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Abstract

We have introduced a simple family of birational transformations in the complex projective space CPn that are generated by
the product of the Hadamard inverse and an (involutive) collineation. We have been able to find the integrable subcases of the
model and also interesting cases of transcendental integrability. Beyond these integrable subcases, we have been able to describe
the degree growth-complexity of the iteration calculations of these birational mappings. These degree growth-complexities
appear to be algebraic numbers. We also obtained some simple conjectures for the growth-complexity degrees of these
birational transformations in CPn for arbitrary values ofn. For the two-dimensional mappings, an equality between the
(degree) growth-complexity and the topological entropy was found and we have given some conjectured closed expressions
for the dynamical zeta functions.
© 2003 Elsevier B.V. All rights reserved.

PACS:05.50; 05.20; 02.10; 02.20

MSC:82A68; 82A69; 14E05; 14J50; 16A46; 16A24; 11D41

Keywords:Castelnuovo–Noether theorem; Discrete dynamical systems; Iterations; Integrable and non-integrable mappings; Elliptic curves;
Cremona transformation; Birational transformations; Complexity of iterations; Polynomial growth; Diller–Favre cohomological approach;
Topological entropy; Dynamical zeta functions

1. Introduction

The theory of discrete dynamical systems has developed extensively during this last decade. However few results
are available in the literature for rational mappings in two dimensions[1], and very few are available for mappings
in more than two dimensions. Here we describe a family of birational mappings in then-dimensional complex
projective space CPn, that are built by the composition of Hadamard inverses and collineations.

To motivate this analysis, let us recall some results. Previous papers[2–10]have analyzedbirational representa-
tions of infinite discrete symmetry groups generated byinvolutions, which have their origin in the theory of exactly
solvable models in lattice statistical mechanics. These involutive birational mappings, which generate these discrete
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symmetries of the parameter space of the models, are associated with the so-calledinversion relations[11] on vertex
models, or spin models.

For vertex models, these involutions correspond, respectively, to two kinds of transformations onq× q matrices:
the inversion of theq × q matrix and a permutation1 of the entries of the matrix (corresponding to the parameter
space of the model).

Foredgespin models[17,18], the two involutions one composes correspond, for aq× q matrixM with complex
homogeneousentriesmij , to the matrix inversionI : M → M−1, together with the transformationJ that inverts
each entry of the matrix, i.e.,J : mij → 1/mij (Hadamard inverse).

For instance, for a 6× 6 matrix of the form


x y z y z z

z x y z y z

y z x z z y

y z z x z y

z y z y x z

z z y z y x



, (1)

which is a stable pattern byI (andJ of course) and corresponds to a six-state chiral Potts model in lattice statistical
mechanics[17]. The explicit formula for the inversionI is given explicitly, in terms of the inhomogeneous variables
u = y/x andv = z/x, by:

I : (u, v) →
( −u2 − u + 2v2

1 + u + 2v − u2 − 2uv − v2
,

u2 + vu − v2 − v

1 + u + 2v − u2 − 2uv − v2

)
. (2)

The transformationJ reads:(u, v) → (1/u,1/v).
One finds thatI andJ and, thus, the birational transformationK = I · J composition of the two previous

involutions, preserves the algebraic invariant

�(u, v) = (2v2 + 2vu − u2 − 2u3 − 2vu2 + v2u)(u − v2)2

(v + u)4(1 − u)(1 − v)2
, (3)

which yields afoliation of CP2 (the two-dimensional projective space associated withu andv) in elliptic curves,
where each curve has an infinite set of birational automorphisms[11]. Introducing an (infinite order) collineationC

C : (u, v) →
(

1 − u

1 + 2u + 3v
,

1 − v

1 + 2u + 3v

)
, (4)

one can immediately verify thatC intertwinesI andJ since one has the following relations:

I = C−1 · J · C. (5)

Alternatively, the infinite-order birational transformationK = I ·J can be written as the productK = C−1 ·J ·C ·J ,
which is reminiscent ofNoether’s theorem[19–22,72]concerning the factorization of Cremona transformations
into products of quadratic[73] transformations abd collineations. (The transformationJ : (u, v) → (1/u,1/v) is
the archetype of quadratic2 transformations in CP2.)

For many (non-chiral) spin-edge models (see for instance[18]), the collineationC that intertwines the matrix
inversionI and the Hadamard inversion (entries inversion)J is an involution3 and, thus, the iteration of the birational

1 Most of the time, the permutations considered in[12–16]are involutive.
2 The transformationJ in CP2 is calledquadraticbecause, written with homogeneous variables, it reads:(u, v, t) → (vt,ut,uv).
3 Related to the Kramers–Wannier duality, that is, to aZN -Fourier transform[18,23,24]. In this spin-edge models duality framework, the

collineation is an involution (for non-chiral models) most of the time, and sometimes is even a transformation of order 4[25].
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transformationK = I·J = (C·J)2 reduces to the iteration of the (generically infinite-order) birational transformation
C · J .

In the following, we will consider a family of examples ofn-dimensional birational transformations that cor-
respond to the product of a simple (involutive) collineation with the transformationJ : mij → 1/mij and that
generalize the quadratic transformation of CP2 to CPn. We will analyze the complexity of the mapping iteration
by studying the degrees of the successive birational expressions that correspond to the iteration of our mappings.
Here we will use a method that was introduced in previous papers[26–28] and is based on the examination of
successive birational expressions corresponding to the iteration of some given birational mappings. When one con-
siders the degreed(N) of the numerators (or denominators) of the corresponding successive rational expressions
for theNth iterate, the growth of this degree is (generically) exponential withN: d(N) ∼ λN . The constantλ has
been called thegrowth-complexity[29]. For CP2, it is closely related to the Arnold complexity[30,31]. Let us
also recall that two universal (or “topological”) measures of the complexities were found to identify on specific
two-dimensional examples[27–29], namely, the previous growth-complexityλ, or the (asymptotic of the) Arnold
complexity[26,27,30,31], and the (exponential of the) topological entropy[26–28,32]. The topological entropy,
ln(h), is associated with the exponential growthhN of the number of fixed points (real or complex) of theNth
iterate of the mapping[27,28,33]. These papers show that the growth-complexity4 λ is analgebraicinteger (i.e., a
solution of a polynomial expression with integer coefficients). This is related to the fact that the generating functions
of the degrees of the successive birational expressions that correspond to the iteration of these birational mappings
are quite simple rational expressions with integer coefficients. We will show that similar results also hold for the
n-dimensional mappings analyzed here.

1.1. Towards higher-dimensional generalizations: the Diller–Favre method and Noether’s theorem

In the framework of birational transformations of CP2, Diller and Favre[34] have recently introduced a co-
homological approach5 that can reproduce, in practice, all the values of the parameters of the mapping, where
the degree growth-complexityλ is diminished. Thiscohomology of curvesanalysis reduces to the consideration
of the spectrum of a finite dimensional matrix, which explains why the previous degree growth-complexityλ

is an algebraic integer. The results and theorems of Diller and Favre[34] resemble the singularity approaches
performed by various authors for specific examples[35–38], the idea being to encode the growth-complexity
in the analysis of a “finite object”, or a “skeleton”, namely, the graph of singularities, or the cohomology
H(1,1)(X).

Unfortunately, this cohomological approach becomes extremely difficult to generalize in CPn with n > 2.
Any cohomological consideration of birational transformations in CPn is drastically more complicated. This can
be understood, heuristically, by recalling the Noether’s transformation theorem6 of decomposition of birational
transformations in CP2, that is, Cremona transformations (seeAppendix A). The method of factorization of birational
maps dates back to Noether and Fano. The problem of factoring birational maps, whose origin was Noether’s theorem
[21,22]on the decomposition7 of Cremona transformations of a plane8 (see also pp. 497–498 in[42]) in a product
of quadratic transformations, is simple as compared to the three-dimensional case[43].

4 Which identifies withh for the specific mapping in[27].
5 Basically the study of the cohomology of curves, that is,H(1,1)(X), whereX is a bimeromorphic map of a Kähler surface.
6 Noether’s transformation theorem: any irreducible curve may be carried, by a factorable Cremona transformation[39], into one with none

but ordinary singular points[40,41].
7 Note that this theorem is not an effective theorem: it says that this decomposition exists but does not give an algorithm to actually obtain this

decomposition.
8 For plane transformations this is a result of Rosanes, Clifford, Noether, and later, but more rigorously, Castelnuovo.
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Cremona transformations of higher-dimensional projective spaces also exist, but they no longer share with the
plane transformations the property of being generated by those of order 2 (the so-called quadratic transformations)
[43,44]. The richer behavior of higher-dimensional Cremona transformations is connected with the greater variety
of singularities that a surface can have[45–48], as Noether and Cremona remarked. In this direction, Sarkisov
announced a three-dimensional generalization of the Castelnuovo–Noether theorem, the so-called Sarkisov program
[49,50]. These works show that one can decompose birational maps with four types of elementary links (see
Appendix A).

Naively, one can imagine that the subset of birational maps such that the Noether’s decomposition still holds
(i.e., birational maps that are products of collineations and generalizations to CPn of the quadratic transformation
of CP2, namely(x1, . . . , xn) → (1/x1, . . . ,1/xn)) is a singled-out subset of mappings that should have simpler
sets of singularities as compared to the most general birational mappings in CPn. Hopefully, one can generalize the
cohomological approach of Diller and Favre for this subset of birational maps.

In the following, we will introduce a simple family of birational transformations in CPn (n = 2,3,4, . . . )
generated by the simple products of the Hadamard inverse and (involutive) collineations. Remarkable results for the
growth-complexity, and the topological entropy, will be obtained for these “Noetherian” birational transformations.
Furthermore, we will also give a list of the integrability subcases of these mappings.

2. A CP2 birational transformation associated with an involutive collineation

Let us construct a mapping as product of two involutions,C andJ , acting on CP2. We consider the standard
quadratic involutionJ (or Hadamard inverse) defined as follows on the three homogeneous variables(t, x, y)

associated with CP2:

J : (t, x, y) → (xy, ty, tx). (6)

We also introduce the following 3× 3 matrix, acting on the three homogeneous variables(t, x, y):

C =



a − 1 b c

a b − 1 c

a b c − 1


 (7)

and the associated collineation which reads, in terms of the two inhomogeneous variablesu = x/t andv = y/t

(u, v) → (u′, v′) =
(
a + (b − 1)u + cv

(a − 1) + bu+ cv
,
a + bu+ (c − 1)v

(a − 1) + bu+ cv

)
. (8)

In the following, since there is no possible ambiguity, we will use the same notation,C, to denote a matrix like(7)
or the associated collineation(8).

If one sets the conditionc = 2 − a − b, the matrixC becomes a “stochastic-like” matrix9 (the sum of the
entries in each row is equal to 1) and an involutive matrix (C2 is the identity 3× 3 matrix Id). Furthermore, its
determinant is equal to+1. Under these three conditions (C2 = Id , det(C) = +1 and the “stochasticity” condition,
i.e., the sum of the entries in each row equals 1), it appears that the unique non-trivial 3× 3 solution, which is
non-straightforwardly reducible to a 2× 2 matrix10 compatible with these conditions, is given by the matrix(7).

9 The entries of stochastic matrices, associated with Markov chains, are probabilities and therefore are non-negative. We do not require such
an assumption here and in the following.
10 Thus yielding “separable” mappings such that, for instance, theu-component of the two-dimensional mapping is a function ofu only:
K(u, v) = (Ku(u),Kv(u, v)).
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Fig. 1. Phase portrait fora = 0.498 andb = c = 0.751.

(When one sets det(C) = −1 instead of det(C) = +1, one obtains another interesting family of mappings, which
will be addressed elsewhere.)

The birational mappingK = C · J , corresponding to the product of these two involutions, reads as follows, in
terms of the two inhomogeneous variablesu = x/t andv = y/t

K : (u, v) → (u′, v′) =
(

auv + (b − 1)v + cu

(a − 1)uv + vb + cu
,

auv + bv + (c − 1)u

(a − 1)uv + bv + cu

)
, (9)

where one setsc = 2− a− b. Note, however, that many of the results obtained in the following are independent of
this condition as will be seen below. Generically, the birational mapping(9) is notan integrable mapping, as can be
seen, for arbitrary values ofa andb, in Fig. 1.

The successive iteratesKN(u, v) of the birational mapping(9) are birational expressions. Their numerators and
denominators are polynomial expressions inu andvwhose degrees grow exponentially with the number of iterations
when the mapping is not an integrable[14,51]. One can introduce various generating functions of these successive de-
grees of the numerators or denominators[14,51]. The growth of these degrees, also calleddegree growth-complexity,
gives a “magnitude” of the topological complexity of the mapping. The degree growth-complexity will be analyzed
in Section 4.
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2.1. Parameter symmetries of(9)

Due to the symmetry induced by the group of permutations of the homogeneous variables(t, x, y), one deduces
the following equivalence between mappings with different parameters(a, b, c)

(u′ = v, v′ = u) → (a′ = a, b′ = c, c′ = b),(
u′ = 1

u
, v′ = v

u

)
→ (a′ = b, b′ = a, c′ = c),

(
u′ = v

u
, v′ = 1

u

)
→ (a′ = b, b′ = c, c′ = a),(

u′ = 1

v
, v′ = u

v

)
→ (a′ = c, b′ = a, c′ = b),

(
u′ = u

v
, v′ = 1

v

)
→ (a′ = c, b′ = b, c′ = a). (10)

For instance, if the mapping has a given growth-complexity for the parameters(a, b, c), it will have the same
growth-complexity for the parameters(a, c, b), . . . , (c, b, a).

2.2. Mapping(9) as a measure-preserving mapping

Let us note thatu− 1,v− 1 andu− v are covariant under transformation(9) and, thus, the three linesu− 1 = 0,
v − 1 = 0, andu − v = 0 are globally invariant under transformation(9) even if conditionc = 2 − a − b is not
verified. Restricted to these (globally) invariant lines, transformation(9) reduces to a linear fractional transformation
and a translation forc = 2 − a − b (see below). The singled-out role played by these three lines is clear inFig. 1.
If one considers the productρ(u, v) = (u − 1)(v − 1)(u − v), a straightforward calculation shows that Jac(u, v),
the Jacobian of(9), is actually equal to

Jac(u, v) = (a + b + c − 1)
ρ(u′, v′)
ρ(u, v)

= det(C)
ρ(u′, v′)
ρ(u, v)

, (11)

where(u′, v′) is the image of(u, v) under the birational transformation(9). The conditionc = 2 − a − b is
sufficient to have a measure-preserving transformation[32,52]: the measure that is preserved by transformation(9)
is dµ = dudv/ρ(u, v). This measure is shown clearly inFigs. 1 and 2, where there is a spray of points concentrated
near the three linesu−1 = 0,v−1 = 0, andu−v = 0. Because the mapping is two-dimensional, the relation(11)
means that the birational mapping can be transformed (up to a continuous change of variable) into an area-preserving
map[32,52].

When the determinant det(C) is equal to+1, the restriction of mapping(9) to the three globally invariant lines
u = 1, v = 1, andu = v reduces to a translation. On the lineu = 1, the mapping can be written as the simple
translationvr → vr + a + b − 1 wherev is replaced byvr = 1/(v − 1). On the linev = 1, the mapping becomes
ur → ur +1−b, whereu is replaced byur = 1/(u−1). On the lineu = v, the mapping becomesur → ur +a−1,
whereu = v is replaced byur = vr = 1/(u − 1).

It may happen that for some particular values of the parameters, another measure, dµ2 = dudv/ρ2(u, v), is also
preserved

Jac(u, v) = ρ(u′, v′)
ρ(u, v)

= ρ2(u
′, v′)

ρ2(u, v)
. (12)

It is then clear that the mapping is integrable (seeSection 6). For invariance, the invariant of the transformation is
the ratioρ/ρ2.
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Fig. 2. Zoom of a phase portrait fora = 0.498 andb = c = 0.751.

2.3. A systematic(u, v)-symmetric analysis

One can try to find, systematically, all the collineationsC such that the Jacobian of transformationK = C · J
satisfies(11). Instead, let us consider an easier problem, namely, finding the collineationsC such that the algebraic
covariant expressionsρ(u, v) are rational expressions that arealsocovariant by the Hadamard inverseJ(u, v) =
(1/u,1/v). To perform an exhaustive classification of these collineations, let us restrict ourselves even further, by
considering all the collineationsC that yield a given covariantρ(u, v); for instance, the(u, v)-symmetric11 covariant
expressionρ(u, v) of the mapping(9), namely,ρ(u, v) = (u − 1)(v − 1)(u − v). In this case, one obtains a set of
six 3× 3 matrices which are given inAppendix B: thet areCA toCE and the matrix(7). These matrices reduce, up
to equivalences, to only three different collineations associated with 3× 3 matrices given inAppendix B, namely
the matrices(7), CA, andCD. One easily verifies that these matrices are “stochastic-like” (the vector(1,1,1) is an
eigenvector). When one requires that the determinant be+1, one finds that their characteristic polynomials read,
respectively,(t − 1)(t + 1)2 for CA, CB, CC, and(7), and(t − 1)(t2 − t + 1) for CD andCE of Appendix B.

11 Let us remark thatρ(u, v) = (u− 1)(v− 1)(u− v) is not the only covariant of(8) which is also aJ-covariant; the individual factorsu− 1,
v−1 andu− v are also covariant (u = 1,v = 1 andu = v are invariant lines), but these factors, or even the product of only two of these factors,
can hardly satisfy(11).
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One easily finds that matrix(7) is an involution when its determinant is+1, and that matricesCD andCE are
matrices of order 6 when their determinant is±1. In contrast, the matricesCA, CB, CC and(7) are infinite-order
matrices when their determinant are equal to±1 (the matrix(7) is also infinite order when its determinant is−1).

If one requires that the determinant, det(C), be equal to−1, then one obtains Jac(u, v) = −ρ(u′, v′)/ρ(u, v);
thus, the mapK2, rather thanK, must be measure-preserving.12 When the determinant is equal to−1, the restriction
of mappingK2 (which is the square of(9)) to the three invariant linesu = 1, v = 1, andu = v, is no longer a
translation on these three lines: each point of these three lines is a fixed point ofK2!

3. The Diller–Favre method and criterion

In the following, out aim is to describe more quantitatively the growth-complexity in terms of the parameters
a, b, c, of the mappings(9). Many methods are available[27–29,51], such as counting the degrees, counting the
fixed points, studying the singularities, calculating gcd’s, etc. In this section, we use the Diller–Favre method[34]
to describe the singularities of the mapping. For the mapping(9), we give the equivalent of Lemmas 9.1 and 9.2 in
[34].

Among the cases where the complexity is diminished, the integrable cases play a special role. The integrable cases
are deduced from an integrability criterion[34] using mathematical considerations in dealing with the indeterminacy
sets and exceptional sets[34] of mappingK, and theanalytical stability[34] of the mapping. In that way, one obtains
all the integrable cases, together with the cases of lower degree growth-complexity. Let us apply the method to our
particular mapping.

The Jacobians of transformationsK andK−1 are given by:

J(K) = (a + b + c − 1)
uv

((a − 1)uv + cu+ bv)3
,

J(K−1) = (a + b + c − 1)2
(a − 1) + bu+ cv

(a + (b − 1)u + cv)2(a + bu+ (c − 1)v)2
.

Here we assume that the conditionc = 2 − a − b is satisfied (meaning that the first factora + b + c − 1, in the
previous expressions of the Jacobians, is equal to 1). The JacobianJ(K) vanishes onu = 0 and onv = 0, and
becomes infinite whenv = (a + b − 2)u/((a − 1)u + b) = −cu/((a − 1)u + b). The Jacobian ofK−1, namely
J(K−1), vanishes onv = −((a−1)+bu)/c and becomes infinite whenv = (a+bu)/(a+b−1) = (a+bu)/(1−c)

or v = (a + (b − 1)u)/(a + b − 2) = −(a + (b − 1)u)/c.
Using the same terminology as in[34], one can show that the exceptional locus13 of K is given by:

E(K) =
{
(u = 0); (v = 0);

(
v = −cu

(a − 1)u + b

)}

and the indeterminacy locus[34] of K is given by:

I(K) =
{
(0,0);

(
b

b − 1
,1

)
;
(

1,
c

c − 1

)}
.

Actually, for (u, v) = (0,0), theu andv components ofK are both of the form 0/0, for (u, v) = (b/(b− 1),1) the
v component ofK is of the form 0/0 and for(u, v) = (1, c/(c − 1)), theu component ofK is of the form 0/0.

12 More generally, forKN(u, v) = (u′, v′), one obtains Jac(KN)(u, v) = (a+ b+ c − 1)Nρ(u′, v′)/ρ(u, v) which yields measure-preserving
maps but with complex values of the parameters:c = 1 − a − b + ω with ωN = 1.
13 Corresponding toJ(K) = 0 orJ(K) = ∞.
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Similarly, forK−1, the exceptional locus and the indeterminacy locus read, respectively, as

E(K−1) =
{(

v = − (a − 1) + bu

c

)
;
(
v = a + bu

1 − c

)
;
(
v = a + (b − 1)u

c

)}
,

I(K−1) =
{
(∞,∞);

(
b − 1

b
,1

)
;
(

1,
c − 1

c

)}
.

To check whetherK is analytically stable[34], one must compute the orbit of the exceptional setE(K). This can be
easily done using the fact that(u − 1)(v − 1)(u − v) = 0 is invariant byK.

It is easy to see that the successive images ofu = 0 byK give

(0, v) →
(
b − 1

b
,1

)
→
(

2
b − 1

2b − 1
,1

)
→ · · · →

(
n(b − 1)

nb− (n − 1)
,1

)
, (13)

that the successive images ofv = 0 byK give

(u,0) →
(

1,
a + b − 1

a + b − 2

)
→
(

1,2
a + b − 1

2(a + b) − 3

)

→ · · · →
(

1,
n(a + b − 1)

n(a + b) − (n + 1)

)
=
(

1,
n(c − 1)

nc− (n − 1)

)

and that the successive images byK of v = (a + b − 2)u/((a − 1)u + b) = −cu/((a − 1)u + b) give(
u,

−cu

(a − 1)u + b

)
→ (∞,∞) →

(
a

a − 1
,

a

a − 1

)
→
(

1

2

2a − 1

a − 1
,

1

2

2a − 1

a − 1

)

→ · · · →
(
(n − 1)a − (n − 2)

(n − 1)(a − 1)
,
(n − 1)a − (n − 2)

(n − 1)(a − 1)

)
. (14)

On the other hand, the successive images ofv = −((a − 1) + bu)/c byK−1 give(
u,− (a − 1) + bu

c

)
→ (0,0) →

(
a − 1

a
,
a − 1

a

)
→
(

2(a − 1)

2a − 1
,

2(a − 1)

2a − 1

)

→ · · · →
(

n(a − 1)

na− (n − 1)
,

n(a − 1)

na− (n − 1)

)
,

the successive images ofv = (a + bu)/(a + b − 1) = (a + bu)/(1 − c) byK−1 give(
u,

ub+ a

−1 + a + b

)
→
(

−1 − b + ub

ua− a − u
,∞

)
→
(

1,
c

c − 1

)
→
(

1,
1

2

2c − 1

c − 1

)

→ · · · →
(

1,
1

n

nc− (n − 1)

c − 1

)

and the successive images ofv = (a + (b − 1)u)/(a + b − 2) = −(a + (b − 1)u)/c byK−1 give(
u,−a + (b − 1)u

c

)
→
(

∞,− c(u − 1)

(u − 1)a − u

)
→
(

b

b − 1
,1

)
→
(

1

2

2b − 1

b − 1
,1

)

→ · · · →
(

1

n

nb− (n − 1)

b − 1
,1

)
.

Forn ≥ 2, all thesenth iterates (byK orK−1) belong to one of the threeK-invariant linesu = 1, v = 1, oru = v.
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The Diller–Favre method[34] focus on the analytical stability of the birational mappings. The Diller and Favre
statement is that the mappingK is analytically stable if and only ifKn(E(K)) /∈ I(K) (resp.K(−n)(E(K−1)) /∈
I(K−1)) for all n ≥ 1. The inspection of these constraints singles out the values of the parametersa, b andc, of the
form (N − 1)/N whereN is a positive integer. For instance, recalling(13) and (14), an image ofE(K) by K can
become one of the three indeterminacy points ofI(K):(

n(b − 1)

nb− (n − 1)
,1

)
=
(

b

b − 1
,1

)
⇒ b = n

n + 1
,(

(n − 1)a − (n − 2)

(n − 1)(a − 1)
,
(n − 1)a − (n − 2)

(n − 1)(a − 1)

)
= (0,0) ⇒ a = n − 2

n − 1

and similarly withK−1.
In the following, we will say that the parametera, b, or c is genericif it is not of the form(N − 1)/N, where

N is a positive integer. One immediately deduces from the conditionKn(E(K)) /∈ I(K) that the mapping14 K is
analytically stable if the parameters do not belong to three setsS1, S2 or S3 given by:

S1 : a = M − 1

M
, b, c generic, a + b + c = 2, S2 : b = N − 1

N
, a, c generic, a + b + c = 2,

S3 : c = P − 1

P
, a, b generic, a + b + c = 2,

whereM,N, andP arepositiveintegers. These three sets actually correspond to three independent cases oflower
complexity. One has a reduction of complexity forS1, S2 or S3. ForS1 ∩ S2, S2 ∩ S3 andS1 ∩ S3 one gets further
reductions of complexities. In the next section, we will see this reduction of complexity more quantitatively, by
calculating, for every case, the corresponding degree growth-complexity (Arnold complexity)[30,31].

Integrability takes place forS1 ∩ S2 ∩ S3, which corresponds to a finite number of cases. This means that one has
to find three positive integersM,N,P such that

2 − M − 1

M
− N − 1

N
− P − 1

P
= 0. (15)

There is a finite set of solutions of(15), which are(M,N, P) = (3,3,3), (2,4,4), (2,3,6), (∞,2,2), (∞,∞,1),
and, also, all the equivalent cases(4,2,4), (4,4,2), (2,6,3), (3,6,2), (3,2,6), (6,2,3) , (6,3,2), (2,∞,2),
(2,2,∞), (∞,1,∞), (1,∞,∞); seeEqs. (10). Cases like(1,∞,∞) give trivial mappings and will not be con-
sidered. The cases such as(2,2,∞) correspond to reductions to CP1. For instance(2,2,∞), i.e.,a = b = 1/2,
c = 1, corresponds to

K : (u, v) → (u′, v′) =
(

−uv − v + 2u

uv − v − 2u
,− (u + 1)v

uv − v − 2u

)
. (16)

Introducing the variable

w = (u + 1)v + 2(u + v2)

2(u + v2)
, (17)

the transformation(16) reduces to a linear fractional transformation

Kw : (v,w) → (v′, w′) =
(
(v + 1)(w − 1)

(1 − w)v + w
,w

)
. (18)

14 Let us remark that the same setsSi can be obtained when applying the method to mappingK−1 instead ofK. This is not true for a general
mapping.
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Note that whenK2, but notK, is a measure-preserving map (det(C) = −1, i.e.,c = −a−b), the singularity analysis
is quite different and will be considered elsewhere.

Remark. A more “pedestrian” approach to find these singled-out values(N − 1)/N amounts to considering
finite-order conditions forK and seeking curves (not points) that are solutions of these conditions (a phenomenon
that occurs on the integrable mappings). Let us denote by(KN)u(u, v) and(KN)v(u, v) theu andv components of
KN , respectively, and consider the two polynomial conditions corresponding to the numerators of the two equations
(KN)u(u, v) − u = 0 and(KN)v(u, v) − v = 0. The resultant (inu for instance) of these polynomial conditions
factorizes into polynomial expressions inv (corresponding to finite-order points) and also into expressions that
do not depend onv, like for instance, 2(a + b) − 3 for K4, 3(a + b) − 4 for K5, etc., which mean precisely
1 − 2c,2 − 3c, . . . , (N − 1) − Nc.

Another “pedestrian” approach to find these singled-out values(N − 1)/N, which is related not to integrability
but, rather, to a straightforward analysis of the degree growth-complexity, amounts to seeking a common polynomial
factor in the numerator and the denominator of(KN)u(u, v) (resp. the numerator and denominator of(KN)v) and
calculating the resultant (inu for instance) of the numerator and the denominator of(KN)u(u, v). ForK3 (N = 3)
this resultant factorizes into polynomial expressions inv and into expressions that do not depend onv, like, for
instance forK3

u: (a + b) − 2, 2(a + b) − 3, and 3(a + b) − 4. More details on these two approaches can be found
in [16].

4. Degree growth-complexity of the mapping (9)

It has been recalled, in the introduction, that the (topological) complexity of a birational mapping can be evaluated
by considering the degreesd(N) ∼ λN of the numerators (or denominators) of the corresponding successive rational
expressions for theNth iterate of the mapping[26–28]. In this respect, the introduction of the generating functions
of these successive degreesd(N) has been seen to be a powerful tool to encode this complexity, to evaluate or
conjecture closed algebraic formula for this degree growth-complexityλ [29], which is closely related, in two
dimensions, to the Arnold complexity[30,31]. The introduction of these generating functions is motivated by
the fact that they have been found to be rational expressions for all the birational mappings (and even rational)
mappings we have studied[51,53], yielding the degree growth-complexityλ to be simple algebraic integers. Let
us recall, again, that the previous growth-complexity[29] λ (or the Arnold complexity[26,27,30,31]) and the
(exponential of the) topological entropy[26–28,32], associated with the exponential growthhN of the number of
fixed points (real or complex) of theNth iterate of the mapping, were found to identify for specific two-dimensional
birational examples[27,28]. Similarly, the evaluation ofh requires the introduction of an important generating
function, namely thedynamical zeta function(see below). The identification between these two topological quantities
for evaluating the complexity, the degree growth-complexityλ (Arnold complexity in two dimensions) and the
topological entropy is not totally understood. Theseλ = h identifications will be considered in the next section for
mapping(9).

For mapping(9), the degree growth-complexity can be calculated either from the iteration of mapping(9), or
from a recursion (see(C.3) in Appendix C). The same singularity in the degree generating functions must occur in
both cases.

Let us denote byKu andKv the two components of the iterate of(u, v) by K: K(u, v) = (Ku(u, v),Kv(u, v)).
ExpressionsKu andKv are rational functions ofu andv given by(9). The generating functionsGu(x) (resp.Gv(x))
of the successive degrees ofu (resp.v) in the numerator ofKN

u (u, v) (which is equivalent to the iteration of the line
v = constant (resp.u = constant)) read, respectively,
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• For the generic case (a, b, c = 2 − a − b generic):

Gu(x) = Gv(x) = x

1 − 2x
. (19)

• Whena = (M − 1)/M (M a positive integer),b, andc = 2 − a − b generic:

Gu(x) = Gv(x) = x

1 − 2x + xM+1
. (20)

For various values of the positive integerM, the value ofλ, which characterizes the growth of the successive
degrees (� λn), belongs to the interval(1 + √

5)/2 ≤ λ < 2, that is, 1.618034≤ λ < 2.
• Whena = (M−1)/M andb = (N−1)/N (M andN positive integers) andc = 2−a−b generic, the generating

functions read as

Gu(x) = x − xN+1

1 − 2x + xM+1 + xN+1 − xM+N
, Gv(x) = x − xN+3

1 − 2x + xM+1 + xN+1 − xM+N
. (21)

The largest of the inverse of the zeros of polynomial(1− 2x+ xM+1 + xN+1 − xM+N) in terms ofM andN corre-
sponds to the growth-complexityλ. For various values of the positive integerM andN, one has 1.324718< λ < 2.
It appears fromEq. (21)that these|x| < 1 singularities of the otherEq. (20)are obtained as the limitN → ∞ of (21).

Eqs. (19)–(21)have been checked,15 up to order 8 of the iteration (K8), for many values ofM andN. When
one uses recursion(C.3)of Appendix Cto evaluate this degree growth-complexity, one recovers exactly the same
singularity as in(19)–(21)(seeAppendix Cfor more details).

5. Dynamical zeta functions

It is interesting to compare the previous results, giving the generating functions for the successive degrees of the
iterates (Arnold complexity or growth-complexity), with the corresponding dynamical zeta functions to see if the
singularities of these two sets of generating functions identify, thus yielding an identification between these two
(topological) complexities: the Arnold complexity and the topological entropy[26–28].

Let us just briefly recall here, that, by analogy with the Riemannζ function, Artin and Mazur[54] introduced a
powerful object, the so-calleddynamical zeta function:

ζ(x) = exp

( ∞∑
m=1

#fix(Km)
xm

m

)
, (22)

where #fix(Km), denotes the number16 of fixed points of orderm.
Similarly to the previous section, the calculations of the dynamical zeta functions have been performed fora, b

andc generic, also fora = (M − 1)/M andb andc generic, and finallya = (M − 1)/M andb = (N − 1)/N
(M andN positive integers) withc generic. The results are as follows. Fora andb generic, the expansion of the
dynamical zeta function has been calculated, up to order 10, and is agreement with

ζ(x) = 1 − x

1 − 2x
. (23)

For a = (M − 1)/M, for M a positiveodd integer, andb andc generic, the expansion of the dynamical zeta
functions have been calculated for various values ofM (M = 3,5,7, . . . ), up to order 10, and are agreement with

15 And numerically iterating variousrational points up to order 15. See alsoAppendix C. The rapid convergence of these results conforts this
conjecture.
16 If one of these numbers is infinite the definition breaks down.
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the expansion of

ζM(x) = 1 − x

1 − 2x + xM+1
= 1

1 − x − x2 − x3 · · · − xM
. (24)

Fora = (M−1)/M andb = (N−1)/N, where bothM andN are positive odd integers, the expansion of the dynam-
ical zeta functions have been calculated for variousoddvalues ofM andN ((M,N) = (3,5), (3,7), (3,9), (5,7),
(5,9), (7,9), . . . ) the dynamical zeta function, calculated up to order 10, are in agreement with the expansion of

ζM,N(x) = 1 − x

1 − 2x + xM+1 + xN+1 − xM+N
. (25)

For even values ofM andN, the exact expressions for the dynamical zeta functions seem to be more involved,
and difficult, to “guess” (seeAppendix Dwith expansions of the dynamical zeta function forM = 2 and 4, with
2 − a − b, b generic).

However, all these results also indicate thesamesingularities as those of the degree generating functions(20)
and (21), namely 1− 2x + xM+1 and 1− 2x + xM+1 + xN+1 − xM+N . This confirms the identification between
the Arnold complexity and topological entropy, early seen on specific examples in[26–28]. In this paper, we will
not try to give the dynamical zeta functions for higher-dimensional mappings (in CPn, n ≥ 3) but only the degree
generating functions for these mappings, since the counting of fixed points for mappings of more than two variables
yields larger, and more subtle, calculations (seeSection 8.5).

6. Cases of integrability of mapping (9)

For the integrable cases, the generating functionsGu(x) andGv(x) degenerate into rational expressions with
root-of-unity singularities:

G(2,4,4)
u (x) = x(1 + x2 + x3 − x4 + x5)

(1 − x)3(1 + x)(1 + x2)
, G(2,4,4)

v (x) = x(1 + x + x2)(1 − x + x2)

(1 − x)3(1 + x)(1 + x2)
,

G(2,3,6)
u (x) = x(1 + x2 − x3 + x4)

(1 − x)3(1 + x + x2)
, G(2,3,6)

v (x) = x(1 + x + x2 + x3 + x4)

(1 − x)3(1 + x + x2)(1 + x)
,

G(3,3,3)
u (x) = x(1 + x2 − x3 + x4)

(1 − x)3(1 + x + x2)
, G(3,3,3)

v (x) = x(1 + x)(1 − x + x2)

(1 − x)3(1 + x + x2)
,

G(2,2,∞)
u (x) = x

(1 − x)2
, G(2,2,∞)

v (x) = x(1 + x2)

(1 − x)2
.

The last two simple generating functions,G
(2,2,∞)
u (x) andG(2,2,∞)

v (x), correspond to linear fractional transfor-
mations (see(18)). Let us remark that for the integrable cases, the conjecture(21) does not yield the correct
denominators. For example, one obtains the singularity(1 − x − x3) for (2,4,4) and (2,3,6), and(1 − x − x2) for
(3,3,3). However, this is not a problem since the integrable cases are singled-out situations that arenot obtained
continuously from the other non-generic cases.

In these integrable cases, one can even calculate the corresponding algebraic invariants of the mapping. For
instance, forM = N = 2 (P = ∞) the algebraic invariant of transformation(9) reads(17)or equivalently:

I2,2,∞(u, v) = v(u + 1)

(u − v)(v − 1)
. (26)
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ForM = N = P = 3, the algebraic invariant of transformation(9) reads:

I3,3,3(u, v) = (1 + u + v)(uv + u + v)

(u − 1)(v − 1)(u − v)
. (27)

ForM = 2,N = 3,P = 6, it reads:

I2,3,6(u, v) = (v + 1)(v + 3 + 2u)(v + 2u)(2v + u)(3vu + 2v + u)

(v − 1)2(u − 1)(u − v)3

andM = 2,N = P = 4, it reads:

I2,4,4(u, v) = (v + 2 + u)(v + 2vu + u)(v + u)

(v − 1)(u − 1)(u − v)2
.

The invariants that correspond to the other equivalent cases can be obtained from the invariants given above by using
the correspondences(10). As it has been remarked above, all these integrable cases correspond to the appearance
of a new invariant measure for the mapping(9).

Pictorially, the various orbits associated with the algebraic curves corresponding to different values ofI3,3,3

(u, v), intersect at somebase points. Therefore, these base points must correspond to indeterminacy values of

Fig. 3. The integrable caseM = 3,N = 3,P = 3: a linear pencil of fifty algebraic curves.
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I3,3,3(u, v). Actually the base points are the points for which the numerator and the denominator of the al-
gebraic invariant(27) are simultaneously equal to zero, yielding an indeterminate value of the algebraic
invariant.

Fig. 3shows a set of 50 orbits corresponding to the integrable caseM = 3,N = 3,P = 3. They make clear the
existence of a foliation of CP2 in (algebraic) curves. These curves correspond to a so-calledlinear pencilof curves.
On this figure, the existence of the so-called base points of the linear pencil is also quite clear. It is also clear that the
base points are located on the three globally invariant linesu− 1 = 0, v− 1 = 0 andu− v = 0, which correspond
to the denominator of the algebraic invariant(27).

When one considers the birational mapping(9) for the parametersa, b, and c near the previous integrable
values, namelya = 0.66667 andb = 0.6666633 (c = 2 − a − b), one sees, withFig. 4, that asingleorbit of
this non-integrable mapping gives a “spray” of points reminiscent of the integrable foliation ofFig. 3. The base
points of the integrable foliation ofFig. 3 can clearly still be seen on the orbit ofFig. 4. Furthermore, one sees
that this spray of points has a higher density on a lineu + v + 1 = 0 and a hyperbolauv + u + v = 0, which
actually correspond to the numerator of algebraic invariant(27). One recovers the fact that the base points are
located on the simultaneous vanishing conditions of the numerators and denominators of the algebraic invariants
(here(27)).

Fig. 4. Deformation of the integrable caseM = 3,N = 3, andP = 3: a single orbit fora = 0.66667,b = 0.6666633 andc = 0.6666667.
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7. Transcendental integrability of (9)

Let us consider the mapping defined by(7), for c = 0 (or equivalentlya = 0 orb = 0)

K : (u, v) →
(

au+ 1 − a

(a − 1)u + (2 − a)
,

auv + (2 − a)v − u

v((a − 1)u + (2 − a))

)
. (28)

In this case, a simplification of the mapping can be done by performing the following change of variables:

t = 1

(u − 1)
, s = u − v

(u − 1)(v − 1)
.

One obtains a new mapping in these new variables(t, s), given by:

Ks : (t, s) →
(
t′ = a − 1 + t, s′ = s(a − 1 + t)

1 + t

)
. (29)

One sees that the action ont is just a translation by(a − 1). The action ofKN
s can be easily expressed by:

KN
s : (t, s) → (tN, sN) =

(
N(a − 1) + t, s

Γ(((t + a − 1)/(a − 1)) + N)Γ((t + 1)/(a − 1))

Γ((t + a − 1)/(a − 1))Γ(((t + 1)/(a − 1)) + N)

)
, (30)

whereΓ denotes the usual Gamma function. The following quantityI(a, t, s), defined forc = 0, given in terms of
Gamma functions, is invariant by transformation(30)

I(a, t, s) = s
Γ((t + 1)/(a − 1))

Γ((t + a − 1)/(a − 1))
, (31)

thus providing an example17 of a transcendental invariantexpressed in terms of transcendental functions. In this
“transcendental integrability” case, however, the degrees of the numerators of the successive iterates of the mapping,
have a polynomial growth, and the generating function of these degrees reads:

Gtrans
u (x) = x

(1 − x)2
. (32)

For the values ofa of the form(M − 1)/M, whereM is a positiveor negativeinteger, one has a simplification of
the Gamma functions, and the invariant(31), defined forc = 0, becomes a rational expression. For example,

I(5/4, t, s) = s(4t + 1)(2t + 1)(4t + 3), I(4/3, t, s) = s(3t + 1)(3t + 2),

I(3/2, t, s) = s(2t + 1), I(2, t, s) = s, I(0, t, s) = s

t(t + 1)
,

I(1/2, t, s) = s

t(t + 1)(2t + 1)
, I(2/3, t, s) = s

t(t + 1)(3t + 2)(3t + 1)
.

We remark that this “transcendental” integrability cases is not given by the Diller–Favre conditions[34] of
Section 3.

8. A CP3 birational transformation associated with an involutive collineation

To see how the previous results extend to CPn, let us introduce a collineation associated with the 4× 4 matrix,
similarly to Section 2

17 Other similar examples of transcendental invariants, associated with birational mappings, have also been obtained in[55].
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C =



a − 1 b c d

a b − 1 c d

a b c − 1 d

a b c d − 1


 , (33)

whered = 2 − a − b − c. Similarly to(7), this 4× 4 matrix is also aninvolutivematrix whend = 2 − a − b − c.
Its determinant is equal to−1. Furthermore,C is also a “stochastic-like” matrix when conditiond = 2− a− b− c

is imposed: the sum of the entries in a row is equal to+1.
Introducing, again, the Hadamard inverseJ(u, v,w) = (1/u,1/v,1/w), the birational mappingK = C · J ,

corresponding to the product of the two involutionsC andJ , reads:

(u, v,w) → (u′, v′, w′) =
(

auvw + (b − 1)vw + cuw + duv

(a − 1)uvw + vwb + cuw + duv
,

auvw + vwb + (c − 1)uw + duv

(a − 1)uvw + bvw + cuw + duv
,

auvw + bvw + cuw + (d − 1)uv

(a − 1)uvw + bvw + cuw + duv

)
. (34)

In contrast with the previous CP2 birational mapping(9), the elimination ofw andv doesnot yield a recursion on
the successiveu’s (we can denoteun, un+1, un+2 andun+3) but yields a polynomial algebraic relation:

P(un, un+1, un+2, un+3) = 0,

whereP is a polynomial of degree 2 inun andun+3 and of degree 6 inun+1 andun+2 with integer coefficients.

8.1. Mapping(34)as a measure-invariant mapping

As for mapping(9) in CP2, one can show that the expressionsu − 1, v − 1,w − 1, u − v, v − w andw − u are
all covariantunder transformation(34). If one considersρ(u, v,w) = (Cov(u, v,w))2/3 where:

Cov(u, v,w) = (u − 1)(v − 1)(w − 1)(u − v)(v − w)(u − w), (35)

a straightforward calculation shows, whend = 2−a−b− c, that the Jacobian of transformation(34), Jac(u, v,w),
is actually equal to:

Jac(u, v,w) = ρ(u′, v′, w′)
ρ(u, v,w)

, (36)

where(u′, v′, w′) is the image of(u, v,w) under the birational transformation(34). Condition(36) is a sufficient
to have a measure-preserving transformation[32,52]: the measure preserved by transformation(34) is actually
dudvdw/ρ(u, v,w).

The three-dimensional mapping(34) is measure-preserving which means, again, that, up to a continuous change
of variable (see[32]), the birational mapping(34) can be changed into avolume-preserving map. The fact that,
up to change of variables, one is no longer area-preserving (as inSection 2.2) but volume-preserving is clear on
the “texture” of orbits of the mapping as can be seen inFig. 5, which displays 50 orbits corresponding to the
iteration of(34)with parametersa = 0.7529,b = 0.75 andc = 0.4999999, whered being deduced by the relation
d = 2 − a − b − c, namelyd = −0.0028999. Let us recall that, in thed → 0 limit, the mapping(34)degenerates
into the two-dimensional mapping(9), which is, up to a change of variable, equivalent to an area-preserving map. If,
instead of the previous values fora, b andc one considers values such thatd becomes “smaller”, the mapping(34)
tends to become, up to a change of variables, equivalent to an area-preserving map. This is clear fromFig. 6which
corresponds to a phase portrait (50 orbits) typical of area-preserving maps;Fig. 7is intermediate between the phase
portraits of area-preserving maps and volume-preserving maps.



20 S. Boukraa et al. / Physica D 185 (2003) 3–44

Fig. 5. Phase portrait of the volume-preserving mapping(34), up to a change of variables.

8.2. An integrable case

In the framework of such families of measure-preserving maps, the integrability cases can be seen as the occurrence
of another preserved measure. Actually, whena = b = c = d = 1/2, the mapping(34) becomes integrable and
one can easily see that another independent measure is preserved. In that case, the Jacobian ofK reads:

Jac(u, v,w) = 16
v2w2u2

(uvw − vw − uw − uv)4
. (37)

Let us introduce

Hu = (u + 1)2(v + w)2, Hv = (v + 1)2(u + w)2, Hw = (w + 1)2(u + v)2

These three expressions are covariant expressions for transformation(34)and are such that

Jac(u, v,w) = Hu(u
′, v′, w′)

Hu(u, v,w)
= Hv(u

′, v′, w′)
Hv(u, v,w)

= Hw(u
′, v′, w′)

Hw(u, v,w)
, (38)
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Fig. 6. Phase portrait of mapping(34): the area-preserving limit.

where(u′, v′, w′) is the image of(u, v,w) under the birational transformation(34). From these equalities(38), one
deduces easily the following algebraic invariants of transformation(34):

Iu = (w + 1)(u + v)

(v + 1)(u + w)
, Iv = (u + 1)(v + w)

(w + 1)(u + v)
, Iw = (v + 1)(u + w)

(u + 1)(v + w)
, (39)

the product of these three expressions being equal to+1, IuIvIw = 1. Therefore, the orbits of the iteration of(34)
are algebraiccurveshaving the following equations:Iu = ρ andIv = µwhereρ andµ are two constants depending
on the initial point(u, v,w) in the iteration.

If one uses the second equationIv = µ to eliminate the variablew, one obtains a reduced integrable (birational!)
mapping inu andv

(u, v) → (u′, v′) =
(

µu2 − v2u2 + v2 − µv2

v2u2 − 2µvu2 − 2µv2u − v2 + 2µvu + µv2 + µu2
,

µv2 − v2u2 − 2v2u − v2 + 2u2v + 2vu − µu2

v2u2 − 2µvu2 − 2µv2u − v2 + 2µvu + µv2 + µu2

)
(40)

with the following algebraic invariant (deduced fromIu after elimination ofw):
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Fig. 7. Phase portrait of mapping(34): towards area-preserving limit.

Ireduced(u, v) = (u + v)(v − 1)(u + 1)

(µu2 − u2 − u + µvu + vu + v − µu − µv)(v + 1)
.

From this invariant, one can obtain the base points of the projection on the(u, v) plane of the orbits of(34):
(u, v) = (0,0), (−1,1), (1,1), (−1,1) and(−1,−1).

Fig. 8 shows a set of 50 orbits of mapping(34), which make clear the integrability of the mapping and, again,
make clear the existence of base points for the (two-dimensional)projectionof these orbits.

8.3. Growth-complexity of mapping(34)

The following calculations of the degree generating functions have been obtained by iterating a parametric curve
in t, (u(t), v(t), w(t)) (which is a line most of the time), and then counting the intersections of its iterates with
another fixed line (v = µ, for example, whereµ is a constant). This amounts to calculating the degree oft in the
numerator ofu(t), for example.

Semi-numerical results, detailed inAppendix E, show that one has, as an extension of the Diller–Favre conditions
of Section 3, diminished complexities for the various values of(a, b, c, d) = (a, b, c,2−a−b−c)wherea, b, c, or
d are of the form(N − 1)/N (N a positive integer). One has the following denominators for the degree generating
functions for the various values of(a, b, c, d) = (a, b, c,2 − a − b − c):
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Fig. 8. Projection of 50 orbits of(34): an integrable foliation for(40).

• a, b, c andd = 2 − a − b − c all generic:(1 − 3x), yieldingλ = 3.
• a = (N − 1)/N and all the other parametersb, c andd = 2 − a − b − c generic:

◦ N = 2, i.e.,a = 1/2: (1 − 3x + 2x3), giving a growthλ � 2.73205,
◦ N = 3, i.e.,a = 2/3: (1 − 3x + 2x4), giving a growthλ � 2.91963,
◦ N = 4, i.e.,a = 3/4: (1 − 3x + 2x5), giving a growthλ � 2.97445.
We conjecture that the denominators of the generating functions should be, for arbitraryN: (1 − 3x + 2xN+1).

• a = b = (N − 1)/N andc, d generic:
◦ N = 2, i.e.,a = b = 1/2: (1 − 3x + 4x3 − x4 − x5), giving λ � 2.41421,
◦ N = 3, i.e.,a = b = 2/3: (1 − 3x + 4x4 − x6 − x7), giving λ � 2.83118,
◦ N = 4, i.e.,a = b = 3/4: (1 − 3x + 4x5 − x8 − x9), giving λ � 2.94771.

• a = (N − 1)/N, b = (M − 1)/M andc, d generic:
◦ N = 2 andM = 3, i.e.,a = 1/2, b = 2/3: (1 − 3x + 2x3 + 2x4 − x5 − x6), giving λ � 2.62966,
◦ N = 3 andM = 4, i.e.,a = 2/3, b = 3/4: (1 − 3x + 2x4 + 2x5 − x7 − x8), giving λ � 2.89089,
◦ N = 2 andM = 4, i.e.,a = 1/2, b = 3/4: (1 − 3x + 2x3 + 2x5 − x6 − x7), giving λ � 2.69679,
◦ N = 2 andM = 5, i.e.,a = 1/2, b = 4/5: (1 − 3x + 2x3 + 2x6 − x7 − x8), giving λ � 2.71951.
We conjecture for these two previous cases (a = (N − 1)/N, b = (M − 1)/M andc, d = 2− a− b− c generic)
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that the polynomial

PN,M(x) = 1 − 3x − xN+M − xN+M+1 + 2xN+1 + 2xM+1

is the denominator of the degree generating function.
• a = b = (N − 1)/N, c = (P − 1)/P andd = 2 − a − b − c generic:

◦ a = b = 1/2, c = 2/3: (1 − 3x + x2 + x3 + 2x4 − 2x5) with λ � 2.26953.
• a, b, c, d, all of the form (N − 1)/N: These are all integrable cases. Except a new solution(2,2,2,2) (i.e.,
a = b = c = d = 1/2), all the other integrable cases correspond to having one of the parametersa, b, c, d equal
to 0; the mapping thus reduces to an integrable mapping(9) in CP2. One thus obtains the extensions of solutions
already obtained for CP2, up to the previous new genuinely CP3 solution(2,2,2,2).

For more detail on these semi-numerical calculations, seeAppendix E.
Let us finally note that these results are completely in agreement with the Diller–Favre conditions[34], which

have been proved only for CP2, even-though they also seem to apply for our class of particular mappings of CPn

constructed as products of collineations and Hadamard inverses.

8.4. Conjectures on complexities

Conjecture 1. In view of all the previous semi-numerical results, we conjecture, for CP3, that the denominators
of the generating functions(which corresponds to the polynomial associated to the complexities) should be for
a = (M − 1)/M, b = (N − 1)/N, c = (P − 1)/P andd generic, as follows(M,N,P positive integers):

DN,M,P(x) = 1 − 3x − (1 + x)(xM+P − xN+M − xP+N) + 2(xN+1 + xM+1 + xP+1) + 2xN+M+P . (41)

DN,M,P(x) becomes forP = 1 (i.e., for c = 0, corresponding to a reduction to a two-dimensional mapping):

DN,M,1(x) = (1 − 2x + xN+1 + xM+1 − xN+M)(1 − x). (42)

One recovers, in thisc = 0 limit, theCP2 conjecture(seeEq. (21)).

Conjecture 2. The casea = (M − 1)/M, b = (N − 1)/N (M,N are positive integers), c andd generic, can be
obtained by setting theP = ∞ limit in (41), namely

DN,M(x) = 1 − 3x − xN+M − xN+M+1 + 2xN+1 + 2xM+1. (43)

The casea = (M − 1)/M, b, c, d generic can be obtained by setting the limitsN = ∞ andP = ∞ in (41), namely

DM(x) = 1 − 3x + 2xM+1. (44)

When considering all the possible values of the(positive) integersN,M, andP , one finds that the growth-complexity
λ belongs for(41) to the interval2.26953< λ < 3, for (43) to 2.41421< λ < 3,and for(44) to 2.73205< λ < 3.

Let us remark that all these conjectures are valid in “generic enough” cases, that is, when the complexity is
reduced fromλ = 3 to various algebraic integers according as one of the three parametersa, b, c is of the form
(M − 1)/M. However, when the mapping becomesintegrable, these conjectures areno longer valid. For instance,
whenM = N = P = 2 (which is the only new integrable case beyond reductions to the mapping(9) of CP2),
conjecture(41) is not valid. In that case, the conjectured polynomial(41) factorizes into(1− 2x)(1+ x)2(1− x)3,
which is not compatible with the integrability of the mapping (seeSection 8.2), similarly to what happened with the
two-dimensional mapping(9) (see alsoSection 6). Another integrable case is, for instance, whenN = M = P = 3,
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which corresponds tod = 2 − a − b − c = 0, and, thus, to a reduction to the mapping(9) of two variables of CP2
(seeSection 8.6andFig. 3). The conjectured polynomial(41) is not valid in this integrable case, since it factorizes
as(1− 2x− 2x2)(1+ x+ x2)2(1− x)3: a polynomial growth of the calculations gives only singularities on the unit
circle.

8.5. Dynamical zeta functions for the three-dimensional mappings

Similarly to the calculations performed inSection 5, it is tempting to try to calculate the dynamical zeta function
for the three-dimensional mapping(34), andif the dynamical zeta function is a simple enoughrational function,
compare the denominators of this rational function with the ones previously conjectured for the degree generating
functions(41)–(44). When performing these calculations, one immediately faces the problem that the Weil cycle
decomposition way of calculating the expansions of the dynamical zeta functions[26] becomes much more subtle,18

and involved, in more than two dimensions. Basically, one finds in three dimensions (and it is even more complicated
in higher dimensions) that the set of fixed points of the mappings is “stratified” in algebraic varieties of various
dimensions. Actually, for the three-dimensional mapping(34) the set of fixed points is isolated points andalso
algebraic curves of fixed points.

Before sketching a specific example (mapping(34) for N = 2,M = 2 andP = 3), let us recall the Weil cycle
decomposition of dynamical zeta functions[26]. An alternative way of writing the dynamical zeta functions relies
on the decomposition of the fixed points intocycles, which corresponds to the Weil conjectures[56]. Let us introduce
Nr, the number of irreducible cycles ofKr: for instance, forN12, we count the number of fixed points ofK12 that
are not fixed points ofK, K2, K3, K4 orK6, and divide by 12. One can write the dynamical zeta function as

ζ(x) = 1

(1 − x)N1

1

(1 − x2)N2

1

(1 − x3)N3
· · · 1

(1 − xr)Nr
· · · . (45)

The combination of theNr ’s, inherited from the product(45), automatically takes into account the fact that the total
number of fixed points ofKr can be obtained from fixed points ofKp, wherep dividesr, and from irreducible fixed
points ofKr itself (see[56] for more details).

Let us now consider, for instance,K223, which denotes the mapping(34) for N = 2,M = 2, andP = 3. The
fixed points ofK223 arenot isolated points but areall the points of the line(u, v,w) = (1, t, t). Instead of the
(complex and real) isolated points one could expect for the fixed points ofK2

223, one finds acurveof fixed points of
K2

223, namely the rational curveΓ :

u(t) = (t + 2)(t − 1)

3t + 5
, v(t) = (t + 3)(1 − t)

4(t + 1)
, w(t) = −2

(t + 3)(t + 2)

(3t + 5)(t + 1)
. (46)

Eachpoint ofΓ is a fixed point ofK2
223. One could imagine, at first sight, and in a naive cycle viewpoint, that the

rational curveΓ transforms byK223 into another (rational) curveΓ ′, this curve being also transformed intoΓ by
K223. In fact, one finds the following action ofK223 onΓ :

K223 : (u(t), v(t), w(t)) →
(

1

u(t)
,

1

v(t)
,

1

w(t)

)
. (47)

In other words, on the rational curve(46), the action ofK223 identifies with the action of the Hadamard inverseJ .
Furthermore, the points(1/u(t),1/v(t),1/w(t)) do not correspond to a new curveΓ ′ but actually belong to(46).
The transformationK223, or the Hadamard inverseJ , is, in fact, represented on(46)by the involutive automorphism:

18 This can also be seen in the Diller–Favre cohomological approach[34]: the cohomology is drastically more complicated.
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K223 or J : t → t′ = t + 7

t − 1
. (48)

However, sinceK223 is the product of the involutionJ and of a collineationC223, the rational curve(46)must be a set
of fixed points ofC223. The fixed points of the collineationC223correspond to the hyperplane 3u+4v+2w+3 = 0.
The rational curve(46) thus corresponds to points belonging to this hyperplane and such that Hadamard inverse
alsobelongs to this hyperplane

3u + 4v + 2w + 3 = 0 and
3

u
+ 4

v
+ 2

w
+ 3 = 0.

With this example, one sees that the counting of cycles of “fixed algebraic curves” has to be performed carefully:
the action of a birational mappingK on algebraic curveΓ1 of fixed points ofKnm can, for instance, generaten
different curvesΓα (α = 1, . . . , n), each of these curves being preserved by automorphisms of orderm.

For the three-dimensional mapping(34), one sees from the previous calculations(46) that it may be interesting
to define two dynamical zeta functions: a dynamical zeta functionζpoint associated with counting the number of
isolated fixed points(45), and a dynamical zeta functionζcurve associated with counting the number of “fixed
algebraic curves” such as(46).

In the generic case, one obtains one fixed point ofK, namely(u, v,w) = (1,1,1). ForK2, one could expect,
at first sight, at least six cycles of isolated points, corresponding to the six reductions of(34) into (9) for u = v,
w = v, u = w, u = 1, v = 1, andw = 1, on which(34)becomes the generic mapping(9) which has one cycle for
K2. In fact, one finds that these six cycles belong to a generalization of the rational curve(46), namely an algebraic
(elliptic) curve of fixed points ofK2, defined by the equations:

w = uv
b + c − 2 + 2a + cv + bu

(b + c − 2 + 2a)uv + cu+ bv
,

E(u, v) = b(c + av)u2 + b(a + cv)v + ac(1 + v2)u − 2((ab+ bc+ ca) − 2(a + b + c) + 2)uv = 0. (49)

A straightforward calculation shows thateachpoint of the algebraic curve(49) is a fixed point ofK2. One easily
verifies that the second equationE(u, v) = 0 is an algebraic curve of genus 1, the involution(u, v) → (1/u,1/v),
leavingE(u, v) = 0 invariant, and changingw, given by(49), into 1/w. The elliptic curve(49) is thus globally
invariant by the Hadamard inverseJ and, thus, by the involutionC · J · C.

The study of the fixed points ofK3 or K4 yields quite large formal calculations. With the analysis of the fixed
points ofK or K2 our expansions of the “point” or “curve” dynamical zeta functions,ζpoint andζcurve, or their
product, are too short to compare them with simple expressions generalizing(23) like

ζ3d(x) = 1 − x

1 − 3x
or

1 − 2x

1 − 3x
, . . . .

Preliminary calculations of dynamical zeta functions of the three-dimensional mapping(34) will be detailed else-
where.

8.6. Reductions and symmetries of the mapping

Similarly to mapping(9), one has a set of symmetries of permutations of the parametersa, b, c, andd of mapping
(34). This comes from the fact that the four lines and columns of the 4× 4 matrix (33) are on the same footing.
Among these permutations of the four parametersa, b, c, d, one must distinguish the permutations of the three
parametersb, c, d, which are clearly, and simply, associated with the permutations of the three variablesu, v,w.
The permutations involvinga with one of the three parametersb, c, d, correspond to slightly more complicated
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transformations on the three variablesu, v,w. For instance, permutingaandb is equivalent to changing(u, v,w) into
(1/u, v/u,w/u). This is the straightforward generalization of the parameter symmetries(10)for the two-dimensional
mapping(9). These remarks generalize, in a straightforward manner, to CPn.

Let us now consider, with the example of mapping(34), two different types of reductions from CPn to CPn−1,
namely reductions associated with limits on the foura, b, c, d parameters and reductions associated with restricting
the mapping to the vanishing conditions of the covariantρ(u, v, . . . ).

Let us consider the first reduction, assuming that one of four parametersa, b, c, d (which are on the same footing),
for instanced, is taken equal to 0. From matrix(33) one sees, immediately, that, as far as the variablesu andv are
concerned, the mapping(34) is identical to mapping(9), the last variable being transformed as

w → 1 + 1 − w

(a − 1) + bu+ cv
. (50)

In CPn, one will have a similar result, namely that if one of then + 1 parameters of the(n + 1) × (n + 1) matrix
defining the collineation is taken equal to zero, the mapping degenerates into a mapping in CPn−1.

Let us now consider the second kind of reductions, by restricting the mapping(34) to the varietyv = w. This
condition is preserved by the mapping(34)(see also the covariance of(35)). The mapping(34)with the parameters
a, b, c, d = 2− a− b− c then reduces to mapping(9) with the parametersa′ = a, b′ = b, c′ = 2− a− b = c+ d.
This is a consequence of the fact that thev = w limit amounts to reducing matrix(33) to matrix (7) with the
parameters(a, b, c) of (7) equal to(a, b, c + d). Of course, one has similar results for theu → 1 limit (or v → 1,
etc.), corresponding to the other factors of the covariant(35).

9. Higher-dimensional mappings (CP4)

These results generalize to CP4 by considering a 5× 5 matrix generalizing(9) and (34):

C =




a − 1 b c d e

a b − 1 c d e

a b c − 1 d e

a b c d − 1 e

a b c d e − 1



. (51)

One easily verifies, again, that this (stochastic-like) matrix is involutive whene = 2− a− b− c− d. The birational
transformation deduced from the product of the associated collineation and the Hadamard inverseJ(u, v,w, z) =
(1/u,1/v,1/w,1/z), readsK(u, v,w, z) = (u′, v′, w′, z′) where, for instance,u′ reads:

u′ = Ku(u, v,w, z) = auvwz+ (b − 1)vwz+ cuwz+ duvz+ euvw

(a − 1)uvwz+ bvwz+ cuwz+ duvz+ euvw
, . . . .

9.1. A hypervolume-preserving property

Similarly to CP2 and CP3, one immediately verifies thatu − 1, v − 1,w − 1 andz − 1 and alsou − v, v − w,
w − z, andz − u, are covariant under the action of(9). The following polynomial:

Cov(u, v,w, z) = (u − 1)2(v − 1)2(w − 1)2(z − 1)2(u − v)3(v − w)3(w − z)3(z − u)3 (52)

associated with the cyclic permutation symmetry(u, v,w, z) → (v,w, z, u) is covariant by(9). One sees that the
Jacobian of transformation(9) is given by:
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Jac(u, v,w, z) = (a + b + c + d + e − 1)

(
Cov(u′, v′, w′, z′)
Cov(u, v,w, z)

)1/4

, (53)

where(u′, v′, w′, z′) denotes the image of(u, v,w, z) under the birational transformation(9). One thus deduces
that, providede = 2 − (a + b + c + d), the birational transformation(9) is hypervolume-preserving map, up to a
change of variables.

9.2. New invariants for mapping(9)

The variablesu, v,w, zare, however, on the same footing: one does not have only the cyclic symmetry(u, v,w, z) →
(v,w, z, u) corresponding to covariant(52), but the full groupS4 of permutations of these four variables.19 There-
fore, one can also introduceall the covariantsu − w, v − z, etc., and their associated cofactors, for example,

K : u − w → Cuw(u, v,w, z)(u − w),

Cuw(u, v,w, z) = vz

(a − 1)uvwz+ bvwz+ cuwz+ duvz+ euvw
, (54)

and similar expressionsCuv, Cvz, etc., sharing thesamedenominator (which is also the denominator in mapping
(9)). One then immediately deduces, from the simple product form of their numerators, relations such as:

Cuw(u, v,w, z)Czv(u, v,w, z) = Czu(u, v,w, z)Cvw(u, v,w, z), (55)

which means that the following expression is actually an algebraic invariant of transformation(9):

I4(u, v,w, z) = (z − v)(u − w)

(z − u)(v − w)
. (56)

Note that this last result is valid even if relatione = 2 − (a + b + c + d) is not verified.
As a consequence, up to a change of variables, the hypervolume-preserving property of this birational mapping

of four variables reduces to a volume-preserving property (up to a change of variables).

9.3. Restrictions to invariant varieties

Restricting the mapping to the invariant varietyI4(u, v,w, z) = ρ, whereρ is a constant, mapping(9) now reads
kρ(u, v,w) = (u′, v′, w′) with, for instance, on the first coordinate:

u′ = ρu(v − w)G1(u, v,w) − v(u − w)G2(u, v,w)

ρu(v − w)G3(u, v,w) − v(u − w)G4(u, v,w)
, (57)

with

G1(u, v,w) = auvw + duv + cuw + bvw + (e − 1)vw,

G2(u, v,w) = auvw + duv + cuw + euw − (b − 1)vw,

G3(u, v,w) = (a − 1)uvw + duv + cuw + (b + e)vw,

G4(u, v,w) = (a − 1)uvw + duv + (c + e)uw + bvw.

This CP3 restriction is also measure-preserving fore = 2 − a − b − c − d, as can be seen directly calculating the
Jacobian Jac(u, v,w) of this reduced transformation(57). Introducing the covariant expression:

Cov(u, v,w) = (u − v)(v − w)(w − u)(u − 1)(v − 1)(w − 1), (58)

19 And even a “hidden”S5 of permutation (just think projectively).
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one finds that the Jacobian Jac(u, v,w) of the reduced transformation(57) is actually such that:

Jac(u, v,w) = (a + b + c + d + e − 1)

(
Cov(u′, v′, w′)
Cov(u, v,w)

)2/3

, (59)

which is in complete agreement with relation(36)obtained for CP3.

9.4. Conjecture on the complexity degrees

Finally, for CP4, we conjecture that the growth complexitiesλ of mapping(9) are related to the zeros of the
following polynomial:

DCP4(x) = 1 − 4x + 3(xM+1 + xN+1 + xP+1 + xQ+1) − 3xM+N+P+Q

−(1 + 2x)(xM+N + xM+P + xM+Q + xN+P + xN+Q + xP+Q)

+(2 + x)(xM+N+P + xM+P+Q + xM+N+Q + xN+P+Q). (60)

The validity of this conjecture has been tested numerically, up toK6, for many values ofM,N,P , andQ. Expression
(60) reduces to conjecture(41) in theQ = 1 (resp.P = 1, etc.) subcase.

10. Higher-dimensional mappings CPn,n > 4

The previous results generalize to CPn by considering a(n+ 1)× (n+ 1) matrix generalizing(9), (34) and (51),
such that the entries in each column are equal and the sum of the entries in each row is normalized to 2, and then
subtracting the(n + 1) × (n + 1) identity matrix.

10.1. New invariants forCPn, n > 4

Many new invariants can be given forn > 4; however, only(n−3) of these are algebraically independent. When
taking into account these algebraically independent invariants, the mapping inCPn always reduces to a mapping in
CP3. Let us show this explicitly forn = 5. The expressionP2

1P
n−1
2 = P2

1P
4
2, where

P1(u, v,w, x, y) = (u − 1)(v − 1)(w − 1)(x − 1)(y − 1),

P2(u, v,w, x, y) = (u − v)(v − w)(w − x)(x − y)(y − u)

is covariant and, in a similar way as inSection 9.2, one can obtain several algebraic invariants for the mapping, as,
for example

I
(1)
5 (u, v,w, x, y) = (y − w)(x − v)

(x − y)(v − w)
, I

(2)
5 (u, v,w, x, y) = (v − w)(u − y)

(u − w)(y − v)
,

I
(3)
5 (u, v,w, x, y) = (u − w)(x − v)

(u − v)(x − w)
. (61)

However, these invariants arenotalgebraically independent. They satisfy algebraic relations such that

I
(1)
5 I

(2)
5 I

(3)
5 + I

(1)
5 I

(3)
5 − I

(2)
5 I

(3)
5 − I

(1)
5 − I

(3)
5 = 0 (62)

and, hence, only two of them are algebraically independent. Again these results do not require the sum in a row of
the entries of the(n + 1) × (n + 1) matrix to be normalized to 1.
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By composing these invariants, which are associated to elementary transpositions of two coordinates, one obtains
other algebraic invariants associated, for instance, with permutations of three coordinates:

I
cycle
5 (u, v,w, x, y) = (u − v)(x − w)(u − y)

(y − v)(u − w)(u − x)
. (63)

10.2. Hypervolume-preserving property forCPn

A straightforward generalization of the results of the previous section shows thatu1−1, u2−1, u3−1, . . . , un−1,
and alsou1 −u2, u2 −u3, u3 −u4, . . . , un−1 −un, are covariant expressions of the birational mapping generalizing
(9) and (34), and, similarly, the straight generalization ofρ (see(35), (36)), namely

ρ(u1, u2, . . . , un) =
(

n∏
i=1

(ui − 1)2(ui − ui+1)
n+1

)1/n

(64)

with un+1 = u1, is such that the Jacobian of the birational transformation is of the formρ(u′
1, u

′
2, . . . , u

′
n)/

ρ(u1, u2, . . . , un) where(u′
1, u

′
2, . . . , u

′
n) denotes the image of(u1, u2, . . . , un) by the birational transformation in

CPn.
The birational transformation is the product of an involutive collineation and of the Hadamard inverse

(J(u1, u2, . . . , un) = (1/u1,1/u2, . . . ,1/un)) which is also a measure-preserving transformation associated with
the measure dµJ = ∏n

i=1 dui/ui (for n even).
However, the measure-preserving character of our multi-dimensional birational transformations is, in fact, the

consequence of the fact that the covariantρ(u1, u2, . . . , un), closely related to the preserved measure, isalso
covariant for the Hadamard inverseJ andthe collineationC separately. Let us calculate the cofactor of the covariant
ρ(u1, u2, . . . , un) for mappingK = C · J seen as a successive product ofJ andC

J : ρ(u1, u2, . . . , un) → ρ

(
1

u1
,

1

u2
, . . . ,

1

un

)
= (u1u2u3 · · · )Nρ(u1, u2, . . . , un),

C : ρ(u1, u2, . . . , un) → (u1u2u3 · · · )N det(C)ρ(u′
1, u

′
2, . . . , u

′
n). (65)

Denoting by Jac[C] and Jac[J ] the Jacobian of the collineationC and transformationJ , one sees that these two
transformations satisfy a “pre-measure-preserving property”(11)

Jac[C](u1, u2, . . . , un) = −det(C)
ρ(C(u1, u2, . . . , un))

ρ(u1, u2, . . . , un)
,

Jac[J ](u1, u2, . . . , un) = −ρ(J(u1, u2, . . . , un))

ρ(u1, u2, . . . , un)
. (66)

The Jacobian of transformationK = C · J can easily be deduced from(66)

Jac[K](u1, u2, . . . , un) = Jac[C](J(u1, u2, . . . , un))Jac[J ](u1, u2, . . . , un)

= det(C)
ρ(C(J(u1, u2, . . . , un)))

ρ(J(u1, u2, . . . , un))

ρ(J(u1, u2, . . . , un))

ρ(u1, u2, . . . , un)

= det(C)
ρ(K(u1, u2, . . . , un))

ρ(u1, u2, . . . , un)
. (67)

The transformationK = C ·J is measure-preserving when det(C) = +1. In fact, one could try to find systematically
the measure-preserving mappings of the formK = C · J , such that an algebraic covariantρ(u1, u2, . . . , un) is,
separately, covariant byJ andC and, then, such that condition(67) is verified (seeAppendix Bfor CP2).
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Combining the results of this section with those ofSection 10.1, one sees that these CPn mappings can be reduced,
up to a change of variables, to volume-preserving maps.

10.3. Conjecture on degree complexity for higher-dimensional mappings

Expressions(41), (42), (44) and (60), giving the degree growth-complexityλ for a particular set of values of the
parameters, can be generalized for CPn, as follows. Ifn of then+ 1 parameters of the collineation matrixC are of
the form:

a1 = N1 − 1

N1
, a2 = N2 − 1

N2
, . . . , an = Nn − 1

Nn

, (68)

whereN1, . . . , Nn are positive integers and the last parameteran+1 is deduced from

n∑
i=1

Ni − 1

Ni

+ an+1 = 2, (69)

the polynomial generalizing(41)or (60)becomes

DCPn(x) = 1 − nx−
n∑
i=1

(−1)i((n − i)x + (i − 1))Si(N1, N2, . . . , Nn; x), (70)

where

S1(N1, N2, . . . , Nn; x) = ∑n
i=1 x

Ni,

S2(N1, N2, . . . , Nn; x) = ∑
i1>i2

xNi1+Ni2 , . . . ,

...

Sk(N1, N2, . . . , Nn; x) = ∑
i1>i2>i3>···>ik x

Ni1+Ni2+···+Nik ,

...

Sn(N1, N2, . . . , Nn; x) = xN1+N2+···+Nn.

(71)

Sk(N1, N2, . . . , Nn; x) is an expression ofx containingCn
k monomials ofx.

When not all the parameters are of the form(68), then one has to use the limitsNi → ∞ for those parameters
which are not of the form(68), as explained inSection 8for CP3.

When all the parameters are not of the form(N − 1)/N (N ≥ 0), thenDCPn(x) = 1 − nx, giving a maximal
growth-complexityλ = n. As far as the growth-complexityλ is concerned, the minimal non-trivialλ is given for
CPn from the polynomial

Pn(x) = 1 − (n − 2)x − (n − 1)x2 − (n − 1)x3, (72)

giving λmin � 3.2206928, 4.18438717, 5.157447054, for respectively CP4, CP5 and CP6. For CPn, with n large,
this givesλmin → n − 1 + 1/n − 2/n3 − 1/n4 · · · .

Remark. Integrability. It has been seen, inSection 8.6, that when one of the parametersa, b, . . . of the mapping
is equal to zero, then-dimensional mapping reduces to an(n − 1)-dimensional mapping. Any integrable case of
ann-dimensional mapping can thus be seen as an integrability case for an(n + 1)-dimensional mapping with one
of its parameters being equal to zero. InSection 8.2a genuinethree-dimensional integrability (not reducing to a
two-dimensional mapping in some way) was found for the examplea = b = c = d = 1/2. In fact, it has been seen
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that integrability corresponds to the situation where all then+ 1 parametersa1, . . . , an+1 are of the form(68), i.e.,
where there existn + 1 positive integersNi such that

n+1∑
i=1

Ni − 1

Ni

= 2. (73)

Seeking such genuinen-dimensional integrability, one may try to find all the positive integersN1, . . . , Nn+1 different
from one (Ni = 1 meansai = 0 and thus a reduction to ann− 1-dimensional mapping) that satisfy(73). Actually,
one finds that there are no solutions of(73)with Ni �= 1 whenn ≥ 4.

11. Conclusion

We have introduced a simple family of birational transformations in CPn, generated by the simple products of the
Hadamard inverse and of (involutive) collineations. Several results for the growth-complexityλ, and the dynamical
zeta function (topological entropy), were obtained for these birational transformations. In particular, we have been
able to produce some simple algebraic conjectures for the growth-complexity of our birational transformations in
CPn for arbitrary values ofn. For the two-dimensional mappings we were also able to give some simple conjectures
for the dynamical zeta function in agreement with the previous conjectures, and in agreement with an identification
between Arnold complexity and topological entropy. The integrability cases of these mappings were given and it
was found that some transcendental integrability, with a polynomial growth of the calculations, may occur for these
mappings: we actually obtained a closed expression for this transcendental integrability.

These calculations can be generalized in many directions: for instance, one can imagine to find, systematically, all
the measure-preserving “Noetherian maps” built from similar products of the Hadamard inverse and of a collineation,
and analyze them in a similar way. One can imagine to relax the involutive character of the collineations or, even,
the measure-preserving properties of the mappings. A much more ambitious goal amounts to trying to obtain the
expansion of the dynamical zeta functions for higher-dimensional “Noetherian maps” (CPn with n ≥ 3), in order
to deducerational conjecturesfor these dynamical zeta functions and compare these rational expressions with the
degree generating functions of these birational mappings.

Birational transformations in CPn become a very large set of transformations[57,58]. Actually, it can be seen that
one doesnothave a Noether theorem any longer. However, one still has much more involved decomposition theorems
[59,60]explaining that birational transformations can be decomposed into Hadamard inversions, collineations, but,
unfortunately, also other (“stretching”) transformations. The set of birational transformations in CPn is so large
that, forn > 2, the cohomological approach of Diller and Favre[34] can no longer be applied.20 However, in
this paper, one sees that birational transformations generated from collineations and Hadamard inversions (or the
matrix inverse[51]) yield exponential growth of the iteration calculationsλN whereλ are clearly simplealgebraic
integers (see(41)–(44), (60) and (70)), the conjectured results forn > 2 beingstraight generalizationsof the
results forn = 2. This strongly suggests that it should be possible to generalize the CP2 cohomological approach
of Diller and Favre[34] for some “well-suited”subgroupof the birational transformations in CPn. In this respect,
it is certainly interesting to consider the subset of birational transformations in CPn which have such aNoetherian
decomposition, that is birational transformations in CPn which can be written as arbitrary products of collineations
and of the Hadamard inverseJ . We will call “Noetherian birational transformations” such transformations. Is it
necessary, in order to perform such a cohomological approach for birational transformations in CPn, to restrict,
even further, this subset of Noetherian birational transformations? All the calculations performed in this paper were

20 One cannot reduce to the study of the cohomology of curves. The cohomology becomes very involved.
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greatly favored by the simplicity of our Noetherian mappings (in particular their measure-preserving properties, as
far as the dynamics is concerned, as can be seen on the phase portraits). It is not clear if this remarkable property is a
necessary ingredient in order to generalize the CP2 cohomological approach of Diller and Favre, though it certainly
simplifies the analysis of singularities. We think that the rationality of the degree generating functions, we obtained
for simple particular Noetherian birational transformations, should be understood by some generalization of this
cohomological approach. The question is: which additional constraints should be imposed in order to be able to
describe the corresponding cohomology?
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Appendix A. Towards higher-dimensional generalization of Noether’s theorem

Birational geometry really starts with Noether’s paper[19] on Cremona transformations. A Cremona trans-
formation of the projective plane is a slippery thing. It is not quite a map from CP2 to CP2; rather, it is a map
from “almost all” of CP2 to “almost all” of CP2. To define such a transformation, Cremona took three curves
of the same degree, sayn, whose equations areFi(x, y, z) = 0, i = 1,2,3, and mapped the point [x, y, z] to
[F1(x, y, z), F2(x, y, z), F3(x, y, z)]. In modern terms, this is a map at the point [x, y, z] provided it is not the case
that all theFi(x, y, z)’s vanish there, i.e., unless the point [x, y, z] lies on all three curves: such a point is called
a base point. Birational geometry remained for a long time a “sleeper” probably, as far as mathematicians are
concerned, because of the “slippery” nature of the transformations at first sight (i.e., proliferation of singularities: is
the iteration of birational transformation well-defined on a Zariski set?). The modern period of birational geometry
really started with Manin’s papers on geometry of surfaces over non-closed fields[61,62]. The breakthrough into
higher dimensions was made in 1970 in the papers of Iskovskikh and Manin[63]. In Iskovskikh and Manin[63],
using certain ideas of Noether and Fano, developed a new method of study of birational correspondences between
algebraic varieties, which have no non-trivial differential-geometric birational invariants: the method of maximal
singularities. The results, which were obtained by means of this method in the seventies, were summed up in 15 years
ago in[64,65]. Since that day, considerable progress has been made in the field. It is worth noting that, although we
have now new approaches and concepts[66], this method, up to this day, is the most effective tool in the birational
geometry.

As far as generalizations of the Castelnuovo–Noether theorem and decompositions of Cremona transformations
are concerned, let us recall the following. It is known that any birational map between CP1-bundles over a smooth
curve (which are classical examples of Mori fiber spaces) can be decomposed into elementary transformations. One of
the main problems is to investigate birational maps between Mori fiber spaces. In this direction, Sarkisov announced
a three-dimensional generalization of the Castelnuovo–Noether theorem, the so-called Sarkisov program[49,50]:
if one considers factoring birational maps of threefolds after Sarkisov, a birational transformation between minimal
models is an isomorphism in codimension one and is a composition of flips or flops[67]. Sarkisov[44,49,50]
introduced a notion of elementary map between Mori fiber spaces and announced a proof that every birational
transformation between threefold Mori fiber spaces is a composition of elementary links[49]. Following Sarkisov’s
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work, Corti gave a rigorous proof of Sarkisov’s theorem[43,48,68]. These works show that one can decompose
birational maps with four types of elementary links but are not concrete as in the case of CP1-bundles. Since then,
most of the progress in the theory has been restricted to dimension three. Many applications of these methods were
discovered and these led to the solution of numerous open problems in the theory of surfaces and threefolds. Some
of these are reviewed in[69,70].

Appendix B. Collineations yielding measure-preserving maps with a given covariant

Let Jac(u, v) be the Jacobian of a birational transformation in CP2:K = C·J whereC is a collineation represented
by a 3× 3 matrix having determinant denoted by det(C).

B.1. Measure-preserving maps with covariantρ(u, v) = (u − 1)(v − 1)(u − v)

The collineations which are such that the relation

Jac(u, v) = det(C)
ρ(u′, v′)
ρ(u, v)

is satisfied with the covariantρ(u, v) = (u− 1)(v− 1)(u− v) can be grouped in three different classes, according
to the eigenvalues of the associated matrices (see(B.2) and (B.4)). First, the collineation associated with matrix(7);
second, those associated with the following three 3× 3 matricesCA, CB, andCC:

 a31 − 1 a32 a33 + 1
a31 − 1 1+ a32 a33

a31 a32 a33


 ,


 a31 1 + a32 a33 − 2

1 + a31 a32 a33 − 2
a31 a32 a33 − 1


 ,


 1 + a31 −1 + a32 a33 − 1

a31 −1 + a32 a33

a31 a32 a33 − 1


 (B.1)

and third, those associated with the two 3× 3 matricesCD, andCE:
 1 + a31 −1 + a32 a33 − 1

1 + a31 a32 a33 − 2
a31 a32 a33 − 1


 ,


 a31 1 + a32 a33 − 2
a31 − 1 1+ a32 a33 − 1
a31 a32 a33 − 1


 .

One easily verifies that all these matrices are stochastic-like matrices: the vector(1,1,1) is an eigenvector with a
“stochastic” eigenvalue that we will denote asλstoch.

Let us first consider matricesCA, CB, andCC. Their characteristic polynomials read:

PA(t) = (t + 1)(t − 1)(t − a31 − a32 − a33),

PB(t) = PC(t) = (t + 1)(t − 1)(t − a31 − a32 − a33 + 1). (B.2)

The “stochastic” eigenvaluesλstochof these three matrices (namelya31 + a32 + a33 anda31 + a32 + a33 − 1) are
the negative of the determinant of the corresponding matrices.

Actually, one can see that the three matricesCA,CB andCC are simply related by row permutations combined with
transformations on theaij ’s parameters preserving their characteristic polynomials. Let us introduce the permutation
matrix:
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P =

 0 0 1

1 0 0
0 1 0


 .

Let us also introduce the two matricesĈA(a31, a32, a33) = CA(1 + a31, a32,−2 + a33) andĈC(a31, a32, a33) =
CC(a31,1 + a32,−1 + a33), which have the same characteristic polynomial asCB. One easily finds that

PCB = ĈA, P2CB = ĈC.

The three matricesCA,CB, andCC are of the formC = H + P , where matrixH reads:


 0 0 1

0 1 0
1 0 0


 ,


 0 1 0

1 0 0
0 0 1


 ,


 1 0 0

0 0 1
0 1 0


 (B.3)

for CA, CB, andCC, respectively, and where matrixP becomes a projector whenλstoch = ±1: P2 = 0 if λstoch =
−det(C) = +1 andP2 + 2P = 0 if λstoch= −det(C) = −1.

Whenλstoch= −det(C) = ±1, these matrices arenotof finite order, as one could imagine from their characteristic
polynomials in thisλstoch= −det(C) = ±1 limit.

Let us now consider matricesCD andCE. One sees that they are also equivalent up to a relabeling of the rows and
columns: as far as the mappings are concerned, this corresponds to equivalence of the mappings up to transformations
such as(u, v) → (v/u,1/u).

The characteristic polynomials ofCD, CE and(7) read, respectively, as

PD(t) = PE(t) = (t2 − t + 1)(t + 1 − a31 − a32 − a33), P(7) = (t + 1)2(t + 1 − a31 − a32 − a33).

(B.4)

The “stochastic” eigenvalueλstochof these three matrices (namelya31+a32+a33−1) is also equal to the determinant
of these matrices.

Let us considerC = CD or C = CE. If one imposes det(C) = +λstoch = ±1, thenC is a matrix of order 6:
C6
D = C6

E = Id , whereId denotes the 3×3 identity matrix. In the case det(C) = −1 one even hasC3
D = C3

E = −Id .
Let us considerC to be(7). If one imposes det(C) = +λstoch = 1, thenC is an involutive matrix:C2 = Id . If

one imposes det(C) = +λstoch = −1, C is not a finite-order matrix, as one could imagine from its characteristic
polynomial(t + 1)3, it readsC = −Id +P , whereP is a projector:P2 = 0. With this condition of equality of their
determinant to+1, one easily finds that matrix(7) is an involution.

Note that these families of matrices are not families of commuting matrices, except if one restricts oneself to
families depending on one parameter. Matrix(7) can be diagonalizes asC = P�P−1, where

P =




1 −b

a
− c

a
1 1 0
1 0 1


 , � =


 a + b + c − 1 0 0

0 −1 0
0 0 −1


 .

When one restricts oneself to one-parameter families and requiresb/a andc/a to be constant (for instance,b = 5a,
c = 7a), the associated matrices commute. Note, however, that, even in this case, the corresponding birational
mappings do not commute.
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B.2. Structure of mappings preserving the same covariant

Of course, if two birational mappingsK1 andK2 share the same covariantρ(u, v), any product of these two
mappings have the same covariant. Furthermore, ifK1 andK2 both satisfy the measure-preserving necessary
condition(11), any product of these two mappings also satisfy the measure-preserving necessary condition(11).

Let us consider the collineations of two variablesu andv. The collineations that commute with the Hadamard
inverse(u, v) → (1/u,1/v) form a set of 24= 4 × 6 transformations which are build from products of the four
change-of-sign transformations(u, v) → (±u,±v), and the six permutations of the three rows and columns of the
3 × 3 matrix associated with the collineation, these six transformations being represented inu andv as (see also
(10) in Section 2.1)

(u, v) →
(

1

u
,
v

u

)
,

(
1

u
,
u

v

)
, (v, u),

(
u

v
,

1

v

)
, (u, v),

(
v

u
,

1

u

)
.

Let us denote byCJ one of these 24 collineations commuting with Hadamard inverseJ . Considering the iteration
of K = C · J it is straightforward to see that

KN · CJ = CJ · K̃N, where K̃ = C−1
J · C · CJ . (B.5)

In other words,K andK̃ have the same properties.
Suppose thatCJ commutes withC, then it commutes withK = C · J andK′ = C · CJ · J = CJ · K commute

with K.
More generally, one can consider the set of two collineationsC1 andC2 such that the “transmutation property”

C1 · J = J · C2 holds. This problem is closely related to the commutation of the two transformationsK = C · J
andK′ = C′ · J , which amounts to writing

C−1C′ · J = J · C′C−1. (B.6)

Appendix C. Recursion in one variable

For the CP2 birational mapping(9), one can perform the elimination ofv yielding a recursion on the successive
u’s (we denoteun, un+1, andun+2):

K : (un, vn) → (un+1, vn+1) =
(

aunvn + (b − 1)vn + cun
(a − 1)unvn + bvn + cun

,
aunvn + bvn + (c − 1)un
(a − 1)unvn + bvn + cun

)
. (C.1)

The elimination ofvn permitsvn+1 to be expressed as a function ofun andun+1 as follows:

vn+1 = (b − 1)unun+1 − bun+1 + aun + 1 − a

(a + b − 2)(un − 1)
. (C.2)

Relation(C.1) is also valid shiftingn by 1 and, thus, changingun into un+1, un+1 into un+2, andvn into vn+1.
Using(C.2) to eliminatevn+1, one finds a recursion on theun’s

un+2 = F1(un+1)un − F2(un+1)

F3(un+1)un − F4(un+1)
, (C.3)

where theFi’s are quadratic polynomials ofun+1:

F1(un+1) = a(b − 1)u2
n+1 − (2ab− 4a − 2b + 3)un+1 + a(b − 1),

F2(un+1) = abu2
n+1 − (2ab− 3a − 3b + 4)un+1 + (a − 1)(b − 1),
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F3(un+1) = (a − 1)(b − 1)u2
n+1 − (2ab− 3a − 3b + 4)un+1 + ab,

F4(un+1) = (a − 1)bu2
n+1 − (2ab− 2a − 4b + 3)un+1 + (a − 1)b.

This recursion is reminiscent of the family of mappings of[71]. It has the same form as that of[71] where theFi’s
are linear.

Note that this elimination can still be performed for higher-dimensional birational mappings (seeSection 4)
but doesnot yield recursions such as(C.3) but, instead, algebraic relations betweenun, un+1, un+2, . . . , un+p:
P(un, un+1, un+2, . . . , un+p) = 0.

Appendix D. Complexity analysis in CP2 for mapping (9)

D.1. Growth-complexity from recursion(C.3)

The degree growth-complexity can be calculated from either the mapping(9)or from the recursion(C.3). The same
singularity in the complexity generating functions appear in both cases. In this section, the iteration is described
by the recursion(C.3) and the degrees of the numerators of the successive (bi)rational expressions are deduced
accordingly.

• Complexity of(C.3) for a, b andc = 2− a− b generic. Let us assume that neithera, b, norc = 2− a− b are of
the form(N − 1)/N whereN is a positive integer. The degree generating function deduced from recursion(C.3)
reads:

Gabc(x) = x

1 − 2x
.

• a = (N − 1)/N, b andc = 2− a− b generic. Let us considera = (N − 1)/N andb in (C.3), parameterb being
arbitrary. The degree generating function reads:

GNbc(x) = −xN+1 + x(1 − x)

1 − 2x + xN+1
= −xN+1 + x

1 − x − x2 − x3 − · · · − xN
.

• a = (N − 1)/N, b = (M − 1)/M, c = 2− a− b generic. Let us considera = (N − 1)/N andb = (M − 1)/M
in (C.3), whereN > M.

Let us first considerM = 3, i.e.,b = 2/3. The degree generating function reads:

GN3c(x) = −xN+1 + x(1 − x)

1 − 2x + x4 + xN+1 − xN+3
= −xN+1 + x

1 − x − x2 − x3 + xN+1(1 + x)

for genericN except forN = 2, 3 and 6, for which the birational mapping becomes integrable.
Actually, for these values, the associated value ofc = 2 − a− b becomes of the singled-out form(P − 1)/P ,

whereP is an integer and the degree generating function reads, for instance, fora = 5/6 andb = 2/3

G63c(x) = −x7 + x(1 + x2)(1 + x4)

(1 + x + x2)(1 + x + x2 + x3 + x4)(1 − x)3

with the denominator having zeros only atNth roots of unity (polynomial growth).
Let us now considerM = 4, i.e.,b = 3/4. The degree generating function reads:

GN4c(x) = −xN+1 + x(1 − x)

1 − 2x + x5 + xN+1 − xN+4
= −xN+1 + x

1 − x − x2 − x3 − x4 + xN+1(1 + x + x2)

for genericN except forN = 2 and 4, for which the mapping becomes integrable.
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For instance, forN = 4, i.e.,a = b = 3/4, one has

G44c(x) = x(x3 − x + 1)

(1 + x4)(1 + x)(1 − x)3
.

For arbitrary(N,M) values, withN > M, one conjectures the following generating function:

GNMc(x) = −xN+1 + x(1 − x)

1 − 2x + xM+1 + xN+1 − xN+M

= −xN+1 + x

1 − x − x2 − x3 − · · · − xM + xN+1(1 + x + · · · + xM−2)
.

D.2. Dynamical zeta function for(9) for M even

For a = 1/2 (namelyM = 2), b andc = 2 − a − b generic, the expansion of the dynamical zeta function,
obtained up to order 13, is compatible with a 1− x − x2 singularity for the dynamical zeta functionζ2,b,c(x)

ρ2,b,c(x) = (1 − x − x2)ζ2,b,c(x)

= (1 − x3)(1 − x5)2(1 − x7)4(1 − x8)(1 − x9)6(1 − x10)(1 − x11)12(1 − x12)3(1 − x13)20 · · · .
Actually, the expansion ofρ2,b,c(x) corresponds to coefficients that donotgrow exponentially. For instance,

ρ2,b,c(x) = 1 − x3 − 2x5 − 4x7 + x8 − 6x9 + 4x10 − 11x11 + 11x12 − 18x13 + · · · .
Unfortunately, we do not have a large enough expansion to see ifρ2,b,c(x), is a actually arational expression with
a denominator with zeros only atNth root of unity.

Similarly, for a = 3/4 (namelyM = 4), b andc = 2 − a − b generic, the expansion of the dynamical zeta
function, obtained up to order 11, is compatible with a 1− x − x2 − x3 − x4 singularity for the corresponding
dynamical zeta functionζ4,b,c(x):

ρ4,b,c(x) = (1 − x − x2 − x3 − x4)ζ4,b,c(x) = (1 − x5)(1 − x7)2(1 − x9)4(1 − x11)8 · · · .
For a = 5/6 (namelyM = 6), b andc = 2 − a − b generic, the expansion, up to order 9, is compatible with a
1 − x − x2 − x3 − x4 − x5 − x6 singularity

ζ6,b,c(x) = (1 − x − x2 − x3 − x4 − x5 − x6)ζ6,b,c(x) = (1 − x7)(1 − x9)2 · · · .
Similarly, the expansions of theseρ’s correspond to coefficients that do not seem to grow exponentially.

Appendix E. Growth-complexity for CP3

In this appendix, we consider semi-numerical iterations of mapping(34)for various values of the parameters. This
will lead us to evaluate the growth-complexityλ in each case. These calculations can be done either numerically,
i.e., by taking a numericalrational initial point, or semi-numerically, i.e., by taking an initial point of the form
(u(t), v(t), w(t)) = (αut + βu, αvt + βv, αwt + βw), wheret is a parameter and theα’s andβ’s are integers
(this is equivalent to iterating a parameterized line) and considering generating functions of the degree int of the
numerators of successiveu(t)’s (resp.v(t)’s orw(t)’s). Because the growth-complexityλ is a topological invariant
[27,28,30,31], the denominators of these (rational) degree generating functions are independent of the choice of
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the line(αut + βu, αvt + βv, αwt + βw) that one iterates, the numerator being a slightly less universal quantity.
To obtain more universal degree generating functions, the calculation must be performed on the mapping written
homogeneously in homogeneous variables[28]; however, this yields much larger formal calculations.

Numerically, one can have, rapidly, a very good approximation of the growth-complexityλ by iterating a rational
number, consideringui after simplifications, namelyNi/Di (Ni andDi are integers). The ratio of the number of
the digits of two successive numeratorsNi+1 andNi (resp. two successive denominatorsDi+1 andDi) is a good
approximation[27] of complexityλ.

Let us show, more explicitly, how the method works in the case of our mapping(34) for various subcases of the
parameters of the mapping.

E.1. Complexity of(34) for a, b, c andd = 2 − a − b − c generic

Let us assume that neithera, b, c, nor d = 2 − a − b − c are of the form(N − 1)/N, whereN is a positive
integer. (We will call such a situation “generic”.) In this case, the degree generating function is always compatible,
up to order 7, with

Gabc(x) = x

1 − 3x
.

E.2. Complexity of(34) for a = (N − 1)/N andb, c, d = 2 − a − b − c, generic

Let us considera = (N − 1)/N in (34)and parametersb, c, d = 2 − a − b − c being generic (�= (N − 1)/N).

• The calculations corresponding to the iteration of the line(u(t), v(t), w(t)) = (3t+2,6t+5,−t+7), for instance,
have been performed up to order 7 forN = 2, i.e.,a = 1/2. The generating function of the degree oft in the
numerators ofu(t) has the expansion:

G
(1)
2bc(x) = 3x + 8x2 + 25x3 + 69x4 + 189x5 + 517x6 + 1413x7 + 3861x8 + · · · ,

which is compatible with

G
(1)
2bc(x) = x(3 − x + x2 − 2x4)

1 − 3x + 2x3
= −1 − x2 + 1

1 − 3x + 2x3
.

Similarly, for the same values ofa, b, c, andd, the calculations corresponding to the iteration of another line, for
instance, the line(u(t), v(t), w(t)) = (t,11,13), have been performed up to order 6 forN = 2, i.e.,a = 1/2. The
generating function of the degree oft in the numerators ofu(t) has the expansion:

G
(2)
2bc(x) = x + 3x2 + 9x3 + 25x4 + 69x5 + 189x6 + 517x7 + 1413x8 + · · · ,

which is compatible with

G
(2)
2bc(x) = x

1 − 3x + 2x3
.

The two methods give the same singularity(1 − 3x + 2x3), as is expected, corresponding to the complexity
λ � 2.73205.

• Fora = 2/3, one obtains similarly, iterating, for instance, line(u(t), v(t), w(t)) = (t,11,13):

G3bc(x) = x + 3x2 + 9x3 + 27x4 + 79x5 + 231x6 + 675x7 + 1971x8 + · · ·
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corresponding to the following degree generating function:

G3bc(x) = x

1 − 3x + 2x4
.

The singularity obtained corresponds to the complexityλ � 2.91964.
• Fora = 3/4, one obtains:

G4bc(x) = x + 3x2 + 9x3 + 27x4 + 81x5 + 241x6 + 717x7 + 2133x8 + · · ·

corresponding to the following degree generating function:

G4bc(x) = x

1 − 3x + 2x5
.

The singularity obtained corresponds to the complexityλ � 2.97445.
We conjecture that the denominators of the generating functions should be for arbitraryN: 1 − 3x + 2xN+1.

E.3. Complexity of(34) for a = b = (N − 1)/N andc, d = 2 − a − b − c generic

Fora = b = 1/2, one obtains similarly, iterating, for instance, the line(u(t), v(t), w(t)) = (t,11,13):

G22c(x) = x + 3x2 + 7x3 + 17x4 + 41x5 + 99x6 + 239x7 + 577x8 + 1393x9 + · · ·

corresponding to the following degree generating function:

G22c(x) = x(1 − 2x2 + x4)

1 − 3x − x4 − x5 + 4x3
= − x

1 + x
+ 2x

(1 + x)(1 − 2x − x2)
.

The singularity obtained corresponds to the complexityλ � 2.41421.
Fora = b = 2/3, one has the following expansion for the degree generating function:

G33c(x) = x + 3x2 + 9x3 + 25x4 + 71x5 + 201x6 + 569x7 + 1611x8 + · · ·

corresponding to

G33c(x) = x(1 − 2x3 + x6)

1 − 3x − x6 − x7 + 4x4
= − x

1 + x
+ 2x

(1 + x)(1 − 2x − 2x2 − x3)
.

The singularity obtained corresponds to the complexityλ � 2.83118.
Fora = b = 3/4, one deduces the following expansion for the degree generating function:

G44c(x) = x + 3x2 + 9x3 + 27x4 + 79x5 + 233x6 + 687x7 + 2025x8 + · · ·

corresponding to

G44c(x) = x(1 − 2x4 + x8)

1 − 3x + 4x5 − x8 − x9
= − x

1 + x
+ 2x

(1 + x)(1 − 2x − 2x2 − 2x3 − x4)
.

The singularity obtained corresponds to the complexityλ � 2.94771.
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E.4. Complexity of(34) for a = (N − 1)/N, b = (M − 1)/M andc, d = 2 − a − b − c generic

Let us considera = (N − 1)/N, b = (M − 1)/M with the simplest caseN = 2 andM = 3. The degree
generating function reads, when iterating, for instance, line(u(t), v(t), w(t)) = (t,11,13):

G23c(x) = x + 3x2 + 9x3 + 23x4 + 61x5 + 161x6 + 423x7 + 1113x8 + · · · ,

which is compatible with

G23c(x) = x(1 − 2x3 + x5)

1 − 3x + 2x3 + 2x4 − x5 − x6
= − x

1 + x
+ 2x

(1 + x)(1 − x)(1 − x − 3x2 − 3x3 − x4)
.

The singularity obtained corresponds to the complexityλ � 2.62966.
ForN = 3 andM = 4, the degree generating function reads:

G34c(x) = x + 3x2 + 9x3 + 27x4 + 77x5 + 223x6 + 645x7 + 1865x8 + · · · ,

which is compatible with

G34c(x) = x(1 − 2x4 + x7)

1 − 3x + 2x4 + 2x5 − x7 − x8

= − x

1 + x
+ 2x

(1 + x)(1 − x)(1 − x − 3x2 − 5x3 − 5x4 − 3x5 − x6)
.

The singularity obtained corresponds to the complexityλ � 2.89089.
ForN = 2 andM = 4, the degree generating function reads:

G24c(x) = x + 3x2 + 9x3 + 25x4 + 67x5 + 181x6 + 489x7 + 1319x8 + · · · ,

which is compatible with

G24c(x) = x(1 − 2x4 + x6)

1 − 3x + 2x3 + 2x5 − x6 − x7
= − x

1 + x
+ 2x(1 − x + x2)

(1 + x)(1 − x)(1 − 2x − x2 − 2x3 − x4)
.

The singularity obtained corresponds to the complexityλ � 2.69679.
ForN = 2 andM = 5, the degree generating function reads:

G25c(x) = x + 3x2 + 9x3 + 25x4 + 69x5 + 187x6 + 509x7 + 1385x8 + · · · ,

which is compatible with

G25c(x) = x(1 − 2x5 + x7)

1 − 3x + 2x3 + 2x6 − x7 − x8

= − x

1 + x
+ 2

x(x4 + x3 + 1)

(1 + x)(1 − x)(1 − x − 3x2 − 3x3 − 3x4 − 3x5 − x6)
.

The singularity obtained corresponds to the growth-complexityλ � 2.69679.
We conjecture that, whena andb are of the forma = (N − 1)/N andb = (M − 1)/M, the denominators of the

generating functions should be for arbitraryN andM: 1 − 3x + 2xM+1 + 2xN+1 − xM+N − xM+N+1.
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E.4.1. Complexity of(34) for a = b = (N − 1)/N, c = (P − 1)/P andd = 2 − a − b − c generic
Let us considera = b = (N − 1)/N, c = (P − 1)/P . In the simplest case,N = M = 2 andP = 3, for an

iteration of, for instance, line(u(t), v(t), w(t)) = (3t + 2,6t + 5,−t + 7), the generating function of the degree of
the numerators of theu(t)’s yields, up toK9, the expansion

G223(x) = 3x + 8x2 + 22x3 + 52x4 + 120x5 + 274x6 + 624x7 + 1418x8 + 3220x9 + · · ·
compatible with the rational expression

G223(x) = −1 − x2 + (1 + x2)(1 + x + x2)

(1 − x)(1 − x − 2x2 − 2x3)
= x(1 + x2)(3 + 2x − 2x3)

(1 − x)(1 − x − 2x2 − 2x3)
.

The singularity obtained corresponds to the complexityλ � 2.269531.
Let us also remark that numerical calculations with rational numbers, as explained before, have been performed,

up toK15, yielding a growthλ � 2.269518 compatible with the singularity 1− 2x − x2 + 2x4.

E.5. Complexity of(34) for a, b, c, d = 2 − a − b − c of the form(N − 1)/N

All of these are integrable cases. One obtains the solutions already obtained for CP2. There is however one new
solution(2,2,2,2) (see(C.3)). This is completely in agreement with the Diller–Favre conditions[34] which has
been proved for CP2 and seem, also, to apply for our particular mappings of CPn.
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