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ABSTRACT. We show that non-trivial symmetries, and structures,
originating from lattice statistical mechanics, provide a quite efficient
way to get interesting results on elliptic curves, algebraic varieties,
and even arithmetic problems in algebraic geometry. In particular,
the lattice statistical mechanics approach underlines the role played
by the modular j-invariant, and by a reduction of elliptic curves to a
symmetric biquadratic curve (instead of the well-known reduction to
a canonical Weierstrass form). This representation of elliptic curves in
terms of a very simple symmetric biquadratic is such that the action of
a (generically infinite) discrete set of birational transformations, which
corresponds to important non-trivial symmetries of lattice models, can
be seen clearly. This biquadratic representation also makes a partic-
ular symmetry group of elliptic curves (group of permutation of three
elements related to the modular j-invariant) crystal clear. Using this
biquadratic representation of elliptic curves, we exhibit a remarkable
polynomial representation of the multiplication of the shift of ellip-
tic curves (associated with the group of rational points of the curve).
The two expressions g2 and g3 , occurring in the Weierstrass canonical
form y2 = 4x3 − g2 x − g3, are seen to present remarkable covariance
properties with respect to this infinite set of commuting polynomial
transformations (homogeneous polynomial transformations of three ho-
mogeneous variables, or rational transformations of two variables).
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1 Introduction

Elliptic curves naturally occur in the study of integrable models of (1+1
dimensional) field theory or integrable models of lattice statistical me-
chanics. This very fact may look “suspect” to “down-to-earth” physi-
cists, who would certainly think that any reasonably analytical param-
eterization would do the job. How could the mathematical beauties of
elliptic curves be related to “true” physics ? After Einstein, even “down-
to-earth” physicists are ready to believe that differential geometry has
something to do with nature, but they are clearly reluctant to believe
that this could also be the case with algebraic geometry. Let us sketch
very briefly the reasons of this occurrence of algebraic geometry in inte-
grable lattice models.

Let us consider models of lattice statistical mechanics with local
Boltzmann weights. The Yang-Baxter equations are known to be a suf-
ficient condition (and to some extent, necessary condition [1]) for the
commutation of transfer matrices in lattice statistical models. Moreover,
it has been shown that the commutation of transfer matrices necessarily
yields a parameterization of the R-matrices in terms of algebraic vari-
eties [2]. In general, even if these models are not Yang-Baxter integrable,
the set of the so-called inversion relations [3, 4], combined together with
the geometrical symmetries of the lattice, yield a (generically infinite)
discrete set of non-linear symmetries of the models. For such lattice
models with local Boltzmann weights, it is straightforward to see that
these non-linear symmetries are represented in terms of rational trans-
formations of the (homogeneous) parameters of the parameter space of
the model (the various Boltzmann weights). Furthermore, since this
(generically infinite) discrete set of rational transformations is generated
by rational involutions, like the matricial inversion corresponding to the
inversion relations, and by simple linear transformations of finite order
(involutive permutations of the homogeneous parameters of the param-
eter space of the model), one thus gets a canonical (generically infinite)
discrete set of non-linear symmetries represented in terms of birational
transformations of the parameter space of the model. Let us recall that
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a birational transformation of several (complex) variables is a rational
transformation such that its inverse is also a rational transformation.
Birational transformations play a crucial role in the study of algebraic
varieties as illustrated by the Italian geometers of the last century1. To
sum up, the locality of the Boltzmann weights necessarily yields, for
regular lattices (square lattices, triangular lattices, cubic lattices, ...),
birational symmetries of the parameter space of the model which can be
seen as a (complex) projective space (homogeneous parameters).

Coming back to the (Yang-Baxter) integrable framework, it has been
shown that these birational symmetries are actually discrete symmetries
of the Yang-Baxter equations [6, 7]. Generically, this set of birational
symmetries is an infinite set. Combining these facts together, one gets
the following result: the Yang-Baxter integrability is necessarily param-
eterized in terms of algebraic varieties having a generically infinite set
of discrete birational symmetries2. Let us also recall that an algebraic
variety with an infinite set of (birational) automorphisms cannot be an
algebraic variety of the so-called “general type” [2]. When the algebraic
varieties are algebraic curves the occurrence of this infinite set of (bira-
tional) automorphisms implies that the algebraic curves are necessarily
of genus zero (rational curves) or genus one (elliptic curves). These are
the reasons why an elliptic parameterization occurs, for instance, in the
(Yang-Baxter) integrable symmetric eight-vertex model, also called the
Baxter model [8].

Such iteration of birational transformations yields, quite naturally,
to problems of rational points on algebraic varieties. Actually, when
one performs, on a computer, an iteration of the previous birational
transformations associated with lattice models, in order to visualize these
orbits and get some “hint” on the integrability of the model [9], one
always iterates rational numbers: in a typical computer “experiment”
(even with a precision of 5000 digits ...), a “transcendental point” of
the parameter space is in fact represented by a rational point. When
one visualizes the previously mentioned elliptic curves [6, 10, 11], or
some Abelian surfaces [9], as orbits of the iteration of K̂, one visualizes,
in fact, an infinite set of rational points of an elliptic curve or of an

1More than anyone else, the creation of the Italian school of projective and alge-
braic geometry is due to Cremona [5].

2This set of discrete birational symmetries can be seen as generated by the itera-
tion of a birational transformation, thus canonically associating a discrete dynamical
system [9].
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Abelian surface. Lattice statistical mechanics thus yields naturally to
consider arithmetic problems of algebraic geometry. The description of
the rational points on algebraic varieties has always been a fascinating
problem3 for mathematicians [12, 13, 14, 15, 16, 17, 18]. Beyond the
general framework of the Hilbert’s tenth problem, one can hope to be
able to say something in some special cases, in particular in the case of
rational points on Abelian varieties4.

In this paper, we will show that the modular invariance of elliptic
curves, and more precisely the so-called j-invariant [19] of elliptic curves
(also called Klein’s absolute invariant, or “hauptmodul” ...), does play
an important role in the symmetries of the Baxter model, in the much
more general (and, generically, non Yang-Baxter integrable) sixteen-
vertex model [10, 20], and, beyond, in a large class of (non Yang-Baxter
integrable) two-dimensional models of lattice statistical mechanics and
field theory (in section (6), we will give the example of the four-state
chiral Potts model). We will also underline the existence of an infinite
set of commuting homogeneous polynomial transformations preserving
the modular invariant j. We will also see that the birational symme-
tries we introduce, enable to build the group of rational points of some
Abelian varieties, and in the case of elliptic curves, also preserve the
j-invariant. These results emerge, very simply, from the analysis of an
important representation of elliptic curves in term of a simple symmet-
ric biquadratic that occurs, naturally, in lattice statistical mechanics
(propagation property, see below (19)). This fundamental symmetric
biquadratic can actually be generalized in the case of surfaces, or higher
dimensional (Abelian) varieties [21].

3In 1970 Au. V. Matiyasevich showed that Hilbert’s tenth problem is unsolvable,
i.e. there is no general method for determining when algebraic equations have a
solution in whole numbers.

4The Birch and Swinnerton-Dyer conjecture [12] asserts that the size of the group
of rational points of an Abelian variety is related to the behavior of an associated
zeta function ζ(s) near the point s = 1. The conjecture asserts that if ζ(1) is not
equal to 0, then there is only a finite number of such rational points.
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2 Birational symmetries associated with the Baxter model
and the sixteen-vertex model

Let us consider a quite general vertex model namely the sixteen-vertex
model [10, 20]. Pictorially this can be represented as follows:

k

j

l

i (1)

(1)

where i and k (corresponding to direction (1)) take two values, and
similarly for j and l. The sixteen homogeneous parameters corresponding
to the sixteen Boltzmann weights of the model can be displayed in a
4× 4 matrix R or equivalently in a block matrix of four 2× 2 matrices
A, B, C, D :

R =
(
A B
C D

)
=


a1 a2 b1 b2
a3 a4 b3 b4
c1 c2 d1 d2

c3 c4 d3 d4

 (2)

An important integrable subcase of this quite general vertex model is
the symmetric eight vertex model, also called Baxter model [8], which
corresponds to the following 4× 4 R-matrix:

R =


a 0 0 d
0 b c 0
0 c b 0
d 0 0 a

 (3)

Let us introduce the partial transposition t1 associated with direction
(1):

(t1R)ijkl = Rkjil that is : t1 :
(
A B
C D

)
−→

(
A C
B D

)
(4)

and the two following transformations on matrix R, the matrix inverse
Î and the homogeneous matrix inverse I:

Î : R −→ R−1 , I : R −→ det(R) ·R−1 (5)
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Let us also introduce the (generically) infinite order homogeneous, and
inhomogeneous, transformations, respectively:

K = t1 · I , and: K̂ = t1 · Î (6)

For such vertex models of lattice statistical mechanics, transformations
Î and t1 are consequences of the inversion relations [3, 4] and the geo-
metrical symmetries of the lattice, in the framework of integrability and
beyond integrability. These involutions generate a discrete group of (bi-
rational) automorphisms of the Yang-Baxter equations [6, 7] and their
higher dimensional generalizations [22]. They also generate a discrete
group of (birational) automorphisms of the algebraic varieties canon-
ically associated with the Yang-Baxter equations (or their higher di-
mensional generalizations) [2]. In the generic case where the birational
transformation K̂ = t1 · Î is an infinite order transformation, this set
of birational automorphisms corresponds, essentially, to the iteration of
K̂.

Suppose that one iterates a rational point M0, all the points of the or-
bit of this initial point by the iteration of K̂, namely the points K̂N (M0)
will also be rational points. When this infinite set of rational points den-
sifies an algebraic curve, one thus gets, necessarily, an elliptic curves with
an infinite set of rational points [23].

When the infinite order transformation K̂ densifies d-dimensional
algebraic varieties [9], one can deduce the equations of these algebraic
varieties exactly [10]. One can even argue that these algebraic vari-
eties should be Abelian varieties. Let us denote VK(M0) the set of
points of the form K̂N (M0), where M0 is a given initial point, and
N denotes a relative integer. Let us consider two points, M and M ′,
belonging to VK(M0) (that is such that there exist two relative inte-
gers N and N’ such that M = K̂N (M0) and M ′ = K̂N ′(M0)). One
can straightforwardly define a notion of addition of two such points
M ′′ = M + M ′, associating to M = K̂N (M0), and M ′ = K̂N ′(M0),
the point M ′′ given by M ′′ = K̂N+N ′(M0). Therefore, one can de-
fine a notion of Abelian addition of two arbitrary points belonging to
VK(M0). The identity point is the origin M0: M + M0 = M , since
M +M0 = K̂(N+0)(M0) = K̂N (M0) = M . The inverse of point M ,
with respect to this Abelian addition, is the point −M = K̂−N (M0). If
VK(M0) densifies an algebraic variety V, one deduces (by continuity of
the birational transformation K) that V is an Abelian variety (an alge-
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braic variety which is also an Abelian group). Suppose that the iteration
of an initial rational point densifies an algebraic variety of dimension d,
one deduces that necessarily this d-dimensional algebraic variety is an
Abelian variety with an infinite (dense) set of rational points. In these
explicit examples, the relation between the birational transformation K̂
and the group of rational points of algebraic varieties is straightforward.

Factorization properties and complexity of the calculations.
The integrability of the birational mapping K̂, or, equivalently, of the
homogeneous polynomial transformation K, is closely related to the
occurrence of remarkable factorization schemes [9, 21]. In order to see
this, let us consider a 4× 4 initial matrix M0 = R, and the successive
matrices obtained by iteration of transformation K = t1 · I, where t1
is defined by (4). Similarly to the factorizations described in [9, 21], one
has, for arbitrary n, the following factorizations for the iterations of K:

Mn+2 =
K(Mn+1)

f2
n

, fn+2 =
det(Mn+1)

f3
n

, (7)

K̂t1(Mn+2) =
K(Mn+2)
det(Mn+2)

=
Mn+3

fn+1fn+3

where the fn’s are homogeneous polynomials in the entries of the initial
matrix M0, and the Mn’s are “reduced matrices” with homogeneous
polynomial entries [21, 9].

Let us denote by αn the homogeneous degree of the determinant of
matrix Mn, and by βn the homogeneous degree of polynomial fn, and
let us introduce α(x), β(x) which are the generating functions of these
αn’s, βn’s:

α(x) =
∞∑
n=0

αn · xn, β(x) =
∞∑
n=0

βn · xn, (8)

From these factorization schemes, one sees that a polynomial growth
of the iteration calculations occurs (quadratic growth of the degrees).
Actually, one can easily get linear relations on the exponents αn, βn and
exact expressions for their generating functions and for the αn’s and
βn’s:

α(x) =
4(1 + 3x2)
(1− x)3

, β(x) =
4x

(1− x)3
,

αn = 4 (2 n2 + 1), βn = 2n (n+ 1) (9)
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On the other hand, one has a whole hierarchy of recursions integrable,
or compatible with integrability [21]. For instance, on the fn’s, one has:

fn f
2
n+3 − fn+4 f

2
n+1

fn−1 fn+3 fn+4 − fn fn+1 fn+5
=

fn+1 f
2
n+4 − fn+5 f

2
n+2

fn fn+4 fn+5 − fn+1 fn+2 fn+6
(10)

In an equivalent way, introducing the variable xn = det(K̂n(R)) ·
det(K̂n+1(R)), one gets another hierarchy of recursions on the xn ’s,
(see [21]), the simplest one reading:

xn+2 − 1
xn+1 xn+2 xn+3 − 1

=
xn+1 − 1

xn xn+1 xn+2 − 1
· xn xn+1 x

2
n+2 (11)

Equation (11) is equivalent to (10) since xn = (f3
n ·fn+2)/(f3

n+1 ·fn−1).
It can be seen that these recursions (10), and (11), are integrable
ones [21]. In order to see this, one can introduce [11] a new (homo-
geneous) variable:

qn =
fn+1 · fn−1

f2
n

then : xn =
qn+1

qn
(12)

and end up, after some simplifications, with the following biquadratic
relation between qn and qn+1:

q2
n · q2

n+1 + µ · qn · qn+1 + ρ · (qn + qn+1) − ν = 0 (13)

which is clearly an integrable recursion (elliptic curve) [21]. In terms of
the fn’s, the three parameters ρ , ν and µ read:

ρ =
f1

2 f4 − f2
2 f3

f3
1 f3 − f3

2

, ν =
f2 f4 − f1 f3

2

f3
1 f3 − f3

2

, (14)

µ =
f2

5 − f3
2f1

3 − f1
5f4 + f3 f2

3

f2 f1 · (f3
1 f3 − f3

2 )

For the most general sixteen-vertex model, the expressions of ρ, ν and
µ are quite large in terms of its sixteen homogeneous parameters and,
thus, will not be given here. Let us just give an idea of these expressions
in the simple Baxter limit:

ρ = (ab+ cd)2 · (ab− cd)2 · (a2 + b2 − c2 − d2)2 ,

ν = −ν1 · ν2 · ν3 · ν4 (15)
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ν1 = b2dc− b2a2 + cda2 − d3c+ c2d2 − c3d ,
ν2 = b2dc+ b2a2 + cda2 − d3c− c2d2 − c3d ,
ν3 = b3a+ b2a2 + ba3 − d2ba− c2ba− c2d2 ,

ν4 = b3a− b2a2 + ba3 − d2ba− c2ba+ c2d2,

µ = −b2a6 + 2 a4b2c2 − a4c2d2 − 4 a4b4 + 2 a4d2b2 − a2c4b2 + 2 a2c4d2

+2 a2c2b4 + 2 a2c2d4 + 2 d4b2c2 − a2b6 + 2 a2b4d2 − a2d4b2 − c6d2

+2 c4d2b2 − 4 c4d4 − d6c2 − c2d2b4

3 Sixteen-vertex model and Baxter model: revisiting the
elliptic curves

Considering the (non-generically Yang-Baxter integrable) sixteen vertex
model [20], one finds that a canonical parameterization in terms of el-
liptic curves occurs in the sixteen homogeneous parameter space of the
model [10]. In the Yang-Baxter integrable subcase, the Baxter model,
this elliptic parameterization, deduced from the previous iteration of K,
or K̂, (Baxterisation procedure, see [24]), is actually the elliptic param-
eterization introduced by R. J. Baxter to solve the Baxter model [25].

In fact, several elliptic curves (associated with different “spaces”)
occur: one corresponding to the factorization analysis of the previous
section (see (11), (13)), another one obtained from the iteration of the bi-
rational transformation K̂2 in the sixteen homogeneous parameter space
of the model [10], and, as will be seen below in the next section, another
deduced from the so-called “propagation property” (see (16) below). An
analysis of the relations between these various elliptic curves shows that
they actually identify, as we will be seen below.

3.1 Propagation property for the sixteen-vertex model and the Baxter
model

One of the “keys” to the Bethe Ansatz is the existence (see equations
(B.10), (B.11a) in [8]) of vectors which are pure tensor products (of the
form v ⊗ w) and which R maps onto pure tensor products v′ ⊗ w′.
This key property5 was called propagation property by R. J. Baxter,
and corresponds to the existence of a Zamolodchikov algebra [28] for

5Which is “almost” a sufficient condition for the Yang-Baxter equation. In the
case of the Baxter model this non trivial relation corresponds to some intertwining
relation of the product of two theta functions, which is nothing but the quadratic
Frobenius relations on theta functions [26, 27].
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the Baxter model6. Let us consider the sixteen-vertex model (2). The
“propagation” equation reads here:

R (vn ⊗ wn) = µ · vn+1 ⊗ wn+1 or: (16)(
A B
C D

)(
wn

pn · wn

)
= µ ·

(
wn+1

pn+1 · wn+1

)
with :

vn =
(

1
pn

)
, wn =

(
1
p̃n

)
, vn+1 =

(
1

pn+1

)
, wn+1 =

(
1

p̃n+1

)
Actually, one can associate an algebraic curve (or “vacuum curve”, or
“propagation curve”) of equation:

det(A · pn+1 − C − D · pn + B · pn pn+1) = 0 (17)

which form is invariant by t1 , Î and, thus, also by K̂ or K̂2. As
a byproduct this provides a canonical algebraic curve for such vertex
models, namely curve (17). More precisely, the eliminations of pn, pn+1

(resp. p̃n, p̃n+1) yields the two biquadratic relations [10]:

l4 + l11 · pn − l12 · pn+1 + l2 · p2
n + l1 · p2

n+1 − (l9 + l18) · pn · pn+1

− l13 · p2
n · pn+1 + l10 · pn · p2

n+1 + l3 · p2
n · p2

n+1 = 0 , (18)
l7 + l16 · p̃n − l15 · p̃n+1 + l8 · p̃2

n + l5 · p̃2
n+1 − (l9 − l18) · p̃n · p̃n+1

− l17 · p̃2
n · p̃n+1 + l14 · p̃np̃2

n+1 + l6 p̃
2
n p̃

2
n+1 = 0

where the li’s are quadratic expressions of the sixteen independent en-
tries (2) of the R-matrix [10].

Some K̂2-invariants can be deduced from SL(3) “gauge-invariance”,
namely a quadratic expression in the li’s l1 · l2 + l3 · l4 − l10 · l11 − l12 ·
l13 + (l9 + l18)2, a cubic expression (in the li’s ) which is nothing but
a 3× 3 determinant, and a quartic one. Eighteen (algebraically related)
quadratic polynomials (p1, . . . , p18) which are linear combinations of the
li’s, and transform very simply under t1 and I, have been found [10].
Introducing the ratio of these covariants pi’s, one gets invariants of K̂2,
thus giving the equations of the elliptic curves: the elliptic curves are

6The existence of a Zamolodchikov algebra is, at first sight, a sufficient condi-
tion for the Yang-Baxter equations to be verified. Theta functions of g variables
do satisfy quadratic Frobenius relations [27], consequently yielding a Zamolodchikov
algebra parameterized in terms of theta functions of several variables. However this
Zamolodchikov algebra is apparently not sufficient for Yang-Baxter equations to be
satisfied [29].
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given by the intersection of fourteen quadrics in the associated fifteen-
dimensional projective parameter space of the model [10].

In the subcase of the Baxter model, the two previous “vacuum
curves” actually identify, the two “propagation” biquadratics (18) of
the Baxter model [8, 25] reading:

(Jx − Jy) · (p2
n p

2
n+1 + 1) − (Jx + Jy) · (p2

n + p2
n+1) + 4 · Jz · pn · pn+1

= (p2
n − 1)(p2

n+1 − 1) Jx − (p2
n + 1)(p2

n+1 + 1) Jy + 4Jz pn pn+1

= Γ1(pn, pn+1) = 0 (19)

where Jx , Jy, and Jz are the three well-known homogeneous quadratic
expressions of the XY Z quantum Hamiltonian [8]:

Jx = a · b + c · d , Jy = a · b − c · d , Jz =
a2 + b2 − c2 − d2

2
(20)

It is known that simple “propagation” curves, like (19), have the
following elliptic parameterization [8, 25]:

pn = sn(un, k) , pn+1 = sn(un+1, k) where : un+1 = un ± η(21)

where sn(u, k) denotes the elliptic sinus of modulus k, and η denotes
some “shift”. With this elliptic parametrization one sees that the bira-
tional transformation K̂ has a very simple representation on the spectral
parameter u, namely a simple shift: u −→ u ± η.

3.2 Reduction of a sixteen-vertex model to a K2-effective Baxter model

Let us note that the R-matrix of the sixteen-vertex model can actually
be decomposed 7 as:

Rsixteen = g−1
1L ⊗ g−1

2L ·RBaxter · g1R ⊗ g2R (22)

where RBaxter denotes the R-matrix of an “effective” Baxter model
and g1R, g2R, g1L, g2L are 2 × 2 matrices. The sixteen homogeneous
parameters of the sixteen-vertex model are thus decomposed into four
homogeneous parameters of an “effective” Baxter model, and four times

7Finding, for a given R-matrix of the sixteen vertex model, the elements of this
decomposition, namely RBaxter and g1R, g2R, g1L, g2L, is an extremely difficult
process that will not be detailed here. Conversely, one can show easily that the
matrices of the form (22) span the whole space of 4× 4 matrices.
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three parameters (four homogeneous parameters) of the various 2×2 ma-
trices: g1R, g2R, g1L, g2L. Let us note, on the sixteen-vertex model [10],
that a remarkable sl2×sl2×sl2×sl2 symmetry exists which generalizes
the well-known weak-graph “gauge” symmetry [30]:

K̂2(g−1
1L ⊗ g−1

2L ·Rsixteen · g1R ⊗ g2R) = (23)

= g−1
1L ⊗ g−1

2L · K̂2(Rsixteen) · g1R ⊗ g2R

These symmetries are symmetries of the propagation curve (17).

Using this very decomposition (22), and the previous symmetry re-
lation (23), one actually gets:

K̂2(Rsixteen) = g−1
1L ⊗ g−1

2L · K̂2(RBaxter) · g1R ⊗ g2R (24)

The matrices g1R, g2R, g1L, g2L of decomposition (22) can thus be
seen as constants of motion of the iteration of K̂2.

If RBaxter belongs to a “special” manifold, or algebraic variety, then
Rsixteen, given by (22), will also belong to a “special” manifold, or alge-
braic variety: for instance, if RBaxter belongs to a finite order algebraic
variety for the iteration of K̂2, namely K̂2N (RBaxter) = η · RBaxter,
then Rsixteen will also belong to a finite order algebraic variety for the
iteration of K̂2: K̂2N (Rsixteen) = η · Rsixteen. If RBaxter belongs to a
critical variety then Rsixteen given by (22) should also belong to a critical
variety. This last result does not come from the fact that g1L, g2L, g1R,
g2R are symmetries of the partition function (they are not, except in the
“gauge” case [30]: g1L = g1R with g2L = g2R): they are symmetries
of K̂2 which is a symmetry of the critical manifolds. Therefore they are
symmetries of the phase diagram (critical manifolds, ...) even if they are
not symmetries of the partition function.

A decomposition, like (22), is closely associated to the parametriza-
tion of the sixteen-vertex model in terms of elliptic curves [10]: given
RBaxter, g1L, g2L, g1R and g2R, one can easily deduce Rsixteen. Con-
versely, given Rsixteen, it is extremely difficult to get RBaxter, g1L,
g2L, g1R and g2R, however, and remarkably, it is quite simple to get
RBaxter. Since g1L, g1R, g2L, g2R are K̂2-invariants, one can try to
relate, directly, the “K̂2-effective” covariants Jx, Jy and Jz with the
K̂2-invariants related to the recursion on the xn’s or the qn’s, namely
ρ, µ, ν, or κ = 4 · (ν + µ2)/ρ. In terms of these well-suited algebraic
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covariants, the previous parameters read:

ρ = 4J2
z J

2
x J

2
y , µ = − 2 · (J2

zJ
2
x + J2

zJ
2
y + J2

xJ
2
y ) , (25)

κ =
4 · ν + µ2

ρ
= 4 · (J2

z + J2
x + J2

y )

ν = − (J2
z J

2
x + J2

zJ
2
y + J2

xJ
2
y )

2 + 4 · (J2
z + J2

x + J2
y ) · J2

zJ
2
xJ

2
y

Since these expressions are symmetric polynomials of J2
x , J

2
y , J

2
z ,

it is easy to see that the K̂2-effective covariants Jx, Jy, Jz can be
straightforwardly obtained8 from a cubic polynomial P (u) :

P (u) = 4 · u3 − κ · u2 − 2 · µ · u − ρ = (26)
= 4 · (u− J2

x) · (u− J2
y ) · (u− J2

z )

This is remarkable, because trying to get the “effective” Jx, Jy, Jz, by
brute-force eliminations from (22), yields huge calculations.

4 The modular invariant j

For every elliptic curve E with a singled-out point P0 on this elliptic
curve, there is a closed immersion E −→ CP2 such that the image of
this curve has the following simple form:

y2 = x · (x− 1) · (x− λ) (27)

The parameter λ is called the λ elliptic modulus [31]. One can also recall
the well-known canonical Weierstrass form [31]:

y2 = 4x3 − g2 x − g3 (28)

The j-invariant [19, 31] reads alternatively:

j = 256 · (1− λ+ λ2)3

λ2 (1− λ)2
= 1728 · g3

2

g3
2 − 27 g2

3

(29)

The j-invariant classifies elliptic curves up to isomorphisms. It is clear,
by direct computation, that j(λ) = j(1/λ) and j(λ) = j(1 − λ). A

8In fact, one only gets, from (26), the squares of the Jx, Jy , Jz , but the critical
manifold, as well as the finite order conditions (see below), only depend on J2

x , J2
y ,

J2
z .
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permutation group Σ3 is generated by λ −→ 1/λ and λ −→ 1 − λ.
The orbits of λ under the action of Σ3 read:

λ ,
1
λ
, 1− λ , 1

1− λ ,
λ

1− λ ,
1− λ
λ

(30)

We note that j is a rational function of degree 6 of the λ elliptic modulus
(i.e. λ −→ j defines a finite morphism CP1 −→ CP1 of degree 6).
Furthermore this is a Galois covering, with Galois group Σ3 under the
action described above: j(λ) = j(λ′) if, and only if, λ and λ′ differ by
an element of Σ3.

The group Aut(E , P0), of automorphisms of E leaving P0 fixed, is
not generic when λ is equal to one of the other expressions in (30). This
happens for the following singled-out values of λ:

λ =
1
2
, or: λ = 2 , or: λ = −1

<=> j = 1728 <=> g3 = 0 (31)
λ = −ω , or: λ = −ω2 , with: 1 + ω + ω2 = 0
<=> j = 0 <=> g2 = 0

The Fermat curve, x3 + y3 = z3, actually corresponds to the last situa-
tion: λ = −ω, j = 0 (writing x = −1/3 + z maps this Fermat curve
onto a Weierstrass form with g2 = 0). The other singled-out values of
λ are λ = 0 and λ = 1, for which j = ∞, and for which the elliptic
curve degenerates into a rational curve (g3

2 − 27 g2
3 = 0).

Remark: A Weierstrass form (27), or (28), is known to have an el-
liptic parametrization in terms of Weierstrass elliptic functions ℘(z). Let
us recall the simple biquadratic (19), and its simple elliptic sinus param-
eterization (21), for which the action of the birational transformations
K̂ is very simply represented as a simple shift u −→ u ± η. In contrast
with the biquadratic (19), one sees that the Weierstrass representation
of elliptic curves, is certainly well-suited to describe the “moduli space”
of the curve (the j-invariant), but it is unfortunately totally blind to a
crucial discrete symmetry of our integrable models, namely the birational
transformations K̂, or equivalently, the shifts on the spectral parame-
ter: the fact that a point P0 is singled-out simplifies the analysis of
the moduli space, “quicking out” the automorphisms corresponding to
the translations of the spectral parameter, but it is “too universal” to
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enable a description of the infinite set of birational transformations K̂
closely related to the group of rational points of the elliptic curve (see
below). One purpose of this paper is to promote a representation of the
elliptic curves in term of the biquadratic (19), rather than a Weierstrass
form (27), since (19) also encapsulates, very simply, the fundamental
j-invariant describing the moduli space, gives a crystal clear represen-
tation of the Σ3 Galois covering, and, especially, does provide a simple
description of the infinite set of birational transformations K̂, as a shift
(see section (5.2)).

The modular invariant j is of basic importance because it can be
shown that every modular function is expressible as a rational function
of j. The expansion of j, in terms of the nome of the elliptic functions
q = exp(iπτ), reads:

j(q) = 1728 · J(q) =
∞∑

n=−2

jn · q2n =

= η(τ)−24 ·
(
1 + 240

∞∑
n=1

n3 exp(2πinτ)
1− exp(2πinτ)

)3

=
1
q2

+ 744 + 196884 q2 + 21493760 q4 + +864299970 q6

+ 20245856256 q8 + · · ·

where η(τ) is the Dedekind eta function. Peterson and Rademacher [32,
33] have derived the following asymptotic formula for the Fourier coeffi-
cients jn in (32):

jn = 2−1/2 n−3/4 exp(4π n1/2) , as: n −→∞ (32)

Remark: The j-invariant is sometimes defined in the litterature [19]
by j = 4/27 · (1 − λ + λ2)3/λ2/(1 − λ)2, the factor 4/27 replacing
the factor 256 in (29). This factor is in fact quite arbitrary: the 4/27 is
such that the singled-out values for the λ elliptic modulus, λ = 2 , 1/2,
actually correspond to j = 1, while the 256 choice corresponds to a more
mathematical choice [31] which makes things work in characteristic 2,
despite appearances to the contrary !

It turns out that the j-function is also important in the classification
theorems for finite simple groups9 and that the factors of the orders of

9It has been shown by Thompson [34] that there exists a remarkable connection
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the sporadic groups are also related. Seen as a function of the nome
q, the j-function is a meromorphic function of the upper-half of the q-
complex plane. It is invariant with respect to the special linear group
SL(2, Z). Two cases of complex multiplications are well-known: τ = i
corresponding to g3 = 0, and τ = ω (where ω3 = 1) corresponding to
g2 = 0. Even though there is a good criterion for complex multiplication
in terms of τ , the connection between τ and j is not easy to compute. If
we are given a curve by its equation in CP2 or its j-invariant, it is not
easy to tell whether it has complex multiplication or not [35, 36]. Along
this line [37], for some special values of the nome q, the j-invariant
j(q) can be an algebraic number, sometimes a rational number and even
an integer10. The determination of j as an algebraic integer in the
quadratic field Q(j) is discussed in Greenhill [38], Gross and Zaiger [39]
and Dorman [40]. If one considers the Heegner’s numbers11, one gets [41,
42] the following nine remarkable integer values for j:

j(−e−π
√

3) = 03 , j(−e−π) = 123 , j(−e−π
√

7) = −153 ,

j(e−π
√

8) = 203 , j(−e−π
√

11) = −323 , j(−e−π
√

19) = −963 ,

j(−e−π
√

43) = −9603 , j(−e−π
√

67) = −52803

j(−e−π
√

163) = −6403203

For elliptic curves over the rationals, Mordell proved that there are finite
number of integral solutions. The Mordell-Weil Theorem says that the
group of rational points [23] of an elliptic curve over Q, is finitely gener-
ated. Actually, a remarkable connection between rational elliptic curves
and modular forms is given by the Taniyama-Shimura conjecture, which
states that any rational elliptic curve is a modular form in disguise12. In
the early 1960’s B. Birch and H.P.F. Swinnerton-Dyer conjectured that
if a given elliptic curve has an infinite number of rational points then
the associated L-function has value 0 at a certain fixed point. In 1976

between the coefficients jn and the degrees of the irreducible characters of the Fisher-
Griess “monster group”.

10The latter result is the end result of a massive theory of complex multiplication
and the first step of Kronecker’s so-called “Jugendtraum”.

11The Heegner’s numbers have a number of fascinating connections with amazing
results in prime number theory. Beyond connection (33) between the j-function, e,
π and algebraic integers, they also explain why Euler’s prime generating polynomial
n2 − n+ 41 is so surprisingly good at producing prime numbers.

12This result was the one proved by Andrew Wiles in his celebrated proof of Fer-
mat’s Last Theorem.
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Coates and Wiles showed13 that elliptic curves, with complex multipli-
cation, having an infinite number of rational points, have L-function
which are zero at the relevant fixed points (Coates-Wiles Theorem).

Let us show the remarkable situations for which the j-invariant be-
comes a rational number, do play a relevant role in lattice statistical
mechanics.

4.1 The modular invariant j for the two-dimensional Ising model

Despite the celebrated Onsager’s solution for the partition function of
the two-dimensional Ising model, and the remarkably simple expression
of its spontaneous magnetization, in term of the modulus k of the elliptic
functions parametrising this simple free-fermion model, or, in term of the
previous λ elliptic modulus:

M = (1 − k2)1/8 = (1 − λ)1/8 , where: λ = k2 (33)

there exists no closed formula for the susceptibility [43]. For the
anisotropic square lattice, the previous modulus k reads k = sh(2K1) ·
sh(2K2), where K1 and K2 correspond to the two nearest neighbor
coupling constants of a square lattice [20]. For two-dimensional Ising
models on other lattices (triangular, honeycomb, checkerboard, ...) the
spontaneous magnetization has the same expression (33) where k, or
λ, are more involved expressions (of the nearest neighbor coupling con-
stants), but are still the modulus of the elliptic functions parametrising
the models [20]. An exact, but formal, expression of the susceptibil-
ity as an infinite sum of integrals over n variables was derived some
years ago by Wu et al [44]. However the relative “intractability of the
integrals”, appearing there, has impeded progress in clarifying the ana-
lyticity properties of the susceptibility as a function of the parameters
of the model. Let us consider an anisotropic square lattice, namely
λ = k2 = (sh(2K1) · sh(2K2))2. Wu et al have reduced the suscep-
tibility χ to an infinite sum of 2n + 1 “particle contributions”, which
reads, in the isotropic limit sh(2K1) = sh(2K2) = s :

β−1 · χ =
∞∑
n=0

χ(2n+1) =
(1− s4)1/4

s
·
∞∑
n=0

χ̂(2n+1) for: s < 1 (34)

where χ̂(2n+1) are integrals over 2n+1 “angles”. Some extensive calcu-
lations have, however, been performed by Nickel [45, 46] on these succes-
sive terms providing expansions of these χ̂(2n+1) in s (up to order 112

13V. Kolyavagin has extended this result to modular curves.
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for χ̂(3)), and these expansions have been extended by Orrick et al [43].
From the examination of χ̂(3) as a double integral, one can deduce that
it is related to a hyperelliptic function, and Nickel [45, 46] remarked that,
beyond the known ferromagnetic and antiferromagnetic critical points,
s = 1 and s = −1, χ̂3 has (at least ...) the following “unphysical”
singularities: s = ±i, s = exp(2iπ/3) (that is s2 = −1 , 1+s+s2 = 0),
but also s = (1 ± i

√
15)/4. As far as elliptic parametrization of a model

is concerned, one knows that λ = ±1, λ = −ω (ω3 = 1), and also
λ = 2 and λ = 1/2, are singled out (see (31)), and are, thus, natural
“candidates” for singular points of χ̂(3). However, if one writes the λ
elliptic modulus as a function of s, one sees that these “unphysical” sin-
gularities do not correspond to such singled out values. Let us write the
j-invariant as a function of s. It reads:

j = 256 ·
(
s8 + 1− s4

)3
s8 (s4 − 1)2 (35)

One easily finds that s = exp(2iπ/3) and s = (1 ± i
√

15)/4 ac-
tually correspond to the following singled-out rational values for j:
s = exp(2iπ/3) −→ j = 2048/3, s = (1 ± i

√
15)/4 −→ j = −1/15.

Therefore one actually sees that the singular loci for the modulus of
elliptic curve, and the remarkable situations for which the j-invariant
becomes a rational number, do play an important role for a model which
is the paradigm of exactly solvable models, the two-dimensional Ising
model. This is a general situation: the j-invariant must play an impor-
tant role to describe the analytical properties of lattice models, since it
“encapsulates” all the symmetries of the parameter space of the model.
This will be seen, in the next section, with the example of a quite gen-
eral model depending on sixteen homogeneous parameters, and having
the Ising model and the Baxter model as a subcase, namely the sixteen
vertex model [20].

4.2 The modular invariant j for the sixteen-vertex model

The elliptic curves corresponding to the orbits of K̂2 in the parameter
space of the sixteen vertex model, as well as the two biquadratics (18),
together with the elliptic curves associated to the factorization analysis
of the previous section (like (10), (11) or (13)), share the same modular
invariant j, (also called Klein’s absolute invariant, or “hauptmodul”, or
j-invariant [47], ...) which can be simply written, for the sixteen-vertex



Modular invariance in lattice statistical mechanics 305

model, in terms of the “effective” J2
x , J

2
y , J

2
z deduced from (26) (using

of course (14)):

j = 256 ·
(J4
x + J4

y + J4
z − J2

zJ
2
y − J2

zJ
2
x − J2

yJ
2
x)

3(
J2
y − J2

x

)2 (J2
z − J2

x)
2 (
J2
z − J2

y

)2 (36)

This modular invariant j can also be written (see (29)) j = 256 · (1−
λ+λ2)3/λ2/(1−λ)2, or j = 1728 ·g3

2/(g
3
2 −27 g2

3), where the λ elliptic
modulus is given by:

λ =
J2
z − J2

y

J2
x − J2

z

(37)

and where g2, and g3, correspond to a reduction of the elliptic curve into
a Weierstrass canonical form (28): y2 = 4x3 −g2 x −g3. Recalling the
Σ3 Galois group invariance of j, that is the invariance under the change
of the elliptic modulus λ into 1 − λ, or 1/λ, and their combinaisons
(see (30)), one sees easily that these homographic transformations (30)
on the elliptic modulus λ, are just homographic representations of the
Σ3 group of permutation of J2

x , J
2
y , J

2
z . The expressions of g2, g3, and

the discriminant g3
2 − 27 g2

3 (see (28)), read respectively:

g2 = 12 · (J4
x + J4

y + J4
z − (J2

x J
2
y + J2

x J
2
z + J2

y J
2
z )) , (38)

g3 = 4 · (J2
x − 2 J2

y + J2
z ) · (J2

x + J2
y − 2 J2

z ) · (−2 J2
x + J2

y + J2
z )

g3
2 − 27 g2

3 = 11664 · (J2
x − J2

y )
2 · (J2

z − J2
y )

2 · (J2
x − J2

z )
2

Based on the classical theory of algebraic invariants (Hilbert’s “syzy-
gys”, see [48]), an irreducible basis of algebraic invariants has been built
for the sixteen-vertex model [30, 49, 50, 51, 52, 53, 54, 55, 56, 57]: these
algebraic invariants take into account the weak-graph “gauge” (similarity
...) sl2 × sl2 symmetries of the sixteen vertex model [58]. The modular
invariant j is, of course, invariant under the previous sl2×sl2 similarity
symmetries, but it is actually also invariant [10] under the much larger
set of sl2 × sl2 × sl2 × sl2 symmetries. These last symmetries are not
invariances of the partition function, like the previous similarity symme-
tries [30, 58], but only symmetries of the parameter space (or symmetries
of the birational symmetries of the model, “symmetries of second order”
...). Furthermore, this modular invariant is also invariant under the in-
finite discrete set of birational transformations K̂N , corresponding to
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the Baxterisation procedure [24]. It is thus invariant under a continuous
group of linear transformations sl2 × sl2 × sl2 × sl2 and, in the same
time, under an infinite discrete group of non-linear transformations. In
a forthcoming section (5.2), it will also be seen to be invariant under
another remarkable infinite set of (non-invertible) polynomial transfor-
mations (see (44)).

The modular invariant j thus “encapsulates” all the symmetries of
the sixteen-vertex model. It is invariant under three very different sets of
symmetries, which seem, at first sight, hardly compatible: the sl2×sl2×
sl2 × sl2 continuous “gauge-like-symmetries”, the infinite discrete set of
birational transformations K̂N (closely related to the group of rational
points), and finally, an infinite discrete set of homogeneous polynomial
(or rational, but not birational) transformations (see (5.2)).

The modular invariant j can also be calculated directly in terms of
the µ, ρ and ν (see (14)):

j = −
(
µ4 + 8µ2ν + 16 ν2 + 24 ρ2µ

)3
ρ4 (µ4ν + 8µ2ν2 + 16 ν3 + ρ2µ3 + 36 ρ2µ ν + 27 ρ4)

(39)

For the sixteen vertex model, using (14), the modular invariant j can be
calculated exactly and becomes, in terms of the sixteen homogeneous pa-
rameters of the model, the ratio of two “huge” homogeneous polynomials
that will not be written here.

5 Biquadratic representation of elliptic curves and polynomial
representation of natural integers.

5.1 Biquadratic (19) versus biquadratic (35), for the Baxter model

The “Baxterisation process”[24] is associated with the iteration of K̂, or,
rather, K̂2. Since, as far as K̂2 is concerned, one can reduce a sixteen-
vertex model to an “effective” Baxter model, one can try to revisit,
directly, the relation between the biquadratic (13) and the “propagation
curve” (18) for the Baxter model. For the Baxter model, relation (13)
becomes the biquadratic:

q2
n q

2
n+1 − 2 (J2

zJ
2
x + J2

zJ
2
y + J2

xJ
2
y ) qn qn+1 + 4J2

z J
2
x J

2
y · (qn + qn+1)

+ (J2
z J

2
x + J2

zJ
2
y + J2

xJ
2
y )

2 − 4 · (J2
z + J2

x + J2
y ) · J2

zJ
2
xJ

2
y = 0 (40)

which should be compared with the “propagation” biquadratic (18) of
the Baxter model [8, 25]:

(Jx − Jy) (p2
n p

2
n+1 + 1) − (Jx + Jy) (p2

n + p2
n+1) + 4Jz pn pn+1
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= (p2
n − 1) (p2

n+1 − 1)Jx − (p2
n + 1) (p2

n+1 + 1) Jy + 4Jz pn pn+1

= Γ1(pn, pn+1) = 0 (41)

Let us recall that the “propagation” curve (19), has the simple elliptic
parameterization (21), namely pn = sn(un, k) , pn+1 = sn(un+1, k)
whith un+1 = un ± η, where sn(u, k) denotes the elliptic sinus of
modulus k and η denotes some “shift”. The modulus [59] k is equivalent
to the modulus λ = k2 which has the simple expression (37) in terms
of J2

x , J
2
y and J2

z .
At first sight, it seems that one has two different elliptic curves (bi-

quadratics associated with the Baxter model), namely (40) which is sym-
metric under permutations of J2

x , J
2
y and J2

z , and (41) which breaks this
Σ3 permutation symmetry. It can, however, be seen that they are actu-
ally equivalent (up to involved birational transformations). Actually, let
us also consider the same “propagation curve” (41), but now between
pn+1 and pn+2, and let us eliminate pn+1 between these two algebraic
curves. One gets, after the factorization of (pn − pn+1)2 a biquadratic
relation between pn and pn+2 of the same form as (41):

2 J2
z · (J2

y − J2
x) · (p2

n p
2
n+2 + 1) + 2J2

xJ
2
y · (p2

n + p2
n+2)

+ 4 · (J2
xJ

2
y − J2

zJ
2
x − J2

zJ
2
y ) · pn · pn+2 =

(p2
n − 1) (p2

n+2 − 1)J (2)
x − (p2

n + 1) (p2
n+2 + 1)J (2)

y + 4 pn pn+2 J
(2)
z

= Γ2(pn, pn+2) = 0 (42)

where J
(2)
x , J

(2)
y and J

(2)
z are given below (see (44)). The two bi-

quadratic curves (40) and (42) are, in fact, (birationally) equivalent,
their shift η and modular invariant [59] being equal. Actually, one can
find directly an homographic transformation

qn =
α · pn + β

γ · pn + δ
, qn+1 =

α · pn+2 + β

γ · pn+2 + δ
(43)

which maps (40) onto (42), the parameters α, ... δ of the homographic
transformation (43) being quite involved. Of course, similarly, the bi-
quadratic (42) is (birationally) equivalent to five other equivalent bi-
quadratics deduced from (42) by permutations of Jx, Jy and Jz.

5.2 Polynomial representations of the multiplication of the shift by an
integer.

The previously described elimination of pn+1, changing Γ1 into Γ2,
amounts to eliminating un+1 between un −→ un+1 = un ± η and
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un+1 −→ un+2 = un+1 ± η thus getting un −→ un+2 = un ± 2 · η,
together with two times un −→ un+2 = un. Considering the coeffi-
cients of the biquadratic (42) one thus gets, very simply, a polynomial
representation of the shift doubling η −→ 2 · η :

Jx −→ J (2)
x = −J2

z J
2
x + J2

z J
2
y − J2

x J
2
y

Jy −→ J (2)
y = J2

z J
2
x − J2

z J
2
y − J2

x J
2
y (44)

Jz −→ J (2)
z = −J2

z J
2
x − J2

z J
2
y + J2

x J
2
y

The modulus (37) is (as it should), invariant by (44), which repre-
sents the shift doubling transformation14. Of course there is noth-
ing specific with the shift doubling: similar calculations can be per-
formed to get polynomial representations of η −→ M · η, for any in-
teger M . Actually, it can be seen that the multiplication of the shift
by a prime number, N 6= 2, has the following polynomial representation
(Jx, Jy, Jz) → (J (N)

x , J
(N)
y , J

(N)
z ):

J (N)
x = Jx · P (N)

x (Jx, Jy, Jz) (45)

J (N)
y = Jy · P (N)

y (Jx, Jy, Jz) = Jy · P (N)
x (Jy, Jz, Jx)

J (N)
z = Jz · P (N)

z (Jx, Jy, Jz) = Jz · P (N)
x (Jz, Jx, Jy)

where the P (N)
x (Jx, Jy, Jz)’s (and thus P (N)

y (Jx, Jy, Jz), P
(N)
z (Jx, Jy, Jz))

are polynomials of J2
x , J

2
y and J2

z . For instance one has the following

polynomial representation (Jx, Jy, Jz) → (J (3)
x , J

(3)
y , J

(3)
z ) of the mul-

tiplication of the shift by three:

J (3)
x = Jx · (−2 J2

zJ
2
yJ

4
x − 3 J4

yJ
4
z + 2 J2

yJ
4
zJ

2
x + J4

yJ
4
x + 2 J4

yJ
2
zJ

2
x + J4

zJ
4
x)

J (3)
y = Jy · (2 J2

zJ
2
yJ

4
x − 3 J4

zJ
4
x + J4

yJ
4
x − 2 J4

yJ
2
zJ

2
x + J4

yJ
4
z + 2 J2

yJ
4
zJ

2
x) (46)

J (3)
z = Jz · (J4

yJ
4
z + 2 J4

yJ
2
zJ

2
x − 3 J4

yJ
4
x − 2 J2

yJ
4
zJ

2
x + 2 J2

zJ
2
yJ

4
x + J4

zJ
4
x)

The multiplication of the shift by three (46), can be obtained us-
ing the previous elimination procedure, namely eliminating y between
Γ2(x, y) and Γ1(y, z) (or equivalently eliminating y between Γ1(x, y)
and Γ2(y, z)), thus yielding a resultant which factorizes into two bi-
quadratics of the same form as the two previous ones, namely Γ1(x, z)

14A general calculation, corresponding to eliminations between two biquadratics
Γ1 of same modulus (37), but different shifts η and η′ can also be performed. It
will be given elsewhere.
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and Γ3(x, z) :

(x2 − 1) · (z2 − 1) · J (3)
x − (x2 + 1) · (z2 + 1) · J (3)

y + 4 · J (3)
z · x · z

= Γ3(x, z) = 0 (47)

where J
(3)
x , J

(3)
y and J

(3)
z are polynomials in Jx, Jy and Jz . This

provides a polynomial representation (Jx, Jy, Jz) → (J (3)
x , J

(3)
y , J

(3)
z ) of

the multiplication of the shift by three. This polynomial representation
is of the form (45), where

P (3)
x = −2 J2

z J
2
y J

4
x − 3 J4

y J
4
z + 2 J2

y J
4
z J

2
x + J4

y J
4
x + 2 J4

y J
2
z J

2
x + J4

z J
4
x (48)

The modulus (37) is (as it should) invariant by the polynomial represen-
tation (48) of the multiplication of the shift by three (48).

The multiplication of the shift by four has the following polynomial
representation (Jx, Jy, Jz) → (J (4)

x , J
(4)
y , J

(4)
z ):

J (4)
x (Jx, Jy, Jz) = −4 J6

x J
6
y J

4
z − 6 J8

z J
4
y J

4
x + 4 J8

z J
6
y J

2
x + 4 J8

z J
2
y J

6
x (49)

+4J6
z J

6
y J

4
x − 4 J2

z J
8
x J

6
y + 10 J4

z J
8
x J

4
y − 4 J6

z J
8
x J

2
y − J8

x J
8
y − J8

z J
8
y

−J8
z J

8
x + 4 J2

z J
8
y J

6
x − 4 J6

z J
6
x J

4
y + 4 J6

z J
8
y J

2
x − 6 J4

z J
8
y J

4
x

J (4)
y (Jx, Jy, Jz) = J (4)

x (Jy, Jz, Jx) , J (4)
z (Jx, Jy, Jz) = J (4)

x (Jz, Jx, Jy)

which can be obtained, either by the elimination of y between Γ2(x, y)
and Γ2(y, z) (and extracting a (x − z)2 factor in the resultant), or,
equivalently, by the elimination of y between Γ1(x, y) and Γ3(y, z), or
the elimination of y between Γ3(x, y) and Γ1(y, z) (and extracting a
Γ2 factor in the resultant). Again, one gets Γ4(x, z) :

(x2 − 1) · (z2 − 1) · J (4)
x − (x2 + 1) · (z2 + 1) · J (4)

y + 4 · J (4)
z · x · z

= Γ4(x, z) = 0 (50)

where J
(4)
x , J (4)

y and J
(4)
z are given above. It can easily be verified that

(49) can be obtained directly combining (44) with itself.
The multiplication of the shift by five has a polynomial representation

(Jx, Jy, Jz) → (J (5)
x , J

(5)
y , J

(5)
z ) of the form (45), where:

P5(Jx, Jy, Jz) = 5 Jz12Jy
12 +

(
Jz

2 − Jy2
)6
Jx

12

−10 Jy10Jz
10
(
Jz

2 + Jy
2
)
Jx

2 + 36 Jy6Jz
6
(
Jz

2 + Jy
2
)

(Jz2 − Jy2)2Jx
6
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−Jz4Jy
4
(
29 Jz4 + 54 Jz2Jy

2 + 29 Jy4
)

(Jz2 − Jy2)2Jx
8

+Jy8Jz
8 (4 Jz Jy + 3 Jz2 − 3 Jy2) (3Jy2 + 4 Jz Jy − 3 Jz2) Jx4

+2Jz2Jy
2
(
Jy

2 + 3 Jz2
) (

3 Jy2 + Jz
2
) (
Jz

2 + Jy
2
) (
Jz

2 − Jy2
)2
Jx

10

The modulus (37) is, again, invariant by this last polynomial repre-
sentation of the multiplication of the shift by five. One remarks that
P

(5)
x (Jx, Jy, Jz) singles out Jx and is invariant under the permutation
Jy ↔ Jz and, similarly, P (5)

y (Jx, Jy, Jz) singles out Jy and is invariant
under the permutation Jx ↔ Jz and P

(5)
z (Jx, Jy, Jz) singles out Jz

and is invariant under the permutation Jx ↔ Jy. One has similar re-
sults for the polynomial representation of the multiplication of the shift
by M = 6, 7, 9, 11, · · ·

Let us denote by ΓN a biquadratic corresponding to u → u±N ·η :

(x2 − 1) · (z2 − 1) · J (N)
x − (x2 + 1) · (z2 + 1) · J (N)

y + 4 · J (N)
z · x · z

= ΓN (x, z) = 0 (51)

In general, it should be noticed that the elimination of y between
ΓM (x, y) and ΓM ′(y, z), yields a resultant which is factorized into
Γ(M+M ′)(x, z) and Γ(M−M ′)(x, z) (for M ≥ M ′). When seeking
for a new ΓN (x, z) there may be many (M, M ′) enabling to get
ΓN (x, z) (that is such that N = M + M ′). One can verify that
all these calculations give, as it should, the same result (in agreement
with a polynomial representation of u → u ± M · η ± M ′ · η giv-
ing u ± (M + M ′) · η or : u ± (M − M ′) · η. Let us denote TN
these homogeneous polynomial representations of the multiplication of
the shift by the natural integer N . In the same spirit, one can verify,
for N = M ·M ′ (N, M, M ′ natural integers), that:

TN (Jx, Jy, Jz) = (TM )M
′
(Jx, Jy, Jz) = (52)

= TM (TM (TM (· · ·TM (Jx, Jy, Jz) · · ·))) =
= (TM ′)M (Jx, Jy, Jz) = TM ′(TM ′(TM ′(· · ·TM ′(Jx, Jy, Jz) · · ·)))

One can, for instance, easily verify that T2 and T3 commute, as well
as T2 and T5. Similarly one can verify, in a brute-force way, that T3

and T5 commute. These commutation relations are true for TN and
TM , for any N and M . One thus has a polynomial representation of
the natural integers together with their multiplication. One verifies easily
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that the homogeneous polynomial transformations TM are all of degree
M2, in Jx, Jy, Jz, for M = 2, 3, · · · 11.

Remark: One can easily verify that the λ elliptic modulus (37) is ac-
tually invariant by the (polynomial representation of the) shift doubling
(44), and by (46) the (polynomial representation of the) multiplication of
the shift by three, as well as all the other polynomial representations of
the multiplication of the shift by any integer. The canonical Weierstrass
form (28) “encodes” the modular invariant j, or simply the modulus
λ. However it is too “universal”: a crucial (physical) symmetry, and a
crucial information, namely the shift η has been been lost under this
“universal” canonical Weierstrass form. We want here to underline a
representation of elliptic curves in terms of the biquadratic curve (19),
which is also very simple, but is actually such that the action of the group
of birational transformations (group of rational points) is crystal clear,
and such that the Σ3 symmetry of elliptic curves (Galois covering of the
j-invariant), namely the permutation group of three elements, is also
clear. Furthermore, very simple calculations on this very biquadratic
curve (eliminations by resultants) enable to find these polynomial repre-
sentations ((44), (46), ...), which are fundamental to represent physically
(and mathematically) relevant finite order conditions (see below).

5.2.1 Finite order conditions and associated algebraic vari-
eties

Let us show that one can deduce the (projective) finite order conditions
KM (R) = ζ · R, from the previous polynomial representations. Our
motivation is that the corresponding algebraic varieties are “good candi-
dates” for new free-(para?)-fermions, or new equivalents of the integrable
chiral Potts model [60]. Completely similar calculations can thus be per-
formed, yielding an infinite set of “good candidates” for (higher genus)
star-triangle integrability, enabling, in particular, to recover the higher
genus integrable solution of Baxter-Perk-Au-Yang [64]. Of course, for
the sixteen-vertex model, we do not expect that one of this infinite set
of finite order conditions could yield new Yang-Baxter integrable sub-
cases of the sixteen-vertex model. We just consider the sixteen-vertex
model for heuristic reasons.

Since one knows that the (projective) finite order conditions of K̂2

often play a singled-out role for integrability, and, in particular, since
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one knows [65] that the free-fermion conditions of the asymmetric eight
vertex model correspond to K4(R) = ζ ·R, one can, as an exercise, try
to systematically write, for the sixteen vertex model, the (projective)
finite order conditions K2N (R) = ζ ·R, with N natural integer.

Let us first give these finite order conditions for the Baxter model15.
At first sight, writing down the (projective) finite order condition
K2N (R) = ζ · R, corresponds to write four homogeneous equations
on the four homogeneous parameters a, b, c and d, yielding to points
in the (projective) parameter space (codimension-three). In fact, the
Baxter R-matrices of order two (K2(R) = ζ · R) correspond to codi-
mension two algebraic varieties. One easily checks that c = d = 0
are such matrices. Furthermore, recalling [65] that the free-fermion con-
dition for the XY Z Hamiltonian, Jz = 0, corresponds to the finite
order (projective) condition K4(R) = ζ · R, one actually sees that the
R-matrices of order four can actually correspond to a codimension-one
algebraic variety (only one algebraic condition on the homogeneous pa-
rameters of the model). Recalling the polynomial representation (44) of
the shift doubling, one can easily get convinced that J

(2)
z = 0 should

correspond to K8(R) = ζ · R, also yielding a only one algebraic con-
dition on the homogeneous parameters of the model (codimension-one
algebraic variety). This can be verified by a straight calculation. This
is a general result: all the finite order conditions K2N (R) = ζ · R cor-
respond to codimension-one algebraic varieties, expect N = 1. The idea
here is the following: K, or K̂, corresponding, with some well-suited
spectral parameter, to θ −→ θ + η, K2, or K̂2, must correspond to
θ −→ θ + 2 · η . A finite order condition of order M corresponds to a
commensuration of η with a period of the elliptic curves: η = P/M,
that is just one condition on the parameters of the model. Changing
K into K2 amounts to changing η into 2 · η, or equivalently, chang-
ing the order M into 2M . The fact that the finite order conditions
K2N (R) = ζ · R correspond to codimension one algebraic varieties is,
thus, a consequence of the foliation of the parameter space in elliptic
curves.

More generally, a polynomial condition C2N (Jx, Jy, Jz) = 0, corre-
sponding to K2N (R) = ζ ·R, has to be compatible with the polynomial
representations of η −→ M · η, for any integer M . This compatibility

15For this heuristic model it is not necessary to explain, beyond the free-fermion
subcase, the usefulness of the finite order conditions any further: these algebraic
varieties correspond exactly to the set of RSOS models [66].



Modular invariance in lattice statistical mechanics 313

is often, in fact, an efficient way to get these finite order conditions. For
a prime integer N 6= 2 the algebraic varieties P

(N)
x (Jx, Jy, Jz) = 0,

P
(N)
y (Jx, Jy, Jz) = 0, and P

(N)
z (Jx, Jy, Jz) = 0 give order 4N condi-

tions:

K4N (R) = ζ ·R (53)

Since the P (N)’s (and the J (N)’s for N even) are functions of J2
x , J

2
y

and J2
z , the order 4N conditions, K4N (R) = η ·R, are also functions

of the square J2
x , J2

y and J2
z . One can easily get infinite families of

finite order conditions. For instance, iterating the shift doubling (44)
(resp. (48)), and using this transformation on Jz = 0, one easily gets
an infinite number of algebraic varieties corresponding to the finite order
conditions of order 2N (resp. 3N ). Combining (44) and (48), one gets
straightforwardly the finite order conditions of order 2N × 3M .

A few miscellaneous examples of finite order conditions KN (R) =
ζ · R as polynomial relations on Jx, Jy and Jz are given in Appendix
A.

5.2.2 Covariance properties of g2 and g3

Let us now recall the homogeneous polynomial expressions (38) for g2

and g3, in terms of Jx, Jy and Jz, and show that they have remarkable
covariance properties with respect to the previous homogeneous polyno-
mial representations. These two (homogeneous) polynomial expressions
are changed by (44) into:

(g2 , g3) → (t4 · g2 , t
6 · g3) , where: t = 2Jx Jy Jz (54)

The condition t = 0 actually corresponds to the conditions of order
four K4(R) = µ · R. It is remarkable that the cofactor t of g2 and
g3, corresponding to the shift doubling (44), is closely related to a finite
order condition K4(R) = µ · R. Similarly, the polynomial expressions
g2 and g3 are changed by multiplication of the shift by three (46) into:

(g2 , g3) → (t4 · g2 , t
6 · g3) , where: t = t0 · tx · ty · tz (55)

t0 = (Jx Jz + Jy Jz + Jx Jy) , tx = (Jx Jz + Jx Jy − Jy Jz)
ty = (Jy Jz + Jx Jy − Jx Jz) , tz = (Jx Jz + Jy Jz − Jx Jy)
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Condition t = 0 actually corresponds to the conditions of order six
K6(R) = µ ·R. Similarly, g2 and g3 are changed by the multiplication
of the shift by five (see (51) in the following) into:

(g2 , g3) → (t4 · g2 , t
6 · g3) , where: t = t1 · t2 · t3 · t4

t1 = (Jz + Jy) (−Jy + Jz )2 Jx
3 − Jy Jz (Jz + Jy)2 Jx

2

−Jy
2Jz

2 (Jz + Jy) Jx + Jz
3Jy

3

t2 = (−Jy + Jz ) (Jz + Jy)2 Jx
3 − Jy Jz (−Jy + Jz )2 Jx

2 (56)
−Jz

2Jy
2 (−Jy + Jz ) Jx + Jz

3Jy
3

t3 = − (Jz + Jy) (−Jy + Jz )2 Jx
3 − Jy Jz (Jz + Jy)2 Jx

2

+Jy
2Jz

2 (Jz + Jy) Jx + Jz
3Jy

3

t4 = − (−Jy + Jz ) (Jz + Jy)2 Jx
3 − Jy Jz (−Jy + Jz )2 Jx

2

+Jz
2Jy

2 (−Jy + Jz ) Jx + Jz
3Jy

3

Condition t = 0 actually corresponds to the conditions of order ten
K10(R) = µ ·R.

6 Elliptic parametrization of the four-state chiral Potts model

In view of the fundamental role played by the propagation property
on a vertex model, one could have a prejudice that the previous re-
markable symmetries, and structures, only exist in the framework of
d-dimensional vertex models, but are much harder to exhibit on IRF
models (interaction-(a)round-a-face models [1, 25]) or even on the sim-
ple spin edge models. Actually, in the case of q-state spin-edge models,
the birational transformation K̂ is still a discrete symmetry of the star-
triangle relations [7], but it is now the product of the matrix inversion
of the q × q Boltzmann matrix, and of the Hadamard inverse which
amounts to inverting all the entries of this matrix [7]. The correspond-
ing homogeneous polynomial transformation K is the product of the
homogeneous matrix inversion I (see (5)) of homogeneous degree q− 1,
and of the homogeneous Hadamard inverse H of homogeneous degree
q2−1. Denoting mi, j the entries of a q×q matrix M , the homogeneous
Hadamard inverse reads:

H : mi, j −→
∏
k, lmk, l

mi, j
(57)

where the product is the product of the q2 entries of the matrix. There-
fore the associated homogeneous transformation K = H · I is of homo-
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geneous degree (q− 1)× (q2 − 1). For a four-state spin edge model, the
iteration of the homogeneous transformation K = H ·I corresponds, for
the most general model, to the iteration of a transformation of degree 45,
instead of degree 3 for K = t1 · I for the sixteen vertex model. Conse-
quently, even the numerical iteration is more complicated. Actually this
iteration is quite unstable numerically. As a consequence of this higher
degree for the birational transformations one considers, the birational
transformations K̂ corresponds most of the time to chaotic dynamical
systems (exponential growth of the complexity of the iteration calcula-
tions, instead of a polynomial growth [9, 21, 24, 61, 62, 63]). However,
the star-triangle relations are still compatible [6] with these associated
homogeneous transformations K = H · I, even if the spin-edge model
is “much less favorable” to star-triangle integrability.

In this respect, let us recall the chiral Potts model [64, 67, 68], which
is a generalization of the Ising model where more spin states are al-
lowed. With this spin-edge model one encounters an algebraically much
more complex situation: the difficulty with the integrable chiral Potts
model [64, 67, 68] is that, instead of an elliptic parametrization, one dis-
covers oneself faced with a curve of higher genus [60]. An infinite order
set of birational symmetries of the curve is incompatible with the higher
genus character of these integrable chiral Potts model star-triangle so-
lutions [2, 60]. In fact the chiral Potts model is star-triangle only when
restricted to a particular algebraic variety (namely V4 = 0 in the follow-
ing, see (66)), which happens to be a finite order condition for K̂, which
is therefore compatible with the existence of a finite set of automorphisms
on a higher genus algebraic curve [60]. This generic situation is not very
favorable for the “quest” of integrable models. In this respect, the four-
state chiral edge spin Potts model is remarkable since it will be seen
to, surprisingly, yield an elliptic parametrization in the whole parameter
space of the (anisotropic) model. Therefore, exact calculations, com-
pletely similar to the ones sketched in the previous sections (see (5.2)),
can thus be performed, yielding an infinite set of “good candidates” for
(higher genus) star-triangle integrability, enabling, in particular, to re-
cover the V4 = 0 (finite order) necessary condition for the higher genus
integrable solution of Baxter-Perk-Au-Yang [64].

Let us consider a 4 × 4 cyclic matrix representing the Boltzmann
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weights for the four-state chiral edge spin Potts model [67, 68]:

M0 =


c0 c1 c2 c3
c3 c0 c1 c2
c2 c3 c0 c1
c1 c2 c3 c0

 (58)

For such an edge spin model, the birational transformation K is now ob-
tained as the product of the matrix inversion and the Hadamard inverse
which amounts to changing all the entries ci into their inverse 1/ci.

One can find two algebraically independent invariants under the ma-
trix inversion and the Hadamard inverse, namely:

a =
c0 c1 − c2 c3
c0 c3 − c1 c2

, b =
(c0 c2 − c21) · (c0 c2 − c23)

(c0 c3 − c1 c2)2
, or: (59)

a =
c0 c1 − c2 c3
c0 c3 − c1 c2

, and: c =
(c0 c2 − c21) · (c0 c2 − c23)

(c0 c3 − c1 c2) · (c0 c1 − c2 c3)
=

b

a

These two algebraic K-invariants yield a foliation of the parameter space
in terms of elliptic curves. After some (tedious) calculations one finds
that the corresponding modular invariant reads (see (29)) j = 256 (1−
λ+λ2)3/λ2/(1−λ)2, where λ is given by one of the six simple expressions:

λ = 16
(b− a) b

(a+ 1)2 (a− 1)2 , λ = 1/16
(a2 − 1)2

(b− a) b

λ =
(a2 − 1)2

(−4 b+ 1 + 2 a+ a2) (4 b+ 1− 2 a+ a2)
, (60)

λ = 16
(a− b) b

(−4 b+ 1 + 2 a+ a2) (4 b+ 1− 2 a+ a2)

λ = 1/16
(−4 b+ 1 + 2 a+ a2) (4 b+ 1− 2 a+ a2)

(−b+ a) b
,

λ =
(−4 b+ 1 + 2 a+ a2) (4 b+ 1− 2 a+ a2)

(a2 − 1)2

In terms of the a and b invariants the modular invariant reads:

j =
(jnum)3

(4 b− 2 a+ 1 + a2)2 (4 b− 2 a− 1− a2)2
b2 (b− a)2 (a2 − 1)4 (61)

where: jnum = 1− 4 a2 + a8 − 4 a6 + 6 a4 − 16 b2a4 + 288 b2a2

−16 b2 + 16 ba5 − 32 ba3 + 16 ba+ 256 b4 − 512 b3a
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In order to write a (polynomial) representation of the shift doubling
of this edge spin model one needs to find some equivalent of Jx, Jy and
Jz. One can actually find the equivalent of Jx, Jy and Jz:

Jx = 2 a , Jy = 2 · (2 b − a) , Jz = a2 + 1 (62)

From these simple expressions one gets rational representations of shift
doubling and the multiplication of the shift by three, four, five ... . The
shift doubling reads (a, b) → (a2, b2) :

a2 =
ba2 + a− b
a3 − ba2 + b

, b2 =
a2 (a− 2 b)2

(a3 − ba2 + b)2 or: (63)

(a2, b2) = (
a3 − ba2 + b

ba2 + a− b ,
b
(
a2 + 1

)2 (a− b)
(ba2 + a− b)2 ) or:

(a2, b2) = (
a3 − ba2 + b

ba2 + a− b ,
a2 (2 b− a)2

(ba2 + a− b)2 )

The multiplication of the shift by three reads (a, b) → (a3, b3) where:

a3 =
(a4b2 + 2 a2b2 − 3 b2 − a5b− 2 a3b+ 3 ba− a2) · a
b2 − ba+ 2 a2b2 − 2 a3b− 3 a4b2 + 3 a5b− a6

, (64)

b3 =
(b− a3 + a2b− a2 − a+ 2 ba)2 (b− a3 + a2b+ a2 − a− 2 ba)2 · b

(ab− b2 − 2 a2b2 + 2 a3b+ 3 a4b2 − 3 a5b+ a6)2

The multiplication of the shift by five (a, b) → (a5, b5) is given in Ap-
pendix B. Note that one has a symmetry a↔ 1/a. Changing a→ 1/a,
the ratio b/a being fixed, amounts to changing (a, b) ↔ (1/a, b/a2).
One easily verifies that changing (a, b)↔ (1/a, b/a2) the aN ’s and bN ’s
are also changed accordingly: (aN , bN )↔ (1/aN , bN/a2

N ).

Remark: It might be tempting to represent the shift doubling in
terms of the two invariants a and λ, since the last invariant λ remains
unchanged by the shift doubling. In fact the shift doubling corresponds
to (a, λ) → (a2, λ) where a2, λ and a are related by the algebraic
relation:

(a2 + 1)2 (a− 1)4 (a+ 1)4 · λ + 16 a2 (a2 a
2 − 1) (a2 − a2) = 0 (65)

or: λ = 16
a2 (a2 a

2 − 1) (a2 − a2)
(a2 + 1)2 (a2 − 1)4
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The λ elliptic modulus being invariant by the shift doubling, one can
imagine to represent the shift doubling as a transformation bearing only
on variable a, λ being a parameter. One sees that this transformation
is not polynomial or even rational: it is algebraic.

The finite order conditions are easy to write from (63) or (64). For
instance, the order N conditions (N = 3, 4, 6, 8, 12), read respectively:

V3 = a2b− a2 + 2 ba+ b , V4 = a− 2 b , (66)

V6 = V
(1)
6 · V (2)

6 · V (3)
6 where: V

(1)
6 = −a3 + ba2 − a2 − a+ 2 ba+ b

V
(2)
6 = ba2 − 2 ba+ b+ a2 V

(3)
6 = −a3 + ba2 + a2 − a− 2 ba+ b

V8 = ba5 − b2a4 − 6 a2b2 − a4 + 6 a3b+ ba− b2

V12 = a8b4 + 6 a4b4 − 4 a6b4 + b4 − 4 a2b4 + 8 b3a3 − 12 b3a5 − 2 a9b3

−a11b− 2 a9b+ a8 + 8 a7b3 − 2 b3a+ 2 a2b2 − 2 b2a4 + 16 b2a6 − 2 a8b2

+2 a10b2 − a3b− 2 ba5 − 10 ba7

Duality symmetry. The (Kramers-Wannier) duality [20] on this
model is a transformation of order four [60]:

D : (c0, c1, c2, c3) −→ 1
2
·
(
c
(D)
0 , c

(D)
1 , c

(D)
2 , c

(D)
3

)
(67)

where: c
(D)
0 = c0 + c1 + c2 + c3, c

(D)
1 = c0 + i c1 − c2 − i c3,

c
(D)
2 = c0 − c1 + c2 − c3, c

(D)
3 = c0 − i c1 − c2 + i c3

which reads on the invariants a and b:

(a, b) −→
(1 + i a

a+ i
, i · −4 b+ 1 + 2 a+ a2

2 (a+ i)2

)
(68)

which is actually a transformation of order four. The duality commutes
with the shift doubling, the multiplication of the shift by three, and,
more generally, by the multiplication of the shift by any natural integer.
The finite order conditions (66) are left invariant by the duality trans-
formation. Transformation D2 is simply c1 ←→ c3. The duality (67)
preserve globally a self-dual line: c0 = c1 + c2 + c3. Each point of this
self-dual line is a fixed point of the duality (67) if one restricts oneself
to c1 = c3.

In the c1 = c3 subcase of the model, the invariant a and d read re-
spectively a = 1, d = 0, and the elliptic parametrization degenerates
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into a rational parametrization: the discriminant g3
2 − 27 g2

3 is equal to
zero. In this rational limit, a = 1, the previous rational representa-
tions of the multiplication of the shift by two, three, ... become simple
polynomial representations:

b2 = (1− 2 b)2 , b3 = b · (−3 + 4 b)2 , b5 = b · (5 + 16 b2 − 20 b)2 , · · ·(69)

Introducing the following change of variable:

b =
(v + 1/v)2

4
one finds that the previous polynomial representations (69) of the mul-
tiplication of the shift by N , simply read v → vN (or v → v(−N)).

Terminology problem: From the point of view of discrete dy-
namical systems a mapping like (44) (or (45), and the mappings corre-
sponding to other shift multiplications), could, at first sight, be called
“integrable”: the iteration of this (two-dimensional) mapping “densifies”
algebraic curves (namely the conic λ = constant) foliating the whole
two-dimensional space, exactly as an integrable mapping does [11, 69].
One can even write explicit analytical expressions for the N -th iterate,
for any integer N . However, this mapping is not reversible, the growth of
the calculations [61, 62, 63] is exponential ( 2N exponential growth, ln(2)
topological entropy, ...). In fact this very example of “calculable” chaos
is the exact equivalent of the situation encountered with the logistic map,
x → α · x · (1− x), for α = 4 : one does not have a representation of a
translation θ → θ + N · η, but a representation (see also the Bachet’s
duplication formula in Appendix C) of the iteration of a multiplication
by 2 : η → 2N · η.

Another rational representation of the multiplication of the
shift. These representations of the multiplication of the shift are just
the previous polynomial representations of the multiplication of the shift,
given in section (5.2), written in terms of the a and b’s. Since Jx, Jy,
and Jz are homogeneous parameters one can also, instead of (62), define
them by:

Jx = 2 , Jy = 2 · (2 b
a
− 1) = 2 · (2 c − 1) , Jz = a +

1
a

(70)

From (70) it is clear that one has the a ↔ 1/a symmetry. Let us
introduce, instead of the invariants a and b, the invariants c = b/a (see
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(59)) and d, where d is defined by:

d = (a− 1/a)2 =
(c21 − c23)2 · (c22 − c20)2

(c0 c3 − c1 c2)2 · (c0 c1 − c2 c3)2
(71)

Using (70), the expressions of g2 and g3 (see (38)) become:

g2 = 12 ·
(
d2 − 16 cd (c− 1) + 256 c2 (c− 1)2

)
,

g3 = −8 · (d− 16 c+ 16 c2) · (d+ 8 c− 8 c2) · (d+ 32 c− 32 c2) ,
g3

2 − 27 g2
3 = 2985984 · c2 d2 (c− 1)2 · (d+ 16 c− 16 c2)2 , (72)

j =
(256 c4 − 512 c3 + 256 c2 − 16 c2 d+ 16 cd+ d2)3

c2 d2 (c− 1)2 (d− 16 c2 + 16 c)2

The multiplication of the shift by two reads (c, d) → (c(2), d(2))
where:

c(2) =
(2 c− 1)2

1 + dc− dc2 , d(2) =
d · (−1 + 2 c)2 (4 + d)

(dc2 − dc− 1)2
(73)

The multiplication of the shift by three reads (c, d) → (c(3), d(3))
where:

c(3) =
c ·
(
dc2 − 2 dc− 4 c+ 3 + d

)2
1 + d2c− 4 d2c2 + 6 d2c3 − 3 d2c4 + 6 dc− 22 dc2 + 32 dc3 − 16 dc4

,

d(3) =
d ·
(
dc2 + 4 c− 1

)2 (
dc2 − 2 dc− 4 c+ 3 + d

)2
(1 + d2c− 4 d2c2 + 6 d2c3 − 3 d2c4 + 6 dc− 22 dc2 + 32 dc3 − 16 dc4)2

The multiplication of the shift by five is given in Appendix B.

7 Conclusion

Modular functions, and modular equations, have been employed in the
theory of critical phenomena [70, 71] to study analytic properties of, for
instance, the Ising model with pure triplet interaction on the triangular
lattice. Application of modular functions to the hard hexagon model
has also been noticed [66]. In particular, Tracy et al [72] have proved
that the physical quantities computed by Baxter [25], are modular func-
tions with respect to certain congruence groups. The group theoretic
methods extensively used by Tracy et al [72] and Richey and Tracy [73]
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are more sophisticated, and modern, than those based on the “haupt-
modul” functions of Klein and Fricke [47], and that we have presented
here. However, the main advantage of the “hauptmodul” method is that
it leads, more naturally, to explicit algebraic and hypergeometric closed
form expressions for the various physical quantities of the model.

One purpose of this paper has been to promote the relevance of the
j-invariant to describe the analytical properties of lattice models, and
in particular the relevance of a (j-invariant well suited) representation
of elliptic curves in terms of the symmetric biquadratic curve (19). This
biquadratic representation of elliptic curves is as simple as the well-
known canonical Weierstrass form, but it is actually such that the action
of the group of birational transformations (closely related to the group
of rational points) is crystal clear, and such that a symmetry of ellip-
tic curves (related to the modular invariance), namely the permutation
group of three elements is also clear. Furthermore, this biquadratic rep-
resentation enables to find, very simply, a remarkable infinite discrete
set of homogeneous polynomials, representing the multiplication of the
shift by an integer, and leaving j invariant (see section (5.2)). Finally,
the two expressions g2 and g3 , occurring in the Weierstrass canonical
form y2 = 4x3 − g2 x − g3, have been shown to present remarkable co-
variance properties (see (54), (55), (56)) with respect to this infinite set
of commuting homogeneous polynomial transformations.

The j-invariant “encapsulates” highly non-trivial symmetries of the
lattice models (an sl2×sl2×sl2×sl2 symmetry [6], the birational symme-
tries K̂N , infinite discrete set of non-invertible homogeneous polynomi-
als, representing the natural integers together with their multiplication
...). One does not have an opposition between a “point of view of the
physicist” and a “ point of view of the mathematician”: a remarkable
symmetry of a lattice model must correspond to remarkable mathemat-
ical structures, and vice-versa ... From a mathematical point of view
these two (infinite discrete) sets of transformations (birational and only
rational) play a quite interesting role as far as arithmetic properties of el-
liptic curves are concerned. These mathematical structures can be easily
deduced from the analysis of a biquadratic naturally occurring in lattice
statistical mechanics. Fortunately such “canonical biquadratic” can be
generalized when curves are replaced by surfaces, or higher dimensional
varieties. It would be interesting to see if this approach could provide a
way to get some results on the moduli space of surfaces.
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8 Appendix A: Finite order conditions as polynomial relations
on Jx, Jy and Jz.

Let us give a few miscellaneous examples of finite order conditions. The
points of the Baxter model on the algebraic varieties:

V (3)(Jx, Jy, Jz) = Jx Jy + Jz Jx + Jz Jy ,

V̂ (3)
z (Jx, Jy, Jz) = −Jx Jy + Jz Jx + Jz Jy

are actually such that K6(R) = ζ ·R. One has the following factoriza-
tion property:

V (3)(J (2)
x , J (2)

y , J (2)
z ) = (74)

V (3)(Jx, Jy, Jz) · V̂ (3)
x (Jx, Jy, Jz) · V̂ (3)

y (Jx, Jy, Jz) · V̂ (3)
z (Jx, Jy, Jz) = 0

where V̂
(3)
x (Jx, Jy, Jz) = V̂

(3)
z (Jy, Jz, Jx) and where V̂

(3)
y (Jx, Jy, Jz)

= V̂
(3)
z (Jz, Jx, Jy). One has the relation:

V̂ (3)
z (J (2)

x , J (2)
y , J (2)

z ) − P (3)
z (Jx, Jy, Jz) = 0

Note that the points of the Baxter model on the algebraic varieties
P

(3)
x (Jx, Jy, Jz) = 0, or P (3)

y (Jx, Jy, Jz) = 0, or P (3)
z (Jx, Jy, Jz) =

0, are such that K12(R) = ζ · R. The points of order six (namely
K6(R) = ζ · R) correspond to (74), their image by the shift doubling
(Jx, Jy, Jz) → (J (2)

x , J
(2)
y , J

(2)
z ) giving P (3)

x (Jx, Jy, Jz)·P (3)
y (Jx, Jy, Jz)·

P
(3)
z (Jx, Jy, Jz) = 0, together, of course, with (74). The points of the

Baxter model on the variety:

V (5)
y (Jx, Jy, Jz) = J2

z Jx J
3
y − 2 J2

z J
2
x J

2
y + J2

z J
3
x Jy + Jz J

2
x J

3
y

−Jz J3
x J

2
y − J3

z J
3
y − J3

z Jx J
2
y + J3

z J
2
x Jy + J3

z J
3
x − J3

x J
3
y = 0

are of order five K5(R) = ζ ·R. The points of the Baxter model on the
algebraic variety:

V̂ (5)
y (Jx, Jy, Jz) = V (5)

y (Jy, Jx, Jz) = 0 =
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= J2
z J

3
x Jy − 2 J2

z J
2
x J

2
y + J2

z Jx J
3
y + Jz J

3
x J

2
y − Jz J2

x J
3
y − J3

z J
3
x

−J3
z J

2
x Jy + J3

z Jx J
2
y + J3

z J
3
y − J3

x J
3
y

are of order ten: K10(R) = ζ · R. The point of the Baxter
model on the variety P

(5)
x (Jx, Jy, Jz) = 0, P

(5)
y (Jx, Jy, Jz) = 0, or

P
(5)
z (Jx, Jy, Jz) = 0, are of order twenty: K20(R) = ζ ·R. Let us note

that:

V (5)
y (J (2)

x , J (2)
y , J (2)

z ) + P (5)
y (Jx, Jy, Jz) = 0 ,

V̂ (5)
y (J (2)

x , J (2)
y , J (2)

z ) + P (5)
x (Jx, Jy, Jz) = 0

which is in agreement with the fact that (Jx, Jy, Jz) → (J (2)
x , J

(2)
y , J

(2)
z )

represents the shift doubling.

9 Appendix B: rational representation of the multiplication
of the shift by five.

The multiplication of the shift by five reads (a, b) → (a5, b5)

a5 =
N

(a)
5

a ·D(a)
5

, b5 =
b · (N (b)

5 )2 · (M (b)
5 )2

a2 · (D(b)
5 )2

, where:

N
(a)
5 = −a10 + b6 − b3a3 − ba17 + 36 a6b6 − 108 a7b5 + 128 a8b4 − 76 a9b3

+24 a10b2 − 4 a11b− 6 b3a5 + 5 b6a12 − 10 b6a10 − 9 b6a8 − 15 b5a13

+30 b5a11 + 27 b5a9 + 20 b4a14 − 26 b4a12 − 21 b4a10 − 122 a6b4

+2 b3a13 + 6 b2a16 + 6 b2a14 − 2 ba15 − 29 b6a4 + 18 a4b4 − 15 b3a15

+6 b6a2 + 10 a9b− 3 ab5 + 3 a2b4 + 87 a5b5 + 9 b2a12 − 3 ba13 − 3 b3a11

−18 a3b5 − 45 a8b2 + 99 a7b3

D
(a)
5 = 5 b6 − 15 b3a3 − ba5 + 36 a6b6 − 108 a7b5 + 128 a8b4 − 76 a9b3

+24 a10b2 − 4 a11b+ 2 b3a5 + b6a12 + 6 b6a10 − 29 b6a8 − 3 b5a13

−18 b5a11 + 87 b5a9 + 3 b4a14 + 18 b4a12 − 122 b4a10 − 3 a9b− 10 b6a2

−15 ab5 + 20 a2b4 + 27 a5b5 − 21 a6b4 − 45 b2a12 + 10 ba13 + 99 b3a11

−26 a4b4 + 30 a3b5 + 9 a8b2 − 3 a7b3 + 6 b2a6 − 2 ba7 + 6 b2a4 − a14

−b3a15 − 6 b3a13 − 9 b6a4

N
(b)
5 = 2 b3a− 4 b3a3 − b3a2 + b3 − a4 + a5 − a6 + a7 − a8 − b3a4 + 5 b2a5

−5 ba6 + 2 b3a5 − 5 b2a6 + 4 ba7 + b3a6 − b2a7 − 5 a4b+ 2 b2a4 + 2 ba5
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+5 a3b2 + 4 a3b− 5 a2b2 − ab2

M
(b)
5 = −2 b3a+ 4 b3a3 − b3a2 + b3 + a4 + a5 + a6 + a7 + a8 − b3a4

−5 ba6 − 2 b3a5 + 5 b2a6 − 4 ba7 + b3a6 − b2a7 − 2 b2a4 − 2 ba5 + 5 b2a5

−5 a4b+ 5 a3b2 − 4 a3b+ 5 a2b2 − ab2

D
(b)
5 = 5 b6 − 15 b3a3 − ba5 + 36 a6b6 − 108 a7b5 + 128 a8b4 − 76 a9b3

+24 a10b2 − 4 a11b+ 2 b3a5 − a14 + b6a12 + 6 b6a10 − 29 b6a8 − 3 b5a13

+87 b5a9 + 3 b4a14 + 18 b4a12 − 122 b4a10 − b3a15 − 6 b3a13 − 18 b5a11

+27 a5b5 − 21 a6b4 − 45 b2a12 + 10 ba13 − 2 ba7 + 6 b2a4 − 15 ab5

+99 b3a11 − 26 a4b4 + 30 a3b5 + 9 a8b2 − 3 a7b3 + 6 b2a6 + 20 a2b4

−9 b6a4 − 10 b6a2 − 3 a9b

Another rational representation of the multiplication of the
shift. In term of the invariants c and d (see (59) and (71)), the multi-
plication of the shift by five reads (c, d) → (c(5), d(5)) where:

c(5) =
c ·N2

1

D1
, d(5) =

d ·N2
1 ·N2

2

D2
1

, where: (75)

N1 = −5 + 20 c− 16 c2 − 5 d− 101 dc2 + 34 dc− 28 d2c2 + 8 d2c− d2

+184 dc3 − 176 dc4 − 2 d3c5 + d3c6 + d3c4 + 20 d2c5 + 64 dc5 + 56 d2c3

−55 d2c4

N2 = −1 + 12 c− 16 c2 + 35 dc2 + 10 d2c2 − 64 dc5 − 36 d2c3 + 45 d2c4

−4 d3c5 + d3c6 + 6 d3c4 − 20 d2c5 + d3c2 − 120 dc3 + 144 dc4 − 4 d3c3

D1 = 1− 610 dc2 + 50 dc+ 35 d2c+ 3130 d2c3 − 11005 d2c4 − 480 d2c2

+3680 dc3 − 12336 dc4 + 1060 d3c3 − 150 d3c2 + 24064 dc5 − 3920 d3c4

+d6c4 + d4c+ 22080 d2c5 + 15360 d2c7 + 4160 d4c10 + 8100 d3c5

+256 d4c12 − 27136 dc6 − 4096 dc8 + 6935 d4c8 + 80 d5c12 + 5760 d3c7

+2160 d5c8 + 5 d6c12 − 4316 d4c7 − 480 d5c11 − 1536 d4c11 − 16 d4c2

−2070 d5c9 − 3840 d2c8 + 16384 dc7 − 390 d4c4 − 9420 d3c6 − 9 d6c5

+1294 d5c10 + 370 d4c5 + 1136 d4c6 − 25280 d2c6 + 10 d3c− 84 d6c7

+670 d5c6 + 20 d5c4 + 126 d6c8 − 1500 d5c7 − 6720 d4c9 − 1440 d3c8

−30 d6c11 − 125 d6c9 + 80 d6c10 − 174 d5c5 + 36 d6c6 + 120 d4c3



Modular invariance in lattice statistical mechanics 325

10 Appendix C: Weierstrass versus biquadratic, Bachet’s du-
plication formula

Let us consider the canonical Weierstrass form (28): y2 = 4x3 − g2 x −
g3. The Bachet’s duplication formula discovered in 1621, amounts to
saying that if (x, y) is a solution of (28) then (x2, y2) is also a solution
of (28), where (x2, y2) are given by:

x2 =
1

16 y2
· (16x4 + 8 g2 x

2 + 32 g3 x+ g2
2) , y2 =

−1
32y3

· ynum where:

ynum = 64x6 − 320 g3 x
3 − 32 g3

2 − 20 g2
2x2 − 80x4g2 + g2

3 − 16 g3 g2 x

We have here a rational representation of θ → 2 · θ. These results can
be generalized to:

v2 = u3 + a u2 + b u + c

the duplication formula reading:

u2 =
1

4v2
· (u4 − 2 bu2 − 8 cu− 4 ac+ b2) ,

v2 =
1

8 v3
· Vnum where:

Vnum = −u6 − 20 cu3 + 8 c2 + 5 b2u2 − 2u5a− 5u4b

+2 b2ua − 4 cab+ b3 − 8 cua2 − 20 cau2 + 4 cbu
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