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We describe new local relations leading to non-trivial (non-homogeneous) equations for
the row-to-row transfer matrices of atbitrary size for two dimensional LR.F. and vertex
models. We sketch the connection between this relation and the Yang-Baxter equations,
and we describe the example of the hard hexagon model. : )

1. Introduction

It is remarkable that most of the exact results of statistical mechanics on
lattices are consequences of some simple local relation on the Boltzmann weights
of the models. These local relations imply algebraic relations, for example on
transfer matrices of arbitrary size and consequently, in the thermodynamic limit,

on relevant quantities like the partition function of the model.

The paradigm of these local relations is the Yang-Baxter relation.’ It bears
indeed on local Boltzmann weights associated to each face of the square lattice
for models with interactions around the faces (LR.F. models),'* respectively each
site for vertex models, even in non-homogeneous cases (Z-invariance property’).
What makes it a key to the exact solvability of lattice models is that it is a
sufficient and to some extent necessary condition for the commutation of transfer
matrices of arbitrary size.* . o

Another example is given by the “disorder solutions”, which also arise from
a local disorder criterion (see for instance Ref. 5): a simple decimation procedure
enables one to obtain results on global quantities (partition function. . ..) from
this local condition. For vertex models these disorder conditions are very similar
to the local relations required to build the (global) Bethe ansatz of ‘the exactly
solvable models (see Eq. (C 34 a,b) of Ref. 6, the Frobenius relations on theta
functions,”® and Eq. (1), Eq. (17) of Ref. 9).

Beyond the case where the models are exactly solvable another local rela-
tion called the inversion relation has been used to produce exact functional
equations.'® It is noticeable that here again one goes, for appropriate boundary
conditions, from a local to a (global) relation on transfer matrices of arbitrary

* Work supported by CNRS.
PACS No.: 05.50.

1893




1896 J. Avan et al.

size. The importance of these local conditions leading to global consequences is
perfectly clear. They are a way to get exact functional relations which facilitate
the calculation of the partition function of the model (inversion “tric L1

Among the relations on transfer matrices used in the analysis of statistical
mechanical models, the one obtained by R. J. Baxter and P. A. Pearce for the
hard hexagon model (Eq. (3.3) or (3.5) of Ref. 12) i.e.

TyTn = 1 + T

is especially appealing. Indeed it is valid for all sizes of the transfer matrices, it
is not homogeneous and therefore gives non-trivial functional equations and new
information on the spectrum (interfacial tension of the model, see Ref. 12, and
it has a very promising algebraic aspect. , :

Qur point is to show that it is a consequence of a simple local relation on the
Boltzmann weights of the model. We give a general form of this local relation for
the g-state LR.F. (resp. vertex) models, and describe it with some detail in the
specific case of the hard hexagon model. | '

It is an open question to decide what the status of this new relation is, with
respect to the integrability of the model (equivalently the Yang-Baxter equations),
and what are the possible connections with the aforementioned inversion
relation. :

2. The gstate LRF. Model

In this section we introduce the notations used to describe the g-state LR.F.
model. The model is defined on a square lattice with a spin sitting at each site
and taking ¢ values (0, 1,. .., g~ 1). The statistical weight of a configuration is
obtained from the elementary Boltzmann weight ¥ associated to a face. For a
spin configuration '

d c

Fig. 1. Spin configuration around a face.

the corresponding weight is

Wi(face) = Wia, b,c,d) .
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The partition function for the N x P lattice (P lines of length N ) with periodic
boundary conditions is then:

Z = Z H W (face) ,

configurations faces

where the sum is over all the spin configurations and the product is over all faces

of the lattice.
It is standard to introduce the row-to-row transfer matrix T’ associated to a

horizontal line

LT T/ ™ T

Fig. 2. Row-to-row transfer matrix,

The matrix elements of T, are given by

N
(T, o = H W(0i, 0iv1, T 1, T)
jal
with the periodic boundary conditions

Onsi = O, TNel = To.
As usual the partition function is written as
= tr(T¥) .

Suppose now that W and W’ are two Boltzmann weights for the g¢-state LR.F.
model. Let Ty and Ty be the corresponding transfer matrices, the product of
these two matrices reads: :

(_TNTAI):::::‘,?N = Z H W(0i, Gi1> Tiv 1, T W (T, Tt Tiv1s ;)

. ON
The o, Wvi=1

N ' ‘
tr(l—[ XX, Xy, 1)) (1)
o :
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where X, denotes the pair (g;, g;), and for each X;, X, ;, X(Z;, X, ) denotes the
q x q matrix with entries:

X, 5(Zi, iy 1) = W0y, 0101, 8, 0) Wie, B, (15 01) -

The matrix element X, 4(Z;, 5. 1) is the weight of the configuration

J; Giel
w

o B
W 1

R

Fig. 3. Pictorial representation of X, 4 (Z;, Z;, )

In (1) taking the trace over ¢g-dimensional space ensures the periodicity of the

boundary condition if one takes Xy, | = Zy.
The hard hexagon model*? is a special case of thlS g-state L.R.F. model, for

g =2 (the spin takes values O or 1), with

mz(a+b+c+d).’4€Lac+Mbdt—a+b—c+d

W(a,b,c,d)={ ifab = bc = cd =« da = 0

0 . otherwise

In this expression, z is the activity, L and M are diagonal interactions, m is a
trivial normalization factor, and # is a parameter that cancels out of the partition
function. The parameter space consists in only five homogeneous parameters
corresponding to the five allowed spin configurations around the face.

@, = W(0000)

@y = W(1000) = W(0010)
w; = W(0100) = W(0001)
ws = W(1010)

ws = W(0101) .

The model happens to be exactly solvable on a subvariety of this parameter space
(see Eq. (23) of Refs. 13 and 14, and Sec. 4.1). It is then parametrized through
elliptic functions by a constant A (related to the so-called shift operator) and a
spectral parameter u. The existence of this parametrization is the signature of the
generalized star-triangle relation (Yang-Baxter for LR.F. models) and is also
particularly appropriate to write the matrix equation for the normalized partition
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function:
Ty, A)-T(u + A, 4y = 1 + Ty(u + 34, 7). 2)

Together with quasi-periodic properties and analyticity properties of the row-to-
row transfer matrix, this relation enables one to calculate in principle every
eigenvalue for finite N,

Equation (2) is valid for all N. It yields a functional equation for the whole
spectrum of the transfer matrix and for the normahzed partition function (largest

eigenvalue):

Zu(u, 3) Z (e + 30 7) -1+ Znlu + 34, 4) . (3)

The free energy, fnterfacial tension, and correlation length may then be
calculated, with the help of these equations.

3. A New Local Relation on the Boltzmann Weights

. Coming back to the derivation of the relation 77/ =1+ T” for the dimen-
sionless transfer matrix of the hard hexagon model, we see that although it looks
model dependent (see p. 900 of Ref. 12), it stems from purely algebraic relations
(more specifically matrix algebra, properties on eigenvectors, . ..) on the set of
matrices X(Z;, Z;, ;). The fact that algebraic considerations on the local objects
X(Z;, ;. ) vield matrix relations valid for all sizes N is an indication that here
again a local property leads to a global one, We give here a simple algebraic
relation on the local Boltzmann weights for the g-state LR.F. model which is
sufficient to ensure the relation between transfer matrices for arbitrary values of
N. We shall show in the next sectlon that it is fulfilled in the case of the hard

hexagon model.

_ The local property of the model is the existence of a triplet of Boltzmann
welghts W, W', W”, of a collection of g x ¢ matrices P(Z)), and of functions
T, (%, ') such that

PUE) X, Bin)) PCiar) = Y, Bivt) ()
with '
Yof i Ziet) = 0u1Op1AEis Bir1) + OuodpoW " (s Zir1)
+ ) BumBpTmEts i 1) | )
m>h
where '
a) W”(Eu zx+ l) W ’(st i+l 1+ 1 az)
b) A, Zi.) = 05,005, .4, On the allowed configurations of a row of the

transfer matrices.
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Of course the indices 0 and 1 in (5) are chosen arbitrarily and could be
replaced by any other values among 0,1,....g-1L

- | W
P P
Wl

i1

W". 4 + ¢ A t+1 r B )

Fig. 4. Pictorial 'repre'séntation of the local relation for LR.F. models.

Relation (4,5) uses a gauge type transformation which preserves the trace in
relation (1). Thus '

il

Tly o+« PN

. N
(T = u| [ X 2
i=1

Y(Z, Zis1)

p—

tr{

[

1=

—

== H‘A(Zj,zj.pl) + HW”(EI'} zi-\-l)
i .

. i
Tlyo e o o0 PN P
| | = Ay (T (©6)
(T3 3y are the 'matrix clements of the row-to-row transfer matrix with
periodic boundary conditions for the Boltzmann weight w”. Due to the
definition of AZ;, Z;, 1), I is nothing but the identity matrix on the allowed®
configurations of a row of the model.. '

4. The Example of the Hard Hexagon Model

In this section, we examine the hard hexagon model restricted to the
subvariety of the space of parameters where the Boltzmann weights satisfy the
generalized star-triangle relation. We show that for any such W, there exist W',
W and a matrix P such that (4), (5) holds. In Baxter and Pearce!? W, W', and
W” correspond respectively to the values u, u+4, and u+34 of the spectral
parameter. -'

4.1. Description of the model

The model is exactly solvable on the algebraic subvariety of the paraméter
space given by the incomplete intersection of a quadric, a cubic, and a quartic in

a A gimilar subtlety has already been encountered for the inversion relation of the hard hexagon
model (see for instance p. 14 of Ref. 12 and p. 421 of Ref. 1). In general using the inversion relation
amounts to taking the inverse of a matrix associated to the Boltzmann weight of the model. For the
hard hexagon model this matrix is not invertible but one may define an inverse if one restricts the
matrix to the allowed configurations of the model.
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CP,. If we denote

Wi ~ wiws

Fi=—
(s
: 2 2

Wy + sy — W104005

F, = (7
(D (W03
7 O WiOs + Wiy -~ Wi} - Wiw?
3 =

304005

then the equation of this subvariety is:

F1=C1:
F=G,
F3='C3

where C;, C,, C, are three constants verifying
CC =1, GC=C+0C.
The constraints on the constants C',- come from the relation on the F;s:

4005
w3

FiF, -1 =(F; - F - F)

Without these constraints, the subvariety would have reduced to one boint up to
the transformation:

rwl_'wl
Wy—>tw
{ w3t oy
604"""-5'2604
-2
;_COS_"’_'K s

8

The transformation (8) leaves the transfer matrix unchanged, and should be .

factored out, : |

It is natural to arrange the weights X, Z;, Z,, ;) in a matrix where the rows
(resp. columns) are labelled by (g;, @, ;) (resp. (g, 1,5 ¢ 1, 1)) (see Fig. 3). The
exclusion rules of the model lead us to restrict to a 5 x 5 submatrix corresponding
to the following allowed configurations:

A =1(0,0,0, B=(0,1,0), C=(1,0,1, D=(0,0,1), E=(1,0,0) .
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This 5 x 5 matrix has the form:

XA4 X4p X4c  X4D  X4E

XBA 0 Xgc  Xpp  XBE
X = XcA | Xy 0 0 .. 0
Xp4  XpB 0 0 XpE
XE4  XEB 0 Xxep O
with

Xad = OOy Xpq = X4C = w0, Xca = Xap = 0n()
Xpa = 1003 Xgd = @001 Xcp = 405
Xpp = 2Ws XEB = 403 Xpc = sy
Xap = 0100 Xgp = W34 Xgp = Wt
X4E = W30 Xpg = Ws00; XpE = 303

The symmetry (8) induces the following transformations on the x,,’s:

XAA > X4 > Xps—t 'Xps,  Xpa = Xac—>XB4 = Xac
Xgd = I X4 5 XcB > XcB 5 Xca = Xap—>Xc4 = X4B »
xpp—>{"'Xpp ,  Xgg— 1! XEm Xpc— XBC »

X4ap >t X4p Xgp—>{XpD » Xgp—> t*Xgp
Xag—> 1" %ag .  Xpg—rt 'Xpp xDE_’t;szE .

4.2, Construction of the matrices P

In the following, we give a step-by-step construction of the matrices P(Z)
which ensure relation (4), (5).
Define the family of matrices P(Z;) by

P0,0) -(, )

and

PyZ) = ((1) (1)) otherwise .

In P(0,0), s and r are chosen in such a way that (—15) and (}) are eigenvectors

of
XAd Xqp
Q- (JCBA 0 ) '
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In particular, s verifies

)CBA'SZ + Xq4°8 — Xqp = 0. (9)

We shall denote by u the eigenvalue corresponding to (“is) (resp. u’ for (},))
If the x,, verify ' |

Xpa*Xac + Xpp-Xpc = 0 (10)
Xga Xac + Xpp-Xpc = 0, (11)
and if
Xac
s - 12
Xpe ( ‘)

is a solution of Eq. (9), then transformation (4) acting on y yields: -

X' 44 0o - 0 X'ap  X'ag
.0 X'ppg X'pc  X'Bp  XpE
X = x’CA x’CB 0 0 0
X' pa o 0 0 X' pE
X' g4 0 0 X 0
where

X'pp = W

X'pE = XpE

x'Ep = Xgp .

Equation (10) (resp. (11)) implies x’pg=0 (resp. x'gg=0). They are trivially
fulfilled if one chooses W= W{u) and W' = W(u +4) in the elliptic parametriza-
tion of the model (Eq. 2.12 of Ref. 12). : :
Equation (12) yields
x! AC = 0.

Equation (9) together with (12) demand an algebraic relation between the x,,’s:

XasXacXpe + XapXhe + Xicxpa = 0 . (13)

This is actually verified if one uses the elliptic parametrization of the model'? and
the following identity on theta functions with period 5A:




i
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g(1)*- 024 + u)- 024 - 1) - O(u)*- HA)- 6(24)
~ B(A - u)-0(A + u)-453(2/l)'fI =0 . (14)

Notice also that s is independent of #, while # does depend on u.
Define next the family (related to the transformations (8)) of matrices Pp(X;)

by
41 0
PAE) =p2(z)-(0 1) .

The action of P, on ' leads to x”. The coefficients p,(Z) may be adjusted so as
to ensure ’

X'gq = X'4p and X"ug = X"pd

ihat is to say W"(1000) = W”(0010) and W *(0100) = W*(0001) meaning that
W fulfills the symmetries of the hard hexagon model, and

x”BC - x”CB = x”B_B \

This adjustment is possible because

X g4 X 4 = X' D4 X 4D (15)

and

x%p = X'gcX’ca - (16)

Relation (16) is a direct consequence of (14) and Eq. (15) comes from another
relation on the theta functions with period 5A:

| 0()- 634 + 1)+ 0(24) - 64 + %) 0Q2A + u)-6(4) + 6(4 - w622 = 0 .
. (17)

At this point, one will obtain the desired form (4), (5) with the action of

P=P1‘P2'P3, where
Py(1, 1) (0 1)
A O

and .

10 _
PyZ) = 0 1) otherwise.
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Remark 0. There are simple relations worth noticing:

I ICD)

-5
, My = = Xpda XAB v - —’-xBA > S - 6(1) .

_ X*BC Xcp

-
Remark 1. The previous proof breaks the parity invariance since the form of x’
is not stable by transposition. The transposition on g, i.e. the exchange x,, <X,
is the mirror symmetry exchanging left and right (parity transformation). It
corresponds to w,<rw;, ws<ws. In terms of the parametrization, it reads
u<~4 — u (changing the sign of ). If one takes into account the specific properties
of the transfer matrix (commutation property and periodicity), relation (2) is
compatible with the parity symmetry: actually, the matrix relation

T@)T@') =1+ Ty | (18)

(with ¢’ = u+ 4, u” = u+ 34) becomes

T') T®) =1+ T(@")

with o= —u, v/ =v+A4, v” =v—2). These two relations are identical since

T@) = T + 54) and [T(),T(w’')] =0.

Remark 2. The interest of the above detailed calculations is to shed some light on

the links between the Yang-Baxter relation and the new local relation (5). We
actually see that the specific construction of the matrices P we used will work if
the x,,,’s verify a number of algebraic equations (Eqgs. (10), (11), (13), (15), (16)).
These equations are invariant by the symmetry (8). One could imagine that this
set of equations (defining an algebraic subvariety of the parameter space of W
and W) has solutions beyond the elliptic parametrization of the integrable case.
In fact the parameter space for y is, due to the symmetry (8), of dimension six,
and we have five conditions on the x,,, leading to an algebraic curve (known to

contain an elliptic curve).

Remark 3. The previous calculation is just a block triangulation with a 2 x 2 block
corresponding to A and a 3 x 3 block

JC”AA x”AD .x”AE
x” pa 0 X"pr | .
X" g X" gp 0

where x” g4 =X"4p and X" 45 =Xx" ,5 .+ forming the Weight W, The zeroes in this
3 x 3 matrix reflect the exclusions for the hard hexagon model.
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5. Vertex Models

For vertex models one can introduce similar notations. To the vertex

;

K

Fig. 5. Vertex configuration,

one associates the local Boltzmann weight W (i, j, k, [). The row-to-row transfer
matrix T reads

(Tl = [ Wby s )
k

Lerisky P

for the line configuration:

"1 ’-2‘ - ' !.N-l !.N
0 73 N O I | kn |

Tl

‘i

M} / Y ]

Fig. 6. Row-to-row transfer matrix of a vertex model.

If W and W’ are two Boltzmann weights for the vertex model, and Ty and 7" 5
the corresponding transfer matrices with periodic boundary conditions, then:

'y El’ Lae ,J.N :
‘ (TNTN),WI,. o :

>, Ek H(Z’ W psbpsdpors ) W (ks Iy K1, i'p))
N P ?

Jlaevosdn kiyono,
- tr (ﬂxv(ip, z"p)) . | (19)
P

The trace in formula (19) is taken over a g>-dimensional space, and

jN+1 5_}'1 and kN+1 = kl .
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L e s . 7 ) . . .
For each (i, i), X°(i,, ') is & ¢" x ¢~ matrix with matrix elements

Xk (lp, p) = 2 W(Jps 1p:]p+ls1) w’ (kpal kp+l: p)

Jp p’jp+| P+l

The matrix element Xfp.,; , k by ips i’,) is the weight of‘ the configuration

i
Jo_ | Jew

kE Kpa)

¥
o
Fig, 7. Pictorial representation of X"(i,, i%).

where one sums over the internal configurations /,.

A local relation, similar to (5) can be introduced for the g-state vertex model:
if there ex1sts a triplet W, W', W” for the Boltzmann weight of the vertex model
and a g% x ¢ matrix P such that

PV X%y, i) P = Y'(ip, i'p) _ (20)
where Y (i,, i’,;) has matrix elements:
kap’-]p+l p+|(lp’ p) = Z W”(l lp’m Ip) Jp+1p+l + H.}pk ‘Ji ,‘ ‘ij+lkp+l

21)

where ¥, G, H, I do not depend on i, nor i’, and satisfy the following relations’

zlﬂcﬂk = ) s .szﬁgH'jk

jik

0 (22)

1. (23)

ZG}L'Ek = Jml 5 zH;kIJk

cpe oo ete

Fig. 8. Pictorial representation of relations (21) and (22) for vertex models.
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Relation (21) yields

fly oo sl Fly e oo oiN R 1
(TNT’N)'I “;,N = AN(IU)!'],...J’N + (T”N)iﬂ,...,t"y

TR
where I* coincides with the identity matrix on the configurations (iy, .. ., in)

Remark. The local relation (21) amounts to petforming a block-diagonalization,
but of course in the same way as we did for the hard hexagon model one might

have block-triangulation only.

5.1, Generalizations

In the same spirit we could write a more general local relation which will lead
to other non-homogeneous relations of higher degree on transfer matrices for all

sizes N. , )
If W, W, W are three Boltzmann weights and T, T, T3 are the

corresponding transfer matrices, then

(2 - (Tt 20
p

where the trace is taken over a ¢°-dimensional space, and where X3,is a Fxq
matrix with matrix elements

OV sy s '8 = 2, 2, Wilps s Tyt 1)

Rip hp
X WZ(kp: Wiy, kp+ Is np)' W3(lp: Ry, 1p+ 1s i’p)

'f;o jp+1

kp kp+1

p | lp+t

. !

‘p

Fig. 9. Pictorial representation of X" for three Boltzmann weights.

- A natural generalization of (20), (21) could be the existence of weights W, W5,
W, and W,, Ws, We and of a g2 x g matrix P such that

Pt Xy, )P = YO
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where Y5 has matrix elements:
Y iy dyoik Mm(lw i) = zFukl Wad, ip, 7,0 DG, kil
z e, Wils, ip, . @ p)IJpH YA
¥ ZJ”kz Welth iy 0, DK, s (24)

where F, G, H, I, J, K do not depend on i, nor i’ and satisfy the relations

S FGla = 64r, O Hialli = 350> X, JHaKlkt = 3 (25)
Skl Jkd Jkd .
z Gl = 0, z Glalfa = 0, ZIjk! = - (26)
el fyal oy . T
EI}kJJ’}kz= 0, ZK}’kzj = 0, ZK”M et = 0

b bva

SEDE
O1Ce - D1C= 818

I s 2

Fig. 10. Representation of relations (24) and (26).

It is straightforward to get from the local relation (24) and the above equations
(26), the relation:

(TT;: <T4)i‘l B O+ O
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This equation is valid for arbitrary size N.

Remark 1. Of course one could imagine an unlimited number of extensions of all
these local relations to a larger number of Boltzmann weights, leading in
particular to higher degree relations on the transfer matrices (7777 =
TT+T+...).

Remark 2. These various generalizations will also exist for the I;R.F. models.

6. Comments and Speculations

It is already very clear, from the existing literature on the Rogers-Ramanujan
identities for the hard hexagon model and the RSOS models (see Refs. 15, 16),
that relation (2) and the functional equations it yields on the partition function
(3), are highly non-trivial,

It is thus natural to ask what the status of relatlon (4), (5) is, outside of any
consideration of integrability. Indeed we have isolated, in the specific case of the
hard hexagon model (sec.4), a number of algebraic constraints on the weights W,
W . These constraints do not identify at first sight with exact solvability.

One could first try to parametrize in general the algebraic variety defined by
these constraints. This parametrization could go beyond an elliptic one.

If this parametrization is by curves one will get functional equations like (18).
Even in the case where ' and #” are obtained from u by transiations (like
u' =y+4, u”=u+3) the set of non-periodic solutions, although not fully
explored, is known to be quite remarkable and involved (theory of resurgent
functions'”). One may recall that the functional equation (3) on the partition
function Z, is actually identical to the one verified by Stokes multipliers for the
irregular differential equation y” - (x* + a)y = 0.17-1°

The more restrictive case of the periodic solutions furnishes a very promising
setting for the study of the relations we have introduced. Indeed elliptic functions
may verify Eq. (3), which amounts then to sums of products identities listed by
Ramanujan and subsequently proved by Rogers. These equations appear in the
RSOS models.'®

We recall that the RSOS models have been introduced by Andrews et al by
revisiting the Bethe ansatz on the symmetric eight-vertex model'® (the very
construction of the Bethe Ansatz associates to the face centered at a vertex four
relative integers /. The weights W of the RSOS model are expressed in terms of
elliptic functions at points like u + /;# (see Eq. (1.2.5) and Eq. (1.2.6) of Ref. 16).
If n is commensurate with the period K of the elliptic functions (1 = K*/p), this
amounts to take /;eZ, and not Z. For different values of p, the partition function
verifies different Rogers:-Ramanujan identities (the hard hexagon model corre-
sponds to p = 5)). What we have in mind is that the various local relations we
introduced come from a unique underlying structure.
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For the eight-vertex model, one can deduce non-linear finite difference
equations such as (3) from a matrix equation

T(w) Q) = olu - HQ + 2) + p(wQMu - ) 27)

~ (see Eq. (23) of Ref. 20). For A =n/3 or 2n/3, Eq. (27) leads to a linear system on

the eigenvalues of Q (see Eq. (38) of Ref. 20), which has non-trivial solutions only
if .
1)t + Dt + 28) - tw) - tu + A) ~ 1(u + 24) - 2=0 (28)

where 1{u) is a.normalized eigenvalue' of T(u).
For 5/ = integer, the matrix of the linear system is 5 x 5, and its rank reduces

to three if T(u)=T(u+ 4) and

T)T(u + 5/1).= ou - Hou + A) - (a(u)’f(u + 34) . .

Similar results exist also for the chiral Potts model.2! One has a matrix
equation analogous to Eq. (27) (see for instance Eq. (5.20) of Ref. 22), and an
equation similar to (28) holds true (see Eq.(26) of Ref. 23 and Eq. (18) of
Ref. 24). This shows in particular that such equations may be encountered for
exactly solvable models parametrized by curves of genus greater than one. '

Another interesting feature of the relations we have described is the similarity
of the objects introduced in Egs. (21), (24) with the ones appearing in
two-dimensional conformal field theory (fusion algebra, see for example Ref, 25):
this is visible in Figs. 8 and 10. In formula (21), G realizes the fusion of two
spaces into a single one.

Finally, it should be very rewarding to explore, especially in the spirit of
Ref, 26, the relations between our local relations and other exact symmetries
(automorphy group!*2527), The motivation is clear from the way the automor-
phy group acts in the elliptic case (it is generated by the translation: u—(u + 4) and
the inversion #— — 1), and the role played by the translation in Eq. (3) or the shift
operator in Eg. (5.20) of Ref. 22 or Eq. (26) of Ref. 23. :
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