
December 2015: A.J. Guttmann, 70th birthday,
NewCastle, Australia

Algebraic Statistical Mechanics: Selected
Non-holonomic functions in lattice statistical
mechanics and enumerative combinatorics

J-M. Maillard
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We are going to show that:

Diagonal of rational functions are like a gold mine.
They are selected non-holonomic functions that are another
gold mine.

And you know what ?
It does not require excavating deeper and deeper ...
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So many people have a defeatist attitude towards
non-holonomic functions: they think nothing can be done on
non-holonomic functions.

This is defeatist nonsense

As far as non-holonomic functions are concerned:
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Defeatism, resignation and other misleading theorems on
non-linear ODEs

This defeatist attitude on non-holonomic functions is in fact a
defeatist attitude on non-linear ODEs.

Along this line, too often Rubel’s universal non-linear ODE is
recalled to discourage any “non-linear differential Padé ” search.
Rubel’s universal non-linear polynomial differential equation reads:

3 y41 y2 y
2
4 − 4 y41 y

2
3 y4 + 6 y31 y

2
2 y3 y4 + 24 y21 y

4
2 y4

−12 y31 y2 y
3
3 − 29 y21 y

3
2 y

2
3 + 12 y72 = 0,

where the yn’s are the n-th derivative dny/dxn.

They are other universal non-linear homogeneous polynomial
differential equations (with piecewise polynomial solutions),
obtained by Duffin:

16 y4 y
2
1 − 32 y4 y2 y1 + 17 y32 = 0.

4 / 58



Rubel’s universal equation

Rubel’s non-linear differential equation (and other piecewise
polynomial approximation on the real axis) correspond to a
homogeneous polynomial differential equation such that any
continuous function can be approximated, on the real axis, by a
solution of this “universal” equation.

This kind of real analysis theorem do not mean that any
function of a complex variable is “almost” solution of a non-linear
differential equation in the complex plane, which would mean that
any “non-linear differential Padé” approach would be pointless.

5 / 58



Ising n-fold integrals : the χ(n)’s

The magnetic susceptibility of the two-dimensional Ising model can
be written as an infinite sum of n-folds integrals holonomic
functions:

χ(w) =

∞∑
n=1

χ(n)(w).

The magnetic susceptibility χ is not a holonomic function, it is
not D-finite: χ is not solution of a linear differential equation.
It is much more involved.

The full susceptibility χ has a (unit circle) natural boundary, in
the complex k-plane.

|k| = 1 is a natural boundary of χ(k).
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Accumulation of the singularities of the linear ODEs for the
χ(n) in the k complex plane

Remark: for a holonomic function, there is a difference between
the singularities of that function, and the singularities of the
linear differential operator annihilating the function !!
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Ising n-fold integrals : χ(5)

The five-particle contribution χ̃(5) of the susceptibility of the Ising
model is solution of an order-33 linear differential operator which
has a direct-sum factorization (DFactorLCLM in Maple). The
selected linear combination

χ̃(5) − 1

2
χ̃(3) +

1

120
χ̃(1),

is solution of an order-29 (globally nilpotent) linear differential
operator

L29 = L5 · L12 · L̃1 · L11,

where:

L11 = (Z2 ·N1)⊕ V2 ⊕ (F3 · F2 · Ls
1).
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Z2 in χ(2): a modular form

The solution of the linear differential operator Z2 can be expressed
in terms of the 2F1 hypergeometric function up to a modular
invariant pull-back:

S =
(

Ω · Mx

)1/12
× 2F1

(
[

1

12
,

5

12
]; [1]; Mx

)
, where:

Ω =
1

1728

(1− 4x)6 (1− x)6

x · (1 + 3x + 4x2)2 (1 + 2x)6
,

Mx = 1728
x · (1 + 3x + 4x2)2 (1 + 2x)6 (1− 4x)6 (1− x)6

(1 + 7x+ 4x2)3 · P 3
,

P = 1 + 237x + 1455x2 + 4183x3 + 5820x4 + 3792x5 + 64x6.

It is a modular form.
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Ising n-fold integrals : χ(6)

Similarly χ̃(6) is solution of an order-52 linear differential operator
which has a direct-sum factorization: the selected linear
combination

χ̃(6) − 2

3
χ̃(4) +

2

45
χ̃(2),

is solution of an order-46 (globally nilpotent) linear differential
operator

L46 = L6 · L23 · L17,

where: L17 = L̃5 ⊕ L3 ⊕ (L4 · L̃3 · L2),

L̃5 =

(
d

dx
− 1

x

)
⊕
(
L1,3 · (L1,2 ⊕ L1,1 ⊕Dx)

)
.
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The “Quarks” in χ(5) and χ(6)

Quasi-trivial order-one (globally nilpotent) linear differential

operators: L̃1, N1, L
s
1, L1,n −→ Dx − 1

N ·
d ln(R(x))

dx

V2, L2, L3, L5 and L6 are respectively equivalent
(homomorphic) to LK , to the symmetric square of LK and to the
symmetric fourth and fifth power of LK , where LK is the second
order linear differential operator annihilating the complete elliptic
integral K = 2F1([1/2, 1/2], [1], k2).

F2, F3, L̃3 do correspond to modular forms: F3 and L̃3 are
homomorphic to the symmetric square of order-two operators
associated with the (fundamental) modular curve X0(2), and F2

is related to Z2 (and thus h6, Apéry, ...).

Remains to understand the “very nature” of:

L4 and: L12, L23
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Trying to understand the “very nature” of L4 and: L12, L23

L23 is (at first sight ..) beyond current computational resources ...
The order-12 operator L12 is almost beyond computational
resources: it was already a “tour-de-force” to show that it is an
irreducible operator. Let us focus on L4, and try to reduce it to
operators associated to elliptic curves. Any integrable expert would
have an (educated ...) prejudice that the Ising model must be
nothing but the theory of elliptic curves and other modular forms,
what else ?
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The puzzling L4: preliminary results on L4

Preliminary calculations show that L4 cannot be reduced to
elliptic functions, modular forms, and it is not 4F3-solvable if one
restricts to rational pull-backs.
Is this operator going to be a counter-example to our favourite
“mantra” that the Ising model is nothing but the theory of elliptic
curves and other modular forms ?

Computing the exterior square of the linear differential operator
L4, one finds an order-six linear differential operator with the
direct sum decomposition

ext(2)(L4) = M5 · Ñ1 = M1 · N5 = N5 ⊕ Ñ1,

where Ñ1 has a rational function solution. Therefore L4 has a
symplectic differential Galois group Sp(4, C).
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L4 is a Hadamard product of two elliptic curves:

it is a Calabi-Yau operator !

Seeking for 4F3 hypergeometric functions up to homomorphisms,
and assuming an algebraic pull-back with the square root
extension, (1 − 16 · w2)1/2, we actually found that the solution of
L4 can be expressed in terms of a selected 4F3

4F3

(
[1/2, 1/2, 1/2, 1/2], [1, 1, 1]; z

)
= 2F1

(
[1/2, 1/2], [1]; z

)
? 2F1

(
[1/2, 1/2], [1]; z

)
,

where: z =
(1 + (1 − 16 · w2)1/2

1 − (1 − 16 · w2)1/2

)4
= k4

where the pull-back z is nothing but the fourth power of the
modulus k of the elliptic functions !

14 / 58



Our linear differential operators must be “special”, but what
does it mean to be “special” ?

This raises the question of the “modularity” in these problems:
beyond the occurrence of many modular forms, we also see, for
order-four operators, the emergence of Calabi-Yau ODEs.

• The differential Galois groups of these linear differential
operators are not the generic SL(N, C) groups, but selected
orthogonal or symplectic groups.

• We also have properties of more arithmetic nature: the series
expansions of these holonomic functions can be recast into series
expansions with integer coefficients. For instance the χ̃(n)(w)
= 2n · wn2 · κn(w) expand as:

κn(w) = 1 + 4n2 · w2 + 2 · (4n4 + 13n2 + 1) · w4

+
p6(n)

3
· w6 +

p8(n)

3
· w8 + · · ·

p6(n) = 8 · (n2 + 4) (4n4 + 23n2 + 3),

p8(n) = · (32n8 + 624n6 + 4006n4 + 8643n2 + 1404),
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The well-suited framework: diagonal of rational functions

We also found in enumerative combinatorics, many other selected
linear differential operators, associated with lattice Green
functions, which have special differential Galois groups,
generalizing Calabi-Yau operators (Calabi-Yau 3-folds). All these
linear differential operators are globally nilpotent: they are not
only Fuchsian, they are such that their p-curvatures are nilpotent,
and all their critical exponents are rational numbers, ... They
are “Derived from Geometry”: they annihilate n-fold integrals
of algebraic integrands (in mathematician’s wording “Periods”).
These n-fold integrals are (or can be recast into) series with
integer coefficients (globally bounded series). These two set of
properties are, in fact, the consequence of the fact that these
holonomic functions are actually diagonal of rational functions.
As Monsieur Jourdain talked prose, without knowing it, n-fold
integrals of physics are, without knowing it, diagonal of rational
functions, which corresponds to a quite remarkable set.
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Definition of the diagonal of series of several complex
variables

Definition:

F
(
z1, z2, . . . , zn

)
=

∞∑
m1 =0

∞∑
m2 =0

· · ·
∞∑

mn =0

Fm1,m2, ...,mn · z
m1
1 zm2

2 · · · zmn
n ,

Diag
(
F
(
z1, z2, . . . , zn

))
=

∞∑
m=0

Fm,m, ...,m · zm.

The result: if the algebraic or rational integrand of a n-fold
integral has a multi-Taylor expansion, then this n-fold integral is
the diagonal of a rational function.

Two by-products: Diagonal of rational functions are (or can be
recast into) series with integer coefficients, which reduce
modulo any prime to algebraic functions.
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A pedagogical example of diagonal of rational functions.

Let us consider the rational function of three complex variables
F = 1/(1 − z2 − z3 − z1z2 − z1z3). Its diagonal reads:

1 + 4z + 36z2 + 400z3 + 4900z4 + 63504z5 + · · ·

which is nothing but the complete elliptic integral (first kind):

∑
m≥0

(
2m

m

)2

· zm = 2F1

(
[
1

2
,

1

2
], [1], 16 z

)
This diagonal modulo any prime reduces to an algebraic
function, for instance:

Diag(F) mod 7 =

= 1 + 4 z + z2 + z3 + 4z7 + 2z8 + 4z9 + · · ·

=
1

6
√

1 + 4z + z2 + z3
mod 7.
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Another example of diagonal of rational functions.

A less obvious example corresponds to the modular form:

(
1

1− z1 − z2 − z3 − z1z2 − z2z3 − z3z1 − z1z2z3
)

=
1

1 − z
· 2F1

(
[
1

3
,

2

3
], [1];

54 z

(1 − z)3
)
.

Such diagonals of rational functions are highly selected
functions: modulo any prime they reduce to algebraic functions.

They can be seen as the simplest (transcendental)
generalisations of algebraic functions.

The integrands of the χ(n) n-fold integral of the Ising model have
a multi-Taylor expansion and are, thus, diagonals of a rational
function.
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The χ(n)’s are diagonal of rational functions.

Let us consider the series of χ̃(3)/8/w9

1 + 36w2 + 4w3 + 884w13 + 196w5 + 18532w6 + · · ·

Let us now consider this very series modulo the prime p = 2. It
reads the lacunary series

1 + w8 + w24 + w56 + w120 + w248 + w504 + w1016 + · · · ,

In fact,modulo the prime p = 2, H(w) = χ̃(3)/8 is, actually, an
algebraic function, solution of the quadratic equation:

H(w)2 + w · H(w) + w10 = 0 mod 2.

Modulo p = 3. Indeed, H(w) satisfies a polynomial equation of
degree nine (the pn are polynomials of degree less that 63):

p9 · H(w)9 + w6 · p3 · H(w)3 + w10 · p1 · H(w) + p0.
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Non-holonomic functions modulo integers. The full
susceptibility of the Ising model

Remarkably long series expansion (2041 coefficients !!!) were
obtained for the low-temp. full susceptibility of the Ising model

χ̃L(w) = 4w4 + 80w6 + 1400w8 + 23520w10 + 388080w12

+6342336w14 + 103062976w16 + 1668639424w18

+26948549680w20 + · · ·

to be compared with the series for χ̃(2)(w) namely :

χ̃
(2)
L = 4w4 · 2F1

(
[
3

2
,

5

2
], [3], 16w2

)
= 4w4 + 80w6 + 1400w8 + 23520w10 + 388080w12

+6342336w14 + 103062960w16 + 1668638400w18

+26948510160w20 + · · ·
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Non-holonomic functions modulo integers. The full
susceptibility of the Ising model

Since diagonal of rational functions also reduce to algebraic
modulo powers of primes, let us consider the low-temp. expansion
of χ̃(2) modulo 25 = 32:

χ̃
(2)
L (w) = 4w4 + 16w6 + 24w8 + 16w12 + 16w16 + 16w20

+16w36 + 16w68 + 16w132 + 16w260 + 16w516 + 16w1028 + · · ·
= 8x8 + 16x16 − 12x4 − 16x5 + 16w4 · L(w),

where L(w) is the
∑

w2n lacunary series
1 + w + w2 + w4 + w8 + · · · + w128 + w256 + w512 + w1024 + · · ·
which satisfies the functional equation:

L(w) =

n=∞∑
n=0

w2n , L(w) = w + L(w2).

Modulo 2, this functional equation is an algebraic relation
L(w) = w + L(w)2.
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Non-holonomic functions modulo integers. The full
susceptibility of the Ising model

One deduces the functional equation on the full susceptibility:

χ̃
(2)
L (w2) = w4 · χ̃(2)

L (w)

+ 8w10 · (2w22 − 2w10 + w6 − w2 − 2) mod. 32.

Let us compare χ̃
(2)
L and the full susceptibility modulo 32:

χ̃
(2)
L (w) = χ̃L(w) + 16w16. (1)

In other words, modulo 32, one cannot see the difference between
the full susceptibility and a diagonal of rational function, which
actually reduces to an algebraic function !!
One deduces the functional equation on the full susceptibility:

χ̃L(w2) = w4 · χ̃L(w) + 8w10 · (w6 − w2 − 2) mod. 32.
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Non-holonomic functions modulo integers. The full
susceptibility of the Ising model

One finds that the difference of χ̃L and χ̃
(2)
L , is zero modulo

2, 4, 8, 16, and equal to 16w16 modulo 32. Modulo 64 this
difference is given by a lacunary series

χ̃L − χ̃
(2)
L = 32w4 · L(w) + 16w16

+ 32w4 · (w28 − w8 − w4 − w2 − w − 1).

If one includes χ̃
(4)
L , the difference between χ̃L and χ̃

(2)
L + χ̃

(4)
L , is

seen to be zero modulo 2, 4, 8, 16, 32, 64, and is given by a
lacunary series modulo 128:

χ̃L − χ̃
(2)
L − χ̃

(4)
L = 64w4 · L(w)

− 64w4 · (w16 + w8 + w4 + w2 + w + 1).

If one includes χ̃
(6)
L , the difference between χ̃L and

χ̃
(2)
L + χ̃

(4)
L + χ̃

(6)
L is seen to be zero modulo 2, 4, · · · 128, 256.
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Non-holonomic functions reducing to algebraic functions
modulo integers

One cannot distinguish between the full susceptibility χ̃L and the

finite sum χ̃
(2)
L + χ̃

(4)
L + · · · + χ̃

(2n)
L modulo 2r (where r grows

linearly with n), which reduces, modulo 2r, to algebraic functions
since it is the diagonal of a rational function.

Rational → Algebraic → Holonomic → Non-Holonomic.

There is a class of non-holonomic functions (highly relevant for
physics !) which, modulo integers, cannot be distinguished from
(holonomic) diagonal of rational functions, and, thus, reduce to
algebraic functions modulo integers. What are they ?

In order to get some perspective (and more examples ...), let us
switch to enumerative combinatorics.
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More non-holonomic functions: enumerative combinatorics

In enumerative combinatorics we must recall Tutte’s study of
colouring problems. His work culminates in 1982, when he
proved that the series counting q-coloured rooted triangulations by
vertices, H(w) = q · (q−1) · w2 + q · (q−1) · (q−2) · w3 + · · · ,
satisfies a non-linear (polynomial) differential equation:

2 q2 · (1 − q) · w +
(
q w + 10H(w) − 6w

dH(w)

dw

)
· d

2H(w)

dw2

+ q · (4 − q) ·
(

20H(w) − 18w
dH(w)

dw
+ 9w2 d

2H(w)

dw2

)
= 0.

H(w) reduces to algebraic functions for all the well-known
Tutte-Beraha numbers, and, in fact, for q = 2 + 2 cos(j π/m).

However, the status of the q = 4 series is not clear:
H(w) = 12w2 + 24w3 + 168w4 + 1656w5 + 19296w6 + · · ·
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Tutte’s non-linear differential equation

The coefficients of the series H(w) =
∑

hnw
n are the number

hn of rooted triangulations with n vertices. They satisfy a
remarkably simple (and entirely mysterious ...) quadratic
recurrence relation:

q · (n+ 1)(n+ 2) · hn+2

= q · (q − 4) · (3n − 1) (3n − 2) · hn+1

+ 2 ·
n∑

i=1

i · (i+ 1) · (3n − 3 i + 1) · hi+1 · hn−i+2,

with the initial conditions h0 = 0, h1 = 0, h2 = q · (q − 1).
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Tutte’s non-linear differential equation: the q = 4 case.

In the q = 4 case the previous series is a series with integer
coefficients of finite radius of convergence:

H(w) = 12w2 + 24w3 + 168w4 + 1656w5 + 19296w6

+248832w7 + 3437424w8 + 49923288w9 + · · ·

In the q = 4 case, Tutte’s non-linear differential equation has
many other solutions. With the initial conditions h0 = 0 but
h1 6= 0, one finds a one-parameter family of solutions of Tutte’s
non-linear equation :

HA(w) = −w + A3 ·
( w
A2

+ H
( w
A2

))
.

One can use this one-parameter group of symmetry of this
non-linear differential equation to rewrite the equation in a simpler
form, introducing the following change of variable:
: H(w) = −w + w3/2 · G(w).
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Tutte’s non-linear differential equation: the q = 4 case.

In the q = 4 case, Tutte’s non-linear differential equationcan
be rewritten as a simple autonomous non-linear differential
equation:

(G(w) − 6G1(w)) · (3G(w) + 8G1(w) + 4G2(w)) = 3 · 27.

where G(w) = w−3/2 · (H(w) + w) and:

G1(w) = w · dG(w)

dw
, G2(w) = w · dG1(w)

dw
.

As far as the singular points are concerned, this change of function
G(w) = w−3/2 · (H(w) + w) suggests that the exponent 3/2
should play a selected role. A diff-Padé analysis gives a first set of
singular points: one gets one real singularity ws = 0.04965 ..., and
a bunch of complex singularities 0.202837 ... ± i · 0.0964358 ...,
0.470420 ... ± i · 0.37727 ..., etc ... all of them with the exponent
3/2, the exponents at ∞ being −1/3, −2/3, −4/3, −5/3, ...
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Tutte’s non-linear differential equation: the q = 4 case.

In order to get very long series, it is more efficient to consider
Tutte’s recurrence for q = 4. Using this recurrence we have
been able to get N = 24000 coefficients of the series. This is a
376 Megaoctets file. This series has a finite radius of
convergence r ' 0.04965 ..., the coefficients growing like λN

where λ ' 20.1378 ... We seek for linear differential operators,
annihilating the series of order Q in the homogeneous derivative
θ = w · d/dw, and of degree D for the polynomial coefficients
such that (Q + 1) · (D + 1) = N − 1500. We failed to find a
linear differential operator.

This seems to exclude the possibility that the q = 4 series could
be a holonomic function.
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Seeking for algebraic functions for the reduction modulo
primes.

We have shown that the full susceptibility of the Ising model,
which is a non-holonomic function, actually reduces to algebraic
functions modulo any powers of the prime 2. It is tempting to
see if this enumerative combinatorics series, for q = 4, also
reduces to algebraic functions modulo the first eight primes
2, 3, ... 19 (and powers of these primes).
Since we have developed many tools to find (Fuchsian) linear
differential operators annihilating a given series modulo
primes, let us first try (before seeking directly for algebraic
relations on this series modulo primes), to see if this q = 4 series,
modulo the first eight primes, is solution of a linear
differential operator.
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Seeking for algebraic functions for the reduction modulo
primes.

To take into account the fact that all the integer coefficients of the
series are divisible by q · (q − 1) = 12, we will rather consider the
series divided by 12w2, which is also a series with integer
coefficients:

S(w) =
H(w)

12w2
= 1 + 2w + 14w2 + 138w3 + 1608w4

+20736w5 + 286452w6 + 4160274w7 + 62772488w8 + · · ·

We actually found linear differential operators for this last
series, modulo the first primes 3, ... 17. Introducing the
homogeneous derivative θ = w · d/dw, the linear differential
operators Lp read respectively:

L3 = 2w + θ + (w + 1) · θ2 mod. 3,

L5 = 2w + (2 + 3w) · θ + (w + 2) · θ2 mod. 5,
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Seeking for linear ODEs for the reduction modulo primes.

L7 = 3w3 + (4 + w3) · θ + (3w3 + 3) · θ3 + (5 + w3) · θ4,
L11 = 9w15 + 5w10 + 5w5 + (2w15 + 6w10 + 9w5 + 6) · θ

+(2w15 + 8w10 + 7w5 + 1) · θ2 + (5w15 + 7w10 + w5) · θ3

+(6 + 4w5 + w10 + 2w15) · θ4 + (10w15 + 9w10 + 8w5 + 10) · θ5

+(8w15 + 8w10 + 5w5 + 7) · θ6 + (5w15 + 4w5 + 6) · θ7

+(w15 + w5 + 8) · θ8,

and:

L13 =

8∑
n=0

pn(w) · θn, L17 =

13∑
n=0

qn(w) · θn,

It is quite a surprise to find linear differential operators on such
a typically non-linear, probably non-holonomic, function.
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Seeking for algebraic functions for the reduction modulo
primes.

However, keeping in mind the exact results modulo powers of the
prime 2 on the full susceptibility of the Ising model, it is
natural to ask if such results modulo various primes, could
correspond to reductions of this (probably non-holonomic) series to
algebraic functions modulo primes. This is actually the case: we
calculated the p-curvature of all these linear differential operators
Lp, modulo the primes p, and found that they all have zero
p-curvature.

Let us show that these series, modulo various primes, are actually
algebraic functions modulo primes, by finding directly the
polynomial equations P (w, S(w)) = 0 they satisfy mod. p.
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Seeking directly for polynomial equations for the reduction
modulo primes (and powers of primes).

The series S(w) satisfies, modulo p = 3, the polynomial relation:

w2 · S(w)3 + 2 S(w) + (1 + 2w + w2 + w5) = 0 mod. 3.

The series S(w), modulo p = 32, satisfies, the much more
involved polynomial relation:

w3 · (8w17 + 6w14 + 3w13 + 6w12 + 6w11 + 6w10 + 5w8

+3w6 + w5 + 3w4 + 3w3 + 2w2 + 6w + 3)

+ (5w15 + w12 + 5w11 + w10 + 5w9 + 5w8

+5w6 + 5w5 + 6w3) · S(w)

+4w5 · (2w5 + 2w2 + w + 2) · S(w)2

+w7 · (w10 + 2w7 + w6 + 2w5 + w4 + w3 + w + 1) · S(w)3

+w7 · (2w5 + 2w2 + w + 2) · S(w)4

+3w7 · S(w)5 + w9 · (2w5 + 2w2 + w + 2) · S(w)6 = 0
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Seeking directly for polynomial relations for the reduction
modulo primes.

Modulo p = 7, we obtained the polynomial relation

w4 · S(w)4 + w2 · (5w + 1) · S(w)3

+w · (6w2 + 5w + 2) · S(w)2 + (w2 + 2w + 6) · S(w)

+2w2 + 5w + 1 = 0 mod. 7.

Modulo p = 11, 13, 17 and 19 we also obtained four polynomial
relations

10∑
n=0

pn(w) · S(w)n = 0,

14∑
n=0

qn(w) · S(w)n = 0,

24∑
n=0

rn(w) · S(w)n = 0,
30∑
n=0

sn(w) · S(w)n = 0,

We conjecture that this non-holonomic function reduces to
algebraic functions modulo every primes, (or power of primes).
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Another pedagogical non-holonomic example.

If the product of two holonomic functions is holonomic, the ratio
of two holonomic functions is not holonomic.
Ratio of diagonals of rational functions, are (or can be recast
into) series with integer coefficients, and are actually such that,
modulo any prime, they reduce to algebraic functions.
Let us consider non-holonomic functions that are, not only
ratio of holonomic functions, but, in fact, ratio of diagonals
of rational functions:

R(x) =
2F2

(
[13 ,

1
3 ], [1], 27x

)
2F2

(
[12 ,

1
2 ], [1], 16x

) .
Its series expansion is a series with integer coefficients:

1 − x + 4x2 + 208x3 + 5549x4 + 133699x5 + 3142224x6

+73623828x7 + 1733029548x8 + 41095725700x9 + · · ·
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Another pedagogical non-holonomic example.

These two hypergeometric functions are diagonals of a rational
function: their reductions modulo primes must be algebraic
functions. For instance, modulo p = 7, they read:

2F2

(
[
1

2
,

1

2
], [1], 16x

)
= (1 + 4x + x2 + x3)−1/6 mod. 7,

2F2

(
[
1

3
,

1

3
], [1], 27x

)
= (1 + 3x + x2)−1/6 mod. 7.

Modulo the prime 7, the previous ratio R(x) reduces, as it should,
to the ratio of the two previous (algebraic) reductions:

R(x) =
(1 + 4x + x2 + x3

1 + 3x + x2

)1/6
mod. 7.

In characteristic zero this ratio R(x) verifies a non-linear
differential equation that can be obtained from the two order-two
linear ODEs verified by the two 2F1.
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The non-linear differential equation.

In characteristic zero this ratio R(x) verifies the non-linear
(homogeneous polynomial) differential equation:

−2x2 · (27x− 1) (16x− 1) ·
(

(27x− 1) · (16x− 1) · R1

− (72x+ 1) · R
)
· R3

−2x ·
(

3x · (16x− 1) (72x+ 1) (27x− 1) · R1

− (93312x3 − 168x2 − 297x+ 4) · R
)
· R2

+2 · (29376x3 + 5580x2 − 221x+ 1) · R · R1

+3x2 · (27x− 1)2 (16x− 1)2 · R2
2

+ (16x− 1) (1944x3 − 1569x2 + 58x− 1) · R1
2

+ (144x2 − 432x+ 1) · R2 = 0.

where R denotes R(x), and Rn denote dnR/dxn.
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Reduction of nFn−1 hypergeometric functions modulo primes

In order to get some perspective, one can look at reduction of
holonomic functions that are diagonal of rational functions. In
general one gets quickly and easily the algebraic functions. Let
us consider a very simple example of diagonal of rational functions.
Let us consider the series expansions (with integer coefficients) of

4F3([1/2, 1/2, 1/2, 1/2], [1, 1, 1], 28 · x), which corresponds to a
Calabi-Yau linear differential operator, and is the diagonal of a
rational function since it is the Hadamard product of four time
the algebraic function (1 − 4x)−1/2. Modulo 23, this
hypergeometric function becomes the algebraic function
1/P (x)1/22, where the polynomial P (x) is a truncation of the
series expansion of this hypergeometric function modulo 23:

P (x) = 1 + 16x + 8x2 + 12x3 + x4 + x5

+3x6 + 4x7 + 18x8 + 16x9 + 12x10 + x11.
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Reduction of 3F2([1/9, 4/9, 5/9], [1/3, 1], 36 x) modulo primes

Along this hypergeometric line it is worth recalling the
hypergeometric function 3F2([1/9, 4/9, 5/9], [1/3, 1], 36 x)
introduced by G. Christol, a few decades ago, to provide an
example of holonomic G-series with integer coefficients that
may not be the diagonal of rational function.
If one performs the same reductions modulo primes, one finds, in
contrast with the previous studies of reductions modulo primes
of diagonals of rational functions, that it becomes almost
impossible to see whether such series modulo primes are
algebraic functions. Even modulo 2, finding the polynomial
relation is quite hard, because its degree is large:
(1 + x2) · S64 − S = 0. Of course checking the result is much
simpler:

3F2

(
[
1

9
,

4

9
,

5

9
], [

1

3
, 1], 36 x

)
= (1 + x2)−1/63 mod. 2.
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Reduction of holonomic functions modulo primes.

As far as the reduction of holonomic functions modulo primes is
concerned, we seem to have the following situation: either the
holonomic function is actually the diagonal of a rational function,
the reduction to algebraic function modulo primes is thus garanted,
and one finds, very simply and quickly, these algebraic
functions, or the holonomic function is not “obviously” the
diagonal of the rational function, and getting these algebraic
functions can be extremely difficult.
This difficulty to find polynomial relations, even modulo rather
small primes, for such a holonomic function (which is not
obviously the diagonal of a rational function), has to be
compared with the rather easy way we obtained polynomial
relations for a (probably non-holonomic) series solution of
Tutte’s q = 4 non-linear differential equation.
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To be or not to be holonomic ...
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Towards a large class of selected non-holonomic functions.

We believe that this result on the q = 4 solution of Tutte’s
non-linear differential equation for the generating function of
the q-coloured rooted triangulations by vertices, is not an
isolated curiosity, but corresponds to a first pedagogical example
of a large class of remarkable non-holonomic functions in
theoretical physics (lattice statistical physics, enumerative
combinatorics ...) that reduce to algebraic functions modulo
primes (and power of primes). It is important to understand these
remarkable non-holonomic functions: are they ratio of holonomic
functions (having in mind ratio of diagonals of rational
functions), or, more generally, rational (resp. algebraic) functions
of diagonals of rational functions, do the non-linear differential
equations they satisfy have the Painlevé property, etc ... ?
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We need new tools, new algorithms !

Along this line, it is essential to build new tools, new algorithms
to see whether a given (large) series is solution of a non-linear
differential equation, and, in particular, of a polynomial
differential equation. It must be clear that this kind of
“non-linear differential Padé” analysis, should not be performed
in the most general non-linear framework: it must be performed
with some assumptions, ansatz, corresponding to the problem of
theoretical physics one considers (Painlevé property assumption,
regular singularities assumptions, autonomous assumptions),
non-linear differential equations associated with Schwarzian
derivatives or modular forms, ...).
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We need new algorithms, longer series !

It is crucial to build new tools, new algorithms to see whether a
given (large) series is a ratio of holonomic functions (having
in mind ratio of diagonals of rational functions), or more
generally could be rational (resp. algebraic) functions of diagonals
of rational functions.

In lattice statistical mechanics such kind of results is clearly a
strong incentive to obtain longer series (modulo some small
primes p = 3, ...) for the full susceptibility of the Ising model
to see if the susceptibility series reduces, for instance modulo 3,
to an algebraic function.
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This is not the end ...

The road to non-holonomic functions will certainely be a hard
one, but it will be a beautiful one.

As far as non-holonomic functions are concerned:
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The road is hard, but I am strong (Jean-Paul Sartre’s Roads to
Freedom trilogy, sung by Georgia Brown).
La route est dure mais qu’elle est belle. Le but est difficile mais
qu’il est grand ! Allons ! Le départ est donné. Allocution
radiodiffusée du Général de Gaulle (13 mai 1958).
THE END (of this talk)
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Differential Galois group for lattice Green functions ODEs

The 11-dimensional fcc operator is of order 27 (2464 coeff. are
necessary to obtain the ODE), the 12-dimensional fcc operator is
of order 32 (3618 coeff. are necessary). More generally, the
operator of the d-dimensional fcc lattice is of order q given by

q =
d2

4
− d

2
+

17

8
− (−)d

8
,

its differential Galois group being SO(q, C) for d odd and
Sp(q, C) for d even, the order of U1, the rightmost self-adjoint
operator, being d, the order of the other self-adjoint operators Un

being 1 for d odd and 2 for d even.
Note that these higher order operators are not MUM (Maximal
Unipotent Monodromy). The Lattice Green Function is a series
with integer coefficients.
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Differential Galois group for lattice Green functions ODEs

We have been able to find the linear differential operator of the
seven-dimensional fcc lattice Green function. It is an order-11
operator.

G7Dfcc
11 = (U5 · U4 · U3 · U2 · U1 + U5 · U4 · U1 + U5 · U2 · U1

+U5 · U4 · U3 + U3 · U2 · U1 + U1 + U3 + U5) · r(x),

where r(x) is a rational function, where U2, U3, U4 and U5 are
order-one self-adjoint operators, and where U1 is an order-seven
self-adjoint operator. G7Dfcc

11 is non-trivially homomorphic to
its adjoint

adjoint(L10) · G7Dfcc
11 = adjoint

(
G7Dfcc

11

)
· L10.
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Integrable models are like a needle in the haystack
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To be or not to be holonomic ...

Integrability: Holonomic functions.

Non-integrability: Non-holonomic functions, However

Non-holonomic functions like Chazy III, and also the
susceptibility of the square Ising model are non-holonomic, but
they do belong to the “Integrability world”. The χ(n)

decomposition of the χ susceptibility yields Calabi-Yau ODE (and
manifolds) and highly selected linear differential operators (special
differential Galois groups, etc ...). The χ(n)’s are diagonal of
rational functions: they are the class of transcendental
functions which is the “closest” to algebraic functions
(modulo a prime they do reduce to algebraic functions). As far as
the algorithmic complexity of the calculations of the χ series,
these calculations are polynomial (in N4, consequence of J.H.H.
Perk’s finite difference equations which can be viewed as a finite
difference generalization of Painlevé equations). Natural
boundary is not even characteristic of non-integrability (on the
contrary !): think of Chazy III.
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Non-holonomic functions ratio of holonomic functions

Along this line it is fundamental to recall that the ratio (not the
product !) of two holonomic functions is non-holonomic

d2y

dx
+R(x) · y = 0, τ(x) =

y1
y2
, {τ(x), x} = 2R(x).

The Chazy III equation is a third-order non-linear differential
equation (it can also be rewritten using a Schwarzian derivative)
that has a natural boundary for its solutions:

d3y

dx3
= 2 y

d2y

dx2
− 3

(dy
dx

)2
.

It has the quasi-modular form Eisenstein series E2 has a solution

y =
1

2
· ∆′

∆
=

1

2
· E2

where ∆ is a selected holonomic function: a modular form.
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Isogenies, Landen transformations, Modular curve

The Landen transformation corresponds to the genus zero
fundamental modular curve

j2 · j′2 − (j + j′) · (j2 + 1487 · j j′ + j′2)

+3 · 153 · (16 j2 − 4027 j j′ + 16 j′2)

−12 · 306 · (j + j′) + 8 · 309 = 0,

which relates the two j-functions

j(k) = 256 · (1− k2 + k4)3

(1− k2)2 · k4
, j(kL) = 16 · (1 + 14 k2 + k4)3

(1− k2)4 · k2
.
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Modular Forms

Let us consider the second order linear differential operator

d2

dz2
+

(
z2 + 56 z + 1024

)
z · (z + 16) (z + 64)

· d
dz
− 240

z · (z + 16)2 (z + 64)
.

which has the (modular form) solution:

2F1

(
[

1

12
,

5

12
], [1]; 1728

z

(z + 16)3

)
= 2 ·

(z + 256

z + 16

)−1/4
· 2F1

(
[

1

12
,

5

12
], [1]; 1728

z2

(z + 256)3

)
.
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Fundamental modular curve

The two pull-backs in the previous modular form

u = u(z) =
1728 z

(z + 16)3
, v =

1728 z2

(z + 256)3
= u

(212

z

)
.

are related by a Atkin-Lehner involution z ↔ 212/z, and
correspond to a rational parametrization of the fundamental
modular curve X0(2):

59 v3 u3 − 12 · 56 u2 v2 · (u+ v)

+375 u v · (16u2 + 16 v2 − 4027 v u)

−64 (v + u) · (v2 + 1487 v u + u2) + 212 · 33 · u v = 0.

relating two Hauptmoduls u and v.
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Schwarzian derivative and natural boundary

It can be rewritten in terms of a Schwarzian derivative:

f (4) = 2 f ′2 · {f, x} = 2 f ′ f ′′′ − 3 f”2 with: y =
df

dx
.

It was introduced by Jean Chazy (1909, 1911) as an example of a
third-order differential equation with a movable singularity that has
a natural boundary for its solutions. It is also worth recalling the
Halphen-Ramanujan differential system:

P ′ =
P 2 −Q

12
, Q′ =

P Q −R
3

, R′ =
P R −Q2

2
,

where P = E2, Q = E4, R = E6 and X ′ denotes here the
homogeneous derivative q · dX

dq , and En the Eisenstein series.
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