, d, which are clearly, and simply, associated with the permutations of the three vatiables.
The permutations involving with one of the three parametéssc, d, correspond to slightly more complicated
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transformations on the three variable®, w. For instance, permutingandb is equivalent to changing, v, w) into
(1/u, v/u, w/u). Thisis the straightforward generalization of the parameter symmétfigfor the two-dimensional
mapping(9). These remarks generalize, in a straightforward manner, jo CP

Let us now consider, with the example of mappi{g), two different types of reductions from GRo CP,_1,
namely reductions associated with limits on the feub, ¢, d parameters and reductions associated with restricting
the mapping to the vanishing conditions of the covarjant v, ... ).

Letus consider the first reduction, assuming that one of four parameters d (which are on the same footing),
for instanced, is taken equal to 0. From matr{83) one sees, immediately, that, as far as the variabbasdv are
concerned, the mappin(@4) is identical to mapping9), the last variable being transformed as

1-w
(@a—1) +bu+tcv

In CR,, one will have a similar result, namely that if one of the- 1 parameters of thé: + 1) x (n + 1) matrix
defining the collineation is taken equal to zero, the mapping degenerates into a mappingin CP

Let us now consider the second kind of reductions, by restricting the maf@itp the varietyy = w. This
condition is preserved by the mappi(8#) (see also the covariance @5)). The mappind34)with the parameters
a,b,c,d =2—a—b— cthenreduces to mappir{§) with the parameter® = a, b’ =b,c’ =2—a—b =c+d.
This is a consequence of the fact that the= w limit amounts to reducing matri33) to matrix (7) with the
parametersa, b, ¢) of (7) equal to(a, b, ¢ + d). Of course, one has similar results for the> 1 limit (or v — 1,
etc.), corresponding to the other factors of the covai(aby

w1+ (50)

9. Higher-dimensional mappings (CP4)

These results generalize to £By considering a 5% 5 matrix generalizing9) and (34)

[a—1 b c d e

a b—-1 c d e
C= a b c—1 d e . (51)
a b c d—1 e
a b c d e—1

One easily verifies, again, that this (stochastic-like) matrix is involutive wher?2 —a — b — ¢ — d. The birational
transformation deduced from the product of the associated collineation and the Hadamardjitwerse, z) =
(1/u, 1/v, 1/w, 1/z), readsK (u, v, w, z) = (u’, v/, w', ') where, for instancey’ reads:

awwz+ (b — )vwz+ cuwz + duwz + eww
(a — Huvwz+ bvwz+ cuwz + dwz+ eww’

u' = K,(u,v,w,z) =

9.1. A hypervolume-preserving property
Similarly to CR and CR, one immediately verifies that— 1,v — 1, w — 1 andz — 1 and alsa: — v, v — w,
w — z, andz — u, are covariant under the action @). The following polynomial:
Cov(u, v, w, 2) = ( — 1)*(v — D%(w — 12z — % — v)3w — w)*(w — 23 —uw)® (52)

associated with the cyclic permutation symmetryv, w, z) — (v, w, z, u) is covariant by(9). One sees that the
Jacobian of transformatiq®) is given by:
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Cov /7 /’ /’ N 1/4
W', v, w z)) ’ (53)

Ja , U, s = b d _1
Qu,v,w,z) =(a+b+c+d+e )<Cov(u,v,w,z)

where(u’, v/, w’, z’) denotes the image df:, v, w, z) under the birational transformatigg). One thus deduces
that, provideck = 2 — (a + b + ¢ + d), the birational transformatiof®) is hypervolume-preserving map, up to a
change of variables.

9.2. New invariants for mappin@)

Thevariables, v, w, z are, however, onthe same footing: one does not have only the cyclic symimetrw, z) —
(v, w, z, u) corresponding to covaria($2), but the full groupSs of permutations of these four variabEsThere-
fore, one can also introduedl the covariants — w, v — z, etc., and their associated cofactors, for example,

K:u—w— Cyy(u,v,w,2)(u—w),
vZ

(a — Huwwvwz + bvwz+ cuwz + dwz+ eww’

Cuw(us v, w, Z) = (54)

and similar expressions,,, C,z, etc., sharing theamedenominator (which is also the denominator in mapping
(9)). One then immediately deduces, from the simple product form of their numerators, relations such as:

Cuw(u, v, w, 2)Czx(u, v, w, z7) = Coy(u, v, w, 2)Cpy(u, v, w, z), (55)
which means that the following expression is actually an algebraic invariant of transforrf@tion
Ia(u, v, w, 7) = W (56)
(z—u)(v—w)

Note that this last result is valid even if relatier= 2 — (a + b + ¢ + d) is not verified.
As a consequence, up to a change of variables, the hypervolume-preserving property of this birational mapping
of four variables reduces to a volume-preserving property (up to a change of variables).

9.3. Restrictions to invariant varieties

Restricting the mapping to the invariant variéyu, v, w, z) = p, wherep is a constant, mappin@) now reads
kp(u, v, w) = (', v', w') with, for instance, on the first coordinate:

; ou(v —w)G1(u, v, w) —v(u — w)Ga(u, v, w)

= , (57)
pu(v — w)Gz(u, v, w) — v(u — w)Ga(u, v, w)

with

G1(u, v, w) = alvw + duw + cuw + bvw + (¢ — 1)vw,

Go(u, v, w) = auww + duw + cuw + euw — (b — Dvw,

G3(u, v, w) = (a — Huvw + dww + cuw + (b + e)vw,

Ga(u,v,w) = (a — Huvw + dw + (¢ + e)uw + bvw.
This CR; restriction is also measure-preservingdoe 2 —a — b — ¢ — d, as can be seen directly calculating the
Jacobian Jaa, v, w) of this reduced transformatid®7). Introducing the covariant expression:

Cov(u,v,w) =u —v)(v—w)(w—u)(u—1w-1(w-1), (58)

19 And even a “hidden'Ss of permutation (just think projectively).



S. Boukraa et al./ Physica D 185 (2003) 3-44 29

one finds that the Jacobian Jacv, w) of the reduced transformati¢b7)is actually such that:
Cov(u/, v/, w’))z/3

Cov(u, v, w) (59)

Jadu, v, w) = (a+b+c+d+e—1)<
which is in complete agreement with relati(86) obtained for CRB.
9.4. Conjecture on the complexity degrees

Finally, for CP;, we conjecture that the growth complexitieof mapping(9) are related to the zeros of the
following polynomial:
Dcp,(x) =1—4x + 3(xM+l 4N P xQ+l) — ZMANTPHO
—(L+ 20) (MAN o MHP L (MHQ L (N+P L (N+0 | PHO
+(2+x)(xM+N+P +xM+P+Q +xM+N+Q +xN+P+Q)' (60)

The validity of this conjecture has been tested numerically, éftdor many values oM, N, P, andQ. Expression
(60) reduces to conjectu@l) in the Q = 1 (resp.P = 1, etc.) subcase.

10. Higher-dimensional mappingsCP,,n > 4

The previous results generalize to, a8 considering & + 1) x (n + 1) matrix generalizind9), (34) and (51)
such that the entries in each column are equal and the sum of the entries in each row is normalized to 2, and then
subtracting th&n + 1) x (n + 1) identity matrix.

10.1. New invariants fo€P,,n > 4

Many new invariants can be given fer> 4; however, onlyn — 3) of these are algebraically independent. When
taking into account these algebraically independent invariants, the mappry @mways reduces to a mapping in
CPs. Let us show this explicitly fon = 5. The expressio®? Py ~* = P2 P§, where

Piu,v,w,x,y) = —Dw—-Dw-Dx-D(y—-1),
Po(u, v, w,x,y) = (u —v)(v —w)(w —x)(x = N(y —u)

is covariant and, in a similar way as $ection 9.20ne can obtain several algebraic invariants for the mapping, as,
for example

Iél)(u’ bW, X, y) = y—w)(x— v)’ Iéz)(u, v W, x, ) = (v—w)(u — y)’
x=yw—-w) (u —w)(y —v)
©) (u —w)(x — )
I sy Uy Wy A, -, < 61
$ v xy) = e (61)
However, these invariants anetalgebraically independent. They satisfy algebraic relations such that

1) ;2 ;3 D ;3 (2) ;3 1) ©)]
IS + I Iy —Ig ' Ig — 1" — I =0 (62)

and, hence, only two of them are algebraically independent. Again these results do not require the sum in a row of
the entries of thén + 1) x (n + 1) matrix to be normalized to 1.
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By composing these invariants, which are associated to elementary transpositions of two coordinates, one obtain:
other algebraic invariants associated, for instance, with permutations of three coordinates:

cycle i (u—v)(x —w)(u —y)
o ) = )

(63)

10.2. Hypervolume-preserving property 0P,

A straightforward generalization of the results of the previous section showgthdt uo—1, uz—1, ..., u, —1,
and alsat1 —up, up —us, uz—ua, ..., uy,—1 — u,, are covariant expressions of the birational mapping generalizing
(9) and (34) and, similarly, the straight generalization@{see(35), (36)), namely

n 1/n
put, uz, ... up) = (H(ui — 1)%(ui — ui+1)"+l> (64)

i=1

with u,41 = u1, is such that the Jacobian of the birational transformation is of the fowrh, u5, ..., u;)/
p(uy, uz, ..., u,) Where(?, uj, ..., u;,) denotes the image @1, uo, ..., u,) by the birational transformation in
CP,.

The birational transformation is the product of an involutive collineation and of the Hadamard inverse
(J(ug,uz, ..., uy) = (1/u1, 1/us, ..., 1/u,)) which is also a measure-preserving transformation associated with
the measured; = []/_; du;/u; (for n even).

However, the measure-preserving character of our multi-dimensional birational transformations is, in fact, the
consequence of the fact that the covariati, uo, ..., u,), closely related to the preserved measuregli®
covariant for the Hadamard invergendthe collineatiorC separatelyLet us calculate the cofactor of the covariant
pug, uz, ..., u,) formappingk = C - J seen as a successive product/andC
11 1

) N
Jip(ui,uz, ..., uy) — p(—, —) = (uauguz---)" p(uy, uz, ..., uy),
U1 U Uy

/

C:p(ur, u, ... uy) — (uruouz-- )N det(C)p@'r, u'z, ... u'y). (65)

Denoting by Jaal] and Jacy] the Jacobian of the collineatiofi and transformatiory, one sees that these two
transformations satisfy a “pre-measure-preserving prop€tty

,O(C(Ml, M2, L] un))

JacCl(uy, uz, ..., u,) = —det(C)

pu, uz, ..., up)
Jacl)(ur, up. . ... uy) = —LLUL U2 - ) o
plur, uz, ..., up)
The Jacobian of transformatidti = C - J can easily be deduced frof@6)

JacK](ua, uz, ..., uy) =JacCl(J(u, uz, ..., uy))dacyl(us, uz, ..., uy)

_ detoyPCUL 12, - o ) pUH, Uz, . tn)

o(J(u1, uz, ..., uy)) p(ur, uz, ..., uy)
_ demc)p(K(uL uz, ..., u,,)). o

p(ulv l’t21 L] Mn)

The transformatiolX = C-J is measure-preserving when €t = +1. In fact, one could try to find systematically
the measure-preserving mappings of the fa&tm= C - J, such that an algebraic covarignu1, uo, ..., u,) is,
separately, covariant hyyandC and, then, such that conditig67) is verified (seéppendix Bfor CP,).
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Combining the results of this section with thosésefction 10. lone sees that these Cfappings can be reduced,
up to a change of variables, to volume-preserving maps.

10.3. Conjecture on degree complexity for higher-dimensional mappings
Expressiong41), (42), (44) and (6Qgiving the degree growth-complexityfor a particular set of values of the

parameters, can be generalized for,Cés follows. Ifn of then + 1 parameters of the collineation matrixare of
the form:

Ni—1 No—1 N, -1
= s = s eeey == 9 68
ax N @ N an N, (68)
whereNy, ..., N, are positive integers and the last paramefen is deduced from
n
N —1
Z —— tap1=2, (69)
, N;
i=1
the polynomial generalizinf#1) or (60) becomes
n
Dcp, (x) =1—nx— Z(—l)i((n —ix+ (@ —1)Si(N1, N2, ..., Ny; x), (70)
i=1
where

S1(N1, N2, ..., Npsx) = D04 xMi,
S2(N1, No, ..., Nys x) = Zi1>i2 xNi1+Ni2’ e

71)
. Niy + N+ N; (
Sk(N1, N2, ..., Np; x) = Zi1>i2>i3>~->ik X AR ’

Sn (Nla N27 ceey Nn; -x) = -xN1+N2++Nn
Sk(N1, N2, ..., Ny; x) is an expression of containingC;; monomials ofx.

When not all the parameters are of the fqi®8), then one has to use the limit§ — oo for those parameters
which are not of the forn(68), as explained itsection &or CPs.

When all the parameters are not of the fofm — 1)/N (N > 0), thenDcp, (x) = 1 — nx, giving a maximal
growth-complexityr = n. As far as the growth-complexity is concerned, the minimal non-trivialis given for
CP, from the polynomial

Po(x) =1—(n—2)x —(n—1x?— (n— x5, (72)

giving Amin =~ 3.2206928, 4.18438717, 5.157447054, for respectively, T and CR. For CR,, with n large,
this givesimin — n —1+1/n —2/n% — 1/n*- - ..

Remark. Integrability. It has been seen, Bection 8.6that when one of the parametets, ... of the mapping

is equal to zero, the-dimensional mapping reduces to @n— 1)-dimensional mapping. Any integrable case of
ann-dimensional mapping can thus be seen as an integrability case foraf)-dimensional mapping with one
of its parameters being equal to zero.Saction 8.2a genuinethree-dimensional integrability (not reducing to a
two-dimensional mapping in some way) was found for the exampteh = ¢ = d = 1/2. In fact, it has been seen
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that integrability corresponds to the situation where alkthel parameterss, ..., a,+1 are of the form68), i.e.,
where there exisi + 1 positive integersv; such that
n+1
Ni—1
=2. 73
>N (73)

i=1
Seeking such genuimedimensional integrability, one may try to find all the positive integérs. . ., N,,1 different

from one (V; = 1 meansy; = 0 and thus a reduction to an— 1-dimensional mapping) that satigf¥3). Actually,
one finds that there are no solutiong@8) with N; # 1 whenn > 4.

11. Conclusion

We have introduced a simple family of birational transformations ip,@Enerated by the simple products of the
Hadamard inverse and of (involutive) collineations. Several results for the growth-compleatity the dynamical
zeta function (topological entropy), were obtained for these birational transformations. In particular, we have been
able to produce some simple algebraic conjectures for the growth-complexity of our birational transformations in
CP, for arbitrary values of. For the two-dimensional mappings we were also able to give some simple conjectures
for the dynamical zeta function in agreement with the previous conjectures, and in agreement with an identification
between Arnold complexity and topological entropy. The integrability cases of these mappings were given and it
was found that some transcendental integrability, with a polynomial growth of the calculations, may occur for these
mappings: we actually obtained a closed expression for this transcendental integrability.

These calculations can be generalized in many directions: for instance, one can imagine to find, systematically, all
the measure-preserving “Noetherian maps” built from similar products of the Hadamard inverse and of a collineation,
and analyze them in a similar way. One can imagine to relax the involutive character of the collineations or, even,
the measure-preserving properties of the mappings. A much more ambitious goal amounts to trying to obtain the
expansion of the dynamical zeta functions for higher-dimensional “Noetherian mapsi@P: > 3), in order
to deduceational conjecturegor these dynamical zeta functions and compare these rational expressions with the
degree generating functions of these birational mappings.

Birational transformations in GFbecome a very large set of transformatif®is, 58] Actually, it can be seen that
one doesothave a Noether theorem any longer. However, one still has much more involved decomposition theorems
[59,60]explaining that birational transformations can be decomposed into Hadamard inversions, collineations, but,
unfortunately, also other (“stretching”) transformations. The set of birational transformations, iirs G® large
that, forn > 2, the cohomological approach of Diller and Fay8d] can no longer be applied. However, in
this paper, one sees that birational transformations generated from collineations and Hadamard inversions (or the
matrix inversg51]) yield exponential growth of the iteration calculation’ wherex are clearly simplalgebraic
integers (se¢41)—(44), (60) and (7Q) the conjectured results far > 2 beingstraight generalization®f the
results forn = 2. This strongly suggests that it should be possible to generalize thedbBmological approach
of Diller and Favrg34] for some “well-suited’subgroupof the birational transformations in GPIn this respect,
it is certainly interesting to consider the subset of birational transformations,im@Rh have such Aloetherian
decompositionthat is birational transformations in ¢C®hich can be written as arbitrary products of collineations
and of the Hadamard inverse We will call “Noetherian birational transformations” such transformations. Is it
necessary, in order to perform such a cohomological approach for birational transformations to @8trict,
even further, this subset of Noetherian birational transformations? All the calculations performed in this paper were

20 One cannot reduce to the study of the cohomology of curves. The cohomology becomes very involved.
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greatly favored by the simplicity of our Noetherian mappings (in particular their measure-preserving properties, as
far as the dynamics is concerned, as can be seen on the phase portraits). It is not clear if this remarkable property is a
necessary ingredient in order to generalize the &@Momological approach of Diller and Favre, though it certainly
simplifies the analysis of singularities. We think that the rationality of the degree generating functions, we obtained
for simple particular Noetherian birational transformations, should be understood by some generalization of this
cohomological approach. The question is: which additional constraints should be imposed in order to be able to
describe the corresponding cohomology?
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Appendix A. Towards higher-dimensional generalization of Noether’stheorem

Birational geometry really starts with Noether's paf#®] on Cremona transformations. A Cremona trans-
formation of the projective plane is a slippery thing. It is not quite a map from tORCR; rather, it is a map
from “almost all” of CR to “almost all” of CR. To define such a transformation, Cremona took three curves
of the same degree, say whose equations arg;(x, y,z) = 0,i = 1,2, 3, and mapped the point[y, z] to
[Fi(x, v, 2), F2(x, y, 2), F3(x, y, 2)]. In modern terms, this is a map at the point{, z] provided it is not the case
that all theF;(x, y, z)'s vanish there, i.e., unless the point , z] lies on all three curves: such a point is called
a base point Birational geometry remained for a long time a “sleeper” probably, as far as mathematicians are
concerned, because of the “slippery” nature of the transformations at first sight (i.e., proliferation of singularities: is
the iteration of birational transformation well-defined on a Zariski set?). The modern period of birational geometry
really started with Manin’s papers on geometry of surfaces over non-closed[6&l@2] The breakthrough into
higher dimensions was made in 1970 in the papers of Iskovskikh and Ng&8Jinn Iskovskikh and Manirj63],
using certain ideas of Noether and Fano, developed a new method of study of birational correspondences between
algebraic varieties, which have no non-trivial differential-geometric birational invariants: the method of maximal
singularities. The results, which were obtained by means of this method in the seventies, were summed up in 15 years
ago in[64,65] Since that day, considerable progress has been made in the field. It is worth noting that, although we
have now new approaches and conc§p®3, this method, up to this day, is the most effective tool in the birational
geometry.

As far as generalizations of the Castelnuovo—Noether theorem and decompositions of Cremona transformations
are concerned, let us recall the following. It is known that any birational map betweeghu®iles over a smooth
curve (which are classical examples of Mori fiber spaces) can be decomposed into elementary transformations. One of
the main problems is to investigate birational maps between Mori fiber spaces. In this direction, Sarkisov announced
a three-dimensional generalization of the Castelnuovo—Noether theorem, the so-called Sarkisov [d@&&§Em
if one considers factoring birational maps of threefolds after Sarkisov, a birational transformation between minimal
models is an isomorphism in codimension one and is a composition of flips or[B@psSarkisov[44,49,50]
introduced a notion of elementary map between Mori fiber spaces and announced a proof that every birational
transformation between threefold Mori fiber spaces is a composition of elementarjd®@jksollowing Sarkisov’s
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work, Corti gave a rigorous proof of Sarkisov’s theorg4,48,68] These works show that one can decompose
birational maps with four types of elementary links but are not concrete as in the casg-bfi@ites. Since then,

most of the progress in the theory has been restricted to dimension three. Many applications of these methods wer
discovered and these led to the solution of numerous open problems in the theory of surfaces and threefolds. Som
of these are reviewed {69,70].

Appendix B. Collineationsyielding measure-preserving mapswith a given covariant

Let Jacu, v) be the Jacobian of a birational transformation inC® = C-J whereC is a collineation represented
by a 3x 3 matrix having determinant denoted by @t

B.1. Measure-preserving maps with covariait, v) = (« — 1)(v — 1) (u — v)

The collineations which are such that the relation

Jaqu, v) = detc) 2V
p(u, v)
is satisfied with the covariant(u, v) = (v — 1)(v — 1)(u — v) can be grouped in three different classes, according
to the eigenvalues of the associated matrices(@£9 and (B.4). First, the collineation associated with matfy;

second, those associated with the following three 3matricesC4, Cg, andCc¢:

[az31—1 azx»  asz+1 azr  14az azxz—2
az1—1 1+az; aszz |, l+as1 azxx azz—2 |,
| azn asz ass asi azz  azz—1
[1+4+a31 —1+azr azz—17]
azr  —1+az asz3 (B.1)
asi asz azz— 1|

and third, those associated with the twec3 matricesCp, andCg:

[1+a31 —1+4az azz—1T azn1  1l4az azz—2
1+azn as az—2 |, az1—1 1+az azz—1
asy as azz—1 | asy azz  azz—1

One easily verifies that all these matrices are stochastic-like matrices: the ¢edtot) is an eigenvector with a
“stochastic” eigenvalue that we will denote agoch
Let us first consider matricas,, Cg, andC¢. Their characteristic polynomials read:

Pa() =+ D — D — az1 — a3z — azz),
Pp(t) = Pc(t) = (t + 1) (t — 1)(r — az1 — az2 — a3z + 1). (B.2)

The “stochastic” eigenvaluésioch Of these three matrices (namely, + as2 + azz andasy + azz2 + azz — 1) are
the negative of the determinant of the corresponding matrices.

Actually, one can see that the three matri€asC g andC¢ are simply related by row permutations combined with
transformations on the;'s parameters preserving their characteristic polynomials. Let us introduce the permutation
matrix:
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0 01
P=|1 0 O
010

Let us also introduce the two matric€s (a1, a2, azs) = Ca(l + as1, asz, —2 + azz) andCe(as1, asz, azz) =
Cc(az1, 1+ azp, —1 + az3), which have the same characteristic polynomiaCgsOne easily finds that

PCp=Ca,  P?°Cp=Cc.

The three matrice€ 4, Cg, andC¢ are of the formC = H + P, where matrixH reads:

0 01 010 1 00
0 1 0], 1 0 Of, 0 01 (B.3)
1 00 0 01 010

for C4, Cp, andCc, respectively, and where matrixbecomes a projector whéRioch = £1: P2 = 0 if Astoch=
—det(C) = +1 andP? + 2P = 0 if Asoch= —det(C) = —1.

Whenigioch = —det(C) = £1, these matrices anotof finite order, as one could imagine from their characteristic
polynomials in thiskgioch = —det(C) = £1 limit.

Let us now consider matric&y, andCg. One sees that they are also equivalent up to a relabeling of the rows and
columns: as far as the mappings are concerned, this corresponds to equivalence of the mappings up to transformation:
such aqu, v) — (v/u, 1/u).

The characteristic polynomials 6fp, Cr and(7) read, respectively, as

Pp(H) = Pe(t) = (> —t + 1)(r + 1 — az1 — azz — asz), Py = (1 4+ 1%t +1—az; — azr — azz).
(B.4)

The “stochastic” eigenvalugsiochof these three matrices (nameby +az2+a3z3— 1) is also equal to the determinant
of these matrices.

Let us consideC = Cp or C = Cg. If one imposes d€€) = +Astoch = £1, thenC is a matrix of order 6:
C% = 8 = 1,, wherel, denotes the & 3 identity matrix. In the case def) = —1 one even has3 = C3 = —1I;.

Let us consider to be(7). If one imposes dé€) = +Aisoch = 1, thenC is an involutive matrix:C? = I,. If
one imposes déf) = +Asioch = —1, C is not a finite-order matrix, as one could imagine from its characteristic
polynomial(t + 1)3, it readsC = —1I, + P, whereP is a projector:P?2 = 0. With this condition of equality of their
determinant te+-1, one easily finds that matr{) is an involution.

Note that these families of matrices are not families of commuting matrices, except if one restricts oneself to
families depending on one parameter. Maffxcan be diagonalizes @& = PA P~1, where

1 b e a+b+c—1 0 0
p=|41 { o1 A= 0 -1 0
1 0 1 0 0 -1

When one restricts oneself to one-parameter families and reduizesdc/a to be constant (for instanck = 5a,
¢ = 7a), the associated matrices commute. Note, however, that, even in this case, the corresponding birational
mappings do not commute.
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B.2. Structure of mappings preserving the same covariant

Of course, if two birational mapping&; and K> share the same covariaptu, v), any product of these two
mappings have the same covariant. Furthermoré&iifand K, both satisfy the measure-preserving necessary
condition(11), any product of these two mappings also satisfy the measure-preserving necessary ddrdition

Let us consider the collineations of two variableandv. The collineations that commute with the Hadamard
inverse(u, v) — (1/u, 1/v) form a set of 24= 4 x 6 transformations which are build from products of the four
change-of-sign transformations, v) — (4u, +v), and the six permutations of the three rows and columns of the
3 x 3 matrix associated with the collineation, these six transformations being representaddn as (see also
(10)in Section 2.}

1w 1 u u l v
wo=(Gr) (o) o (53) o (57)

Let us denote by'; one of these 24 collineations commuting with Hadamard invér€gonsidering the iteration
of K = C - J itis straightforward to see that

KN.cy=c; KN, wherek=c;t-c-cy. (B.5)

In other words K andK have the same properties.

Suppose that’; commutes withC, then it commutes wittk = C - J andK’ = C - Cy - J = C,; - K commute
with K.

More generally, one can consider the set of two collineat@nandC» such that the “transmutation property”
C1-J = J - C2holds. This problem is closely related to the commutation of the two transformaticasC - J
andK’ = C’ - J, which amounts to writing

cic.s=7s.cct. (B.6)
Appendix C. Recursion in onevariable

For the CB birational mappind9), one can perform the elimination ofyielding a recursion on the successive
u's (we denotex,,, u, 11, andu,2):

K (uy,vp) — (u Vpr1) = au,v, + (b — D, +cu, au,v, + by, + (¢ — Duy, (C 1)
T s Entd) = (a — Duyv, +bv, +cu,’ (@ — Duyv, +bv, +cu, /- '
The elimination ofv, permitsv, 1 to be expressed as a functionugfandu, 1 as follows:
b—1 —-b al 1-
Unsr = ( Jiplnt1 — DUyp1 + AU, + a (C.2)

(a+b—-2)(u, — 1)

Relation(C.1) is also valid shiftingz by 1 and, thus, changing, into u, 11, u,+1 into u, 2, andv, iNto v,41.
Using(C.2)to eliminatev, 1, one finds a recursion on thg’s

_ F1(un+)un — F2(upi1) (C.3)

Unt2 = )
" F3(un1)un — Faltn41)

where theF;’s are quadratic polynomials af,;1:

Fi(uny1) = a(b — Du?, — (2ab—4a — 2b + u,41 + a(b — 1),
Fa(unt1) = @b, — (2ab—3a — 3b + Huyi1 + (@ — Db — 1),
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F3(unt1) = (@ — 1)(b — Du?,, — (2ab— 3a — 3b + 4)u,41 + ab,
Fa(unt1) = (@ — Db, ; — (2ab— 2a — 4b + uys1 + (@ — D)b.

This recursion is reminiscent of the family of mappingg#if]. It has the same form as that[GfL] where theF;'s
are linear.

Note that this elimination can still be performed for higher-dimensional birational mappingSéstien 3
but doesnot yield recursions such &€.3) but, instead, algebraic relations betwegn u, 1, uni2, ..., nyp:
P(un, unt1, Unt2, .. -, “n+p) =0.

Appendix D. Complexity analysisin CP, for mapping (9)
D.1. Growth-complexity from recursidi€.3)

The degree growth-complexity can be calculated from either the maf$jiagfrom the recursiofC.3). The same
singularity in the complexity generating functions appear in both cases. In this section, the iteration is described
by the recursior{(C.3) and the degrees of the numerators of the successive (bi)rational expressions are deduced
accordingly.

e Complexity ofC.3)for a, b andc = 2 — a — b generic Let us assume that neitherb, norc = 2 —a — b are of
the form(N — 1) /N whereN is a positive integer. The degree generating function deduced from rec(@sg)n
reads:

X
Gabc(x) = m

e a=(N—-1)/N,bandc = 2—a— b generic Let us considesz = (N — 1)/N andb in (C.3), parameteb being

arbitrary. The degree generating function reads:
1-—

& = __xN+l + X .

1—2x 4 xN+1 1—x—x2—x3—...—xN

ea=(N—-1)/N,b=(M—-1)/M,c =2—a— bgeneric Let us considess = (N —1)/Nandb =M —1)/M
in (C.3), whereN > M.

Let us first consideM = 3, i.e.,b = 2/3. The degree generating function reads:

x(1—x) o N X
1—2x 4 x4+ xN+1 — xN+3 1—x—x2—x3+xN*t1(1+x)
for genericN except forN = 2, 3 and 6, for which the birational mapping becomes integrable.

Actually, for these values, the associated value ef 2 — a — b becomes of the singled-out for@® — 1)/ P,
whereP is an integer and the degree generating function reads, for instanee=féy6 andb = 2/3

x(1+x%)(L+ x%
A+x+x)A+x+x2+x3+xH(1L—x)3

with the denominator having zeros only/éth roots of unity (polynomial growth).
Let us now consideM = 4, i.e.,b = 3/4. The degree generating function reads:

Gnpe(x) = —xV 1 4

Gn3e(x) = XN+t

Gea(x) = —x' +

N1 x(1—x) — N+ X
1—2x 4 x5 4 xN+1 _ xN+4 1—x—x2—x3—x44+xNt1(1+ x4+ x2)

for genericN except forN = 2 and 4, for which the mapping becomes integrable.

Gyac(x) = —x
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For instance, foiV = 4, i.e.,a = b = 3/4, one has

x(x3—x+1)
AL+ xHA+x)1-x%

For arbitrary(N, M) values, withN > M, one conjectures the following generating function:

Gaac(x) =

_ _N+1 x(1-x
GNMe(¥) = =X+ T T L Nl N
L X .
1—x—x2—x3—. . —xM 4 XN+ A 4 x 4 ... + xM-2)

D.2. Dynamical zeta function f@®) for M even

Fora = 1/2 (namelyM = 2), b andc = 2 — a — b generic, the expansion of the dynamical zeta function,
obtained up to order 13, is compatible with a & — x? singularity for the dynamical zeta functi@p . . (x)

P2.b.c(X) = (1= x — x2) L2 p (%)
= (1= 231 =521 — 241 = 281 — x98(1 — x10) (1 — x11)22(1 — x12)3(1 — x13)20. ..

Actually, the expansion gfy 5 (x) corresponds to coefficients that dotgrow exponentially. For instance,
p2pe() =1—x3—20° — 4’ +x8 —6x% + 410 — 1M a2 —1aB 4

Unfortunately, we do not have a large enough expansion to geg, if(x), is a actually aational expression with
a denominator with zeros only atth root of unity.

Similarly, fora = 3/4 (namelyM = 4),b andc = 2 — a — b generic, the expansion of the dynamical zeta
function, obtained up to order 11, is compatible with a ¥ — x? — x3 — x* singularity for the corresponding
dynamical zeta functiogy p . (x):

pape(®) =1 —x—x* =3 —xNigp () = A - A - xH?A -2 —xH8 ...

Fora = 5/6 (namelyM = 6), b andc = 2 — a — b generic, the expansion, up to order 9, is compatible with a

1—x—x?—x3 —x* — x5 — x8 singularity

Cope() =1 —x—x2—x3—x* =5 28 c(0) =L —xHA -2 ...

Similarly, the expansions of thegés correspond to coefficients that do not seem to grow exponentially.

Appendix E. Growth-complexity for CP3

In this appendix, we consider semi-numerical iterations of map@#)gjor various values of the parameters. This
will lead us to evaluate the growth-complexityin each case. These calculations can be done either numerically,
i.e., by taking a numericattional initial point, or semi-numerically, i.e., by taking an initial point of the form
W@, v®), w®) = (aut + Bu, ayt + By, ayt + By), Wheretr is a parameter and thes and g's are integers
(this is equivalent to iterating a parameterized line) and considering generating functions of the degifethén
numerators of successiugr)’s (resp.v(r)’s or w(z)'s). Because the growth-complexityis a topological invariant
[27,28,30,31] the denominators of these (rational) degree generating functions are independent of the choice of
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the line (a,t + By, ot + By, ayt + By) that one iterates, the numerator being a slightly less universal quantity.
To obtain more universal degree generating functions, the calculation must be performed on the mapping written
homogeneously in homogeneous varialfg3y; however, this yields much larger formal calculations.

Numerically, one can have, rapidly, a very good approximation of the growth-complexjtjterating a rational
number, considering; after simplifications, namely;/D; (N; and D; are integers). The ratio of the number of
the digits of two successive numerat@fs.1 and N; (resp. two successive denominat@s 1 and D;) is a good
approximatior[27] of complexitya.

Let us show, more explicitly, how the method works in the case of our magp#)dor various subcases of the
parameters of the mapping.

E.1. Complexity of34)for a, b, c andd = 2 — a — b — ¢ generic

Let us assume that neitheyr b, ¢, nord = 2 — a — b — ¢ are of the form(N — 1)/N, whereN is a positive
integer. (We will call such a situation “generic”.) In this case, the degree generating function is always compatible,
up to order 7, with

X
Gabc(x) = 1 3

E.2. Complexity of34)fora = (N — 1)/N andb,c,d =2 —a — b — ¢, generic

Let us consider = (N — 1)/N in (34) and parameters, ¢, d = 2 — a — b — ¢ being generic£ (N — 1)/N).

e The calculations corresponding to the iteration of the (in@), v(?), w()) = (3t+2, 6:+5, —t+7), for instance,
have been performed up to order 7 fér= 2, i.e.,a = 1/2. The generating function of the degreer af the
numerators ofi(¢) has the expansion:

GSp(0) = 3x + 8% 4 25¢3 + 6%* + 18%° + 51748 + 14137 + 38615 + - - -,
which is compatible with

x(B3—x+x2 —2x% 5 1
=-1—-x"4—.
1—3x+ 23 1—3x+ 23
Similarly, for the same values af b, ¢, andd, the calculations corresponding to the iteration of another line, for

instance, the linéu(?), v(r), w()) = (¢, 11, 13), have been performed up to order 6 fdr= 2, i.e.,a = 1/2. The
generating function of the degreesdf the numerators af(r) has the expansion:

Gipe(x) =

G2 (x) = x + 3% + 93 + 25 4 6%° + 1890 + 5177 + 14138 + ...,

which is compatible with

X

(2) _
O™ = T3 128

The two methods give the same singularity— 3x + 2x3), as is expected, corresponding to the complexity
A >~ 2.73205.
e Fora = 2/3, one obtains similarly, iterating, for instance, li@&?), v(?), w(®)) = (¢, 11, 13):

Gape(x) = x + 362 4+ 9x3 + 27x* + 79 + 2318 + 675¢" + 19718 + - -
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corresponding to the following degree generating function:

X

G =T o

The singularity obtained corresponds to the complexity 2.91964.
e Fora = 3/4, one obtains:

Gape(x) = x + 3% + 93 + 27x* + 81x° + 2418 + 717" + 21338 + - ..

corresponding to the following degree generating function:

X

G4bC(-x) = 1 _ 3.X + 2X5 .

The singularity obtained corresponds to the complexity 2.97445.
We conjecture that the denominators of the generating functions should be for arhitrary 3x + 2xV+1,

E.3. Complexity of34)fora =b = (N — 1)/N andc,d = 2 —a — b — ¢ generic
Fora = b = 1/2, one obtains similarly, iterating, for instance, the lin€), v(?), w(r)) = (¢, 11, 13):
Go2:(x) = x + 302 + 7x3 + 17x* 4+ 4165 4 99x® + 230" + 5778 4+ 1393% + - -

corresponding to the following degree generating function:

x(1—2x2 + x% . X n 2x
1-3x—x*—x5+4x33  14+x ((A+x0d—-2x—x2)

G2 (x) =

The singularity obtained corresponds to the complexity 2.41421.
Fora = b = 2/3, one has the following expansion for the degree generating function:

Gaa:(x) = x + 3x2 + 9x3 + 25¢* + 716 + 201:® + 569 + 16118 + - ..
corresponding to

x1-23+x% o« N 2x
— 3= —x"T+4x* 14x (A+x)A—-2x—2x2—x3)

G33:(x) = 1

The singularity obtained corresponds to the complexity 2.83118.
Fora = b = 3/4, one deduces the following expansion for the degree generating function:

Gaae(x) = x + 3x% + WS + 27x* + 79> + 233 + 687" + 20258 + - - -
corresponding to

o) x(1—2x* + x8) X 2x
X) = = — .
ade T 3r 445819 1+x Q+0@—2vr—222— 223 %

The singularity obtained corresponds to the complexity 2.94771.
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E.4. Complexity of34)fora = (N —1)/N,b= (M —1)/M andc,d =2 — a — b — ¢ generic

Let us considesr = (N — 1)/N, b = (M — 1)/M with the simplest cas& = 2 andM = 3. The degree
generating function reads, when iterating, for instance,(li#te, v(¢), w(r)) = (¢, 11, 13):

Goze(x) = x + 3x% + 93 + 23¢% + 61x° + 16148 + 4237 + 11138 + .. - |
which is compatible with

x(1—2x3 4+ x%) _ x n 2x
1-3x+23+2¢%—x5—x6 14+x (A4+x0A—-x)A—-x—-3x2-33—x%’

Goz(x) =

The singularity obtained corresponds to the complexity 2.62966.
For N = 3 andM = 4, the degree generating function reads:

Gase(x) = x4 3% + 03 + 27x* + 77x° + 223° + 6457 + 18655 + - -,
which is compatible with

x(1—2x* +x7)
1—3x+2x4+2x5 — x7 —x8
_ X 2x
__1+x+ 1+ x)(1—x)(1—x —3x2 —5x3 —5x% — 3> — x6)°

Gaac(x) =

The singularity obtained corresponds to the complexity 2.89089.
For N = 2 andM = 4, the degree generating function reads:

Goac(x) = x + 3x% + 9> + 25x% + 67x° + 1810 + 48’ + 13198 + - . - |
which is compatible with

x(1—2x* + x5) X 2x(1 — x + x2)
G4 (x) = = - + .
1—3x+ 234+ 25— x6 — &7 1+x  (L4+20Q—x)(1—2x—x2—2x3 —x%

The singularity obtained corresponds to the complexity 2.69679.
For N = 2 andM = 5, the degree generating function reads:

Gose(x) = x + 3x% + 9x3 + 25¢* + 69x° + 18748 + 5097 + 13858 + - . - |

which is compatible with

o) x(1—2x°+x7)
X) =
2 1—3x+ 234+ 2x8 —x7 — 48
. X n XA+ 34+ 1)

- 2 .
1+x A+ x)1—x)(1—x—3x2 —3x3 — 3% — 3> — x5

The singularity obtained corresponds to the growth-compléexity2.69679.
We conjecture that, whanandb are of the fornu = (N — 1)/N andb = (M — 1)/ M, the denominators of the
generating functions should be for arbitravyandM: 1 — 3x 4+ 2xM+1 4 2N+ _ xM+N _ (M+N+1
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E.4.1. Complexity of3d)fora=b= (N —1)/N,c= (P —1)/Pandd = 2— a — b — c generic

Let us considett = b = (N — 1)/N, ¢ = (P — 1)/P. In the simplest casgy = M = 2 andP = 3, for an
iteration of, for instance, linéu(s), v(¢), w(r)) = (3t + 2, 6t + 5, —t + 7), the generating function of the degree of
the numerators of the(r)’s yields, up tok®, the expansion

G223(x) = 3x + 8x? 4 22¢% 4 52¢* + 120¢° 4 274° + 624¢” + 14188 3220 + - -
compatible with the rational expression

AL+xHA+x+x%) x(@1+x)GB+2x— 2%

o 1_ .2
o) = = A 2229 - Aol -x 2223

The singularity obtained corresponds to the complexity 2.269531.
Let us also remark that numerical calculations with rational numbers, as explained before, have been performed,
up to K1°, yielding a growths ~ 2.269518 compatible with the singularity-12x — x2 + 2x*.

E.5. Complexity of34)for a, b,c,d =2 —a — b — ¢ of the form(N — 1)/N

All of these are integrable cases. One obtains the solutions already obtained fam@Re is however one new
solution (2, 2, 2, 2) (see(C.3)). This is completely in agreement with the Diller—Favre conditif8#§ which has
been proved for Cfand seem, also, to apply for our particular mappings of.CP
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