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Abstract
We previously reported on a recursive method to generate the expansion of the
lattice Green function (LGF) of the d-dimensional face-centered cubic lattice
(fcc). The method was used to generate many coefficients for =d 7 and the
corresponding linear differential equation has been obtained. In this paper, we
show the strength and the limit of the method by producing the series and the
corresponding linear differential equations for =d 8, 9, 10, 11, 12. The
differential Galois groups of these linear differential equations are shown to be
symplectic for =d 8, 10, 12 and orthogonal for =d 9, 11. The recursion
relation naturally provides a two-dimensional array t n j,d ( ) where only the
coefficients t n, 0d ( ) correspond to the coefficients of the LGF of the
d-dimensional fcc. The coefficients t n j,d ( ) are associated to D-finite
bivariate series annihilated by linear partial differential equations that we
analyze.
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1. Introduction

The lattice Green function (LGF) of the d-dimensional face-centered cubic (fcc) lattice is
given by a d-fold integral whose expansion around the origin is hard to obtain as the
dimension goes higher [1–4]. Only for d = 3 a closed form is known [5]. But since the
integrand is of a very simple form—a rational function, after an appropriate variable trans-
form—it follows from the theory of holonomic functions [6, 7] that those integrals are D-finite
or holonomic, i.e. each of them satisfies a linear ordinary differential equation (ODE) with
polynomial coefficients. For d = 4 the corresponding linear ODE was obtained in [8], for
d = 5 in [2], and for d = 6 in [4], by different methods. In a previous paper [9] we forwarded
a recursive method that was efficient enough to allow us generate many series coefficients for
=d 7 necessary to obtain the linear ODE. Since the recursion parameter in the method is the

dimension d , we have obtained many short series for d as high as45. From these data and the
Landau equations method [10] on the integrals, we inferred many properties that we con-
jecture to be common to all the linear ODEs of d-dimensional fcc lattices. The order-eleven
linear differential operator, corresponding to the linear differential equation, we have obtained
[9] for the LGF of the seven-dimensional fcc has been found to verify a property recently
forwarded [11]. This property is a canonical decomposition of irreducible linear differential
operators with symplectic or orthogonal differential Galois groups and corresponds to the
occurrence of a homomorphism of the operator and its adjoint. This property has been seen to
occur [12–14] for many linear differential operators that emerge in lattice statistical physics
and enumerative combinatorics.

In this paper, we show the strength and the limit of the method. With some technical
improvements in the computations, we show how much high in dimensiond we can go in
generating sufficiently many terms of the LGF series in order to obtain the corresponding
linear ODE. We find that the conjectures (especially on the singularities) given in [9] are all
verified. We also find that the canonical decompositions of the operators follow the scheme
given in [11].

Furthermore, the recursion relation gives a two-dimensional array t n j,d ( ) where only the
coefficients t n, 0d ( ) correspond to the coefficients of the LGF of the d-dimensional fcc. We
give the integrals whose expansion gives bivariate series with coefficients t n j,d ( ), and
address the D-finite systems that annihilate these bivariate series.

The paper is organized as follows. Recalls are given in section 2 where improvements of
the method and some computational details are also given. Section 3 deals with our results on
the differential equations annihilating the LGF of the d-dimensional fcc lattice for

=d 8, 9, 10, 11, 12. The orders and singularities of all these linear ODEs are seen in
agreement with our conjectures and computed Landau singularities in [9]. In section 4,
we show that the differential Galois groups of the operators are symplectic for

= = =d d d8, 10, 12 and orthogonal for = =d d9, 11. We give for the operators
corresponding to =d 8 and =d 9 the canonical decomposition that should [11] occur for the
operators with symplectic or orthogonal differential Galois groups. In section 5 we give the d-
dimensional integrals depending on two variables z y,( ) whose expansion around 0, 0( ) (and
integration) writes in terms of the coefficients t n j,d ( ). These coefficients generate a D-finite
bivariate series T z y,d ( ) annihilated by a system of partial differential equations (PDE) that
we give in section 6 for the case d = 2. Switching to a system of decoupled PDE, we give in
section 7 the solutions that combine to match T z y,2 ( ). Section 8 deals with d = 3, where we
focus on one solution which, remarkably, is a modular form. We present some remarks in
section 9 and conclude in section 10.
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2. LGF generation of series

2.1. Recalls on the recursive method

The LGF of the d-dimensional fcc lattice reads
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where the array4 t n j,d ( ) is obtained with the recursive relation (see section 2 in [9])
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where x[ ] is the integer part of x. To start the recursion, one needs:
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2.2. Computational details

The shape of the recurrence(4) suggests to start with the two-dimensional array t n j,2 ( ), then
compute t n j,3 ( ), and so on. Once t n j,3 ( ) is completed, the data of t n j,2 ( ) is not any more
needed since the recurrence(4) is of order1 with respect tod. Also from the recurrence it is
easy to see that for computing t n, 0d ( ),  n N0 , the desired coefficients of the Taylor
series, one needs the values of -t n j,d 1( ) for  n N0 and   -j N n0 2[( ) ] (the
same range applies to the arrays ¼-t t, ,d 2 2). The advantage of such an implementation is that
it stores only O N 2( ) elements, which are integers. The disadvantage is that one has to fix N
at the very beginning, but thenumber of terms needed for constructing the linear differential
operator is not known in advance.

If one looks at the recurrence(4) more closely, one discovers the remarkable fact that
neither its coefficients, i.e. the product of the three binomials, nor its support, i.e. the sum-
mation bounds, depend on the parameterd. Hence, in the previous approach, the coefficients
are the same in each step, but they are recomputed in each iteration = ¼d 3, 4, , which is
clearly a waste of computational resources. In principle, we could collect all the coefficients in
a big matrixA that maps the array -td 1 totd, so that = -t A td

d 2
2· . For this purpose the

two-dimensional arrays t n j,d ( ),  n N0 ,   -j N n0 2[( ) ], have to be repre-
sented as vectors of dimension +N 2 1 2[( ) ]. So the whole computation then boils down to

4 See section 5 for the integral representation corresponding to t n j,d ( ).
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compute the power of some matrix, and then multiply it to the vector that corresponds tot2.
The problem is that the matrixA has dimension + ´ +N N2 1 2 12 2[( ) ] [( ) ], which
already for the eight-dimensional fcc lattice (where we need at least =N 704 Taylor coef-
ficients, see table 1) means a ´124609 124609 square matrix. Of course, A is not dense. A
simple calculation reveals that it has + + + +N N N N2 4 4 12 962( )( )( ) nonzero entries if
N is even, and + + + +N N N N1 3 6 17 962( )( )( ) nonzero entries when N is odd. It
follows that A has sparsity 1 6. Nevertheless it would require a considerable and impractical
amount of memory to store the full matrix: for d = 8 it has about 2.6 billion nonzero entries
(which themselves are big integers), and for =d 11, where we need =N 2464 terms, it has
about 386 billion nonzero entries.

From the above discussion we are led to the following considerations: on the one hand,
we would like to avoid recomputation of the coefficients, and on the other hand, we do not
want to compute them all at once. Moreover, it is desirable to have a program that computes
the Taylor coefficients one after the other, so that one does not have to fix N at the
very beginning. The following algorithm satisfies all three requirements. The main loop is
= ¼n 0, 1, 2, and in each iteration the values - -t n t n t n0, 2 , 2, 2 1 , 4, 2 2 ,d d d( ) ( ) ( )

¼ t n, , 0d ( ) if n is even (respectively - - ¼t n t n t n1, 1 2 , 3, 3 2 , , , 0d d d( ( ) ) ( ( ) ) ( ) for
oddn) are computed in the given order, for all d between 2 and the dimension of the lattice.
For sake of brevity, and without loss of generality, we will focus on the case of evenn in the
following. Note that in this way all the data that is required for -t k n k2 , 2d ( ) is already
available. Similarly as before, we can obtain -t k n k2 , 2d ( ) as the scalar product -a td 1· ,
where a is a row vector and the two-dimensional array -td 1, again, has to be interpreted as a
single column vector. The vectora corresponds to a single row of the above-mentioned
matrixA. Then - - ¼t k n k t k n k2 , 2 , 2 , 2 ,3 4( ) ( ) are computed by using always the
same vectora, so that any recomputation of coefficients is avoided. The only drawback of
this approach is that one has to keep the whole three-dimensional array t n j,d ( ) in memory,
and therefore this method is more memory-intensive than the naive approach (by a factor of
approximately d 2).

The described computational scheme allows for lots of further (technical) improvements,
some of which we want to mention briefly here. For example, one does not need to compute
the vectora from scratch for eachk, but reuse the previous one by adding and deleting a few
entries, and apply the simple recurrences for binomial coefficients:

Table 1. The number of terms Nm (and N0) needed to obtain the minimal-order linear
ODE of order Qmin (and the optimal-order linear ODE of order Qopt) annihilat-
ing xLGFd ( ).

d Nm N0 -N Nm 0 -Q Qopt min

4 40 40 0 4−4 = 0
5 98 88 10 7−6 = 1
6 342 228 114 11−8 = 3
7 732 391 341 16−11 = 5
8 1740 704 1036 21−14 = 7
9 2964 999 1965 26−18 = 8
10 6509 1739 4770 36−22 = 14
11 10864 2464 8400 43−27 = 16
12 19503 3618 15885 53−32 = 21
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Multiplying by a simple rational number is much cheaper than calculating a binomial coefficient.
With a little effort there is also the possibility to parallelize the computation. This can be

done by splitting the sequence - ¼t n t n t n0, 2 , 2, 2 1 , , , 0d d d( ) ( ) ( ) into parts, each of
which is done by a single processor. The only caveat is the contribution of

¼ - - +t n t k n k0, 2 , , 2 2, 2 1d d( ) ( ) to the computation of -t k n k2 , 2d ( ), which has to
be postponed until all processors have finished their task. This causes some synchronization
overhead at each iteration ofn, which prevents us from using an excessive amount of pro-
cessors. For example, the computation time for the required =N 999 terms for the nine-
dimensional fcc lattice dropped from 60 hours to 7.5 hours by using 10 parallel processors.

For the interested reader we also mention the timings for the other dimensions of the
lattice considered here: in the ten-dimensional case we obtained the necessary N=1739
terms in 3 days using 20 parallel processes, for =d 11 the same number of processes was
running for 18 days to compute the 2464 terms mentioned in table 1. For the 12-dimensional
fcc lattice we only computed modulo = -p 2 131 , and found that the minimal number of
terms necessary for constructing the linear differential operator is 3618: these were obtained
in 10 days using 25 parallel processes.

3. The differential equations of the LGF of the d-dimensional fcc lattice,
d ¼ 8; L; 12

We obtain the corresponding linear ODE using an ansatz å c x xi j i j
j

x

i

, ,
d

d( ) with undetermined

coefficients Îci j, . Substituting the generated series into this ansatz and equating the
coefficients with respect tox to zero yields a linear system for theci j, . The result is very
trustworthy once we use a sufficient amount of series data, i.e. such that the resulting linear
system has more equations than unknowns. In the computer algebra literature this metho-
dology is referred to as guessing, which somehow hides the fact that it is a completely
algorithmic and constructive method. The linear ODE for =d 8, 9, 10, 11 are obtained in
exact arithmetic and the linear ODE for =d 12 is obtained modulo one prime. These linear
ODEs are given in electronic form in [15].

The linear differential operators corresponding to =d 8, 9, 10, 11, 12 are called,
respectively, G D

14
8 fcc, G D

18
9 fcc, G D

22
10 fcc, G D

27
11 fcc, and G D
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order of the linear ODE. These orders are in agreement with the conjecture given in [9]:
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and where x[ ] is the integer part of x.
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The singularities as they occur in front of the head derivative of respectively G D
14
8 fcc,

G D
18
9 fcc, G D

22
10 fcc, G D

27
11 fcc, G D

32
12 fcc are given in appendix A.

As far as the local exponents at the singularities are concerned, one remarks that the
regular pattern seen [9] at =x 0 continues. Note that this is the pattern from which we
inferred the order of the linear ODE. The local exponents, at each singularity, are given in
table 2. The singularities xd, which read = -x 33 , = -x 55 , = -x 156 , = -x 77 ,

= -x 148 , = -x 99 , = -x 1510 , = -x 1111 , = -x 33 212 , seem to be given by:

= -
-

- - -
x

d d

d

2 1

2 5 3 1
. 12d d

· ( )
· ( )

( )

For =d 11, there is also the singularity = -x 55 not included in ‘others’ (not shown in
table 2) with local exponents 9 2, 11 2.

4. The differential Galois groups of GdDfcc
q , d=8, 9, 10, 11, 12

The equivalence of two properties, namely the homomorphism of the operator with its
adjoint, and either the occurrence of a rational solution for the symmetric (or exterior) square
of that operator, or the drop of order of these squares, have been seen for many linear
differential operators [12]. The operators with these properties are such that their differential
Galois groups are included in the symplectic or orthogonal differential groups. We have also
shown that such operators have a ‘canonical decomposition’ [11], which means that they can
be written in terms of ‘tower of intertwiners’. These properties hold also for the (non-
Fuchsian) operators emerging in the square Ising model at the scaling limit [13].

For the linear differential operators annihilating xLGFd ( ), ( =d 5, 6, 7), of the fcc lat-
tice, these properties hold [9, 12]. For instance, the order-eleven operator G D

11
7 fcc (corresp-

onding to LFG x7 ( )) has the following canonical decomposition [9]

= + +
+ + + + +

G A B C D E A B E A D E
A B C C D E E C A r x , 13

D
11
7 fcc

1 1 1 1 7 1 1 7 1 1 7

1 1 1 1 1 7 7 1 1

( · · · · · · · ·
· · · · ) · ( ) ( )

where r x( ) is a rational function, and the factors (the indices correspond to their orders) are
all self-adjoint linear differential operators.

Table 2. The local exponents at the regular singularities. Only the exponents giving a
singular behavior are shown.

d x = 0 = ¥x x = 1 xd others

3 03 3/2 1/2 03

4 04 22 12 12

5 0 , 15 5/2 3/2 3 4, 5 4 3/2
6 0 , 16 2 32 22 2 , 32 2 22

7 0 , 1 , 27 3 7/2 5/2 3 2, 5 2, 23 5/2
8 0 , 1 , 28 4 2 42 32 3 , 42 2 32

9 0 , 1 , 2 , 39 5 3 9 2, 11 2 7/2 9 4, 11 4, 13 4, 15 4 7/2
10 0 , 1 , 2 , 310 6 4 2 52 42 4 , 52 2 42

11 0 , 1 , 2 , 3 , 411 7 5 3 11/2 9/2 7 2, 9 2, 3 , 4 , 52 3 2 9/2
12 0 , 1 , 2 , 3 , 412 8 6 4 2 62 52 5 , 62 2 52
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The decomposition (13) occurs because G D
11
7 fcc is nontrivially homomorphic to its

adjoint, and the decomposition is obtained through a sequence of Euclidean right divisions
(see section 5 in [9]).

From this decomposition one understands easily why the symmetric square of G D
11
7 fcc is

of order 65, instead of the generically expected order 66. The symmetric square of the self-
adjoint order-seven linear differential operator E7 is of order 27, instead of the generically
expected order 28 (see [9, 11] for details). From the decomposition (13) one immediately
deduces the decomposition of the adjoint of G D

11
7 fcc (because the factors are self-adjoints).

The symmetric square of the adjoint G D
11
7 fcc will annihilate a rational solution which is the

square of the solution of the order-one operator A1. The differential Galois group of G D
11
7 fcc is

included in SO 11,( ).
In the sequel, we show that the operators G D

14
8 fcc, G D

18
9 fcc, G D

22
10 fcc, G D

27
11 fcc and G D

32
12 fcc

verify the same properties as the operators G D
11
7 fcc (and G D

6
5 fcc for =d 5, see [2], G D

8
6 fcc for

=d 6, see [4]). For d odd (respectively d even), one must consider the symmetric square
(respectively exterior square) of the operator.

Note that to compute the homomorphism, for our purpose, between an operator and its
adjoint, the operator should be irreducible (see section 2.1 in [12]). We have shown in [9] that
G D

6
5 fcc, G D

8
6 fcc, G D

11
7 fcc are irreducible. In the next section, we will assume that G D

14
8 fcc,

G D
18
9 fcc, G D

22
10 fcc, G D

27
11 fcc and G D

32
12 fcc are irreducible5.

4.1. The differential Galois group of G8Dfcc
14

Producing the 14 formal solutions of the linear differential operator G D
14
8 fcc, it is easy to show

that its exterior square is of order 90, instead of the generically expected order 91. The
differential Galois group of the operator G D

14
8 fcc is included in Sp 14,( ).

The exterior square of the adjoint of G D
14
8 fcc either has the order 90, or annihilates a

rational solution. We find that the exterior square of the adjoint of G D
14
8 fcc annihilates the

following rational function

=G
x P x S x

P x
sol ext adjoint , 14R

D2
14
8 fcc

21
84 8

2

14
( ( ( ))) · ( ) · ( )

( )
( )

where P x14 ( ) is the degree-95 apparent polynomial of G D
14
8 fcc, S x8 ( ) is a degree-8 polynomial

corresponding to the finite singularities given in appendix A, and P84 is a degree-84
polynomial.

From these results, we should expect, in the ‘canonical decomposition’ of G D
14
8 fcc, the

factor equivalent to A1 in (13) to be an order-two self-adjoint operator with (14) as the
Wronskian. We should expect also the equivalent to E7 in (13) to be self-adjoint with even
order greater than two. It is tempting to find the ‘canonical decomposition’ of G D

14
8 fcc, and see

whether the order of the ‘last’ factor (i.e. the equivalent of E7 in (13)) is equal to the
dimension =d 8 as we conjectured in [9].

Indeed, the ‘canonical decomposition’ [11] of G D
14
8 fcc is

= + + + +G A B C D A B C D A D r x1 , 15D
14
8 fcc

2 2 2 8 2 2 2 8 2 8( · · · · · · ) · ( ) ( )

where r x( ) is a rational function, and where all the factors are self-adjoint, with the indices
indicating the order.

The starting relation to obtain this decomposition is the homomorphism that maps the
solutions of G D

14
8 fcc to the solutions of the adjoint:

5 The results given in (16) and (20) show that G D
14
8 fcc and G D

18
9 fcc are, indeed, irreducible.
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=L G G Ladjoint adjoint 16D D
12 14

8 fcc
14
8 fcc

12( ) · ( ) · ( )

The sequence of Euclidean right divisions (the indices indicate the orders)

= + = + = +G A L L L B L L L C L r x, , , 17D
14
8 fcc

2 12 10 12 2 10 8 10 2 8· · · ( ) ( )

and substitutions, give the decomposition (15). We have shown in [11] that the factors A2, B2,
C2 are automatically self-adjoint. The sequence ends when the rest of the last Euclidean right
division is a rational function: one, then, obtains the order-8 self-adjoint operator

=D L r x8 8 ( ). If the exterior square of G D
14
8 fcc was of the generic order 91, and annihilated

a rational function, the sequence of right divisions would continue, and the last Euclidean
right division would be = +L F L r x4 2 2· ( ).

4.2. The differential Galois group G9Dfcc
18

Similar calculations performed on the operator G D
18
9 fcc show that the symmetric square is of

order 170, instead of the generically expected order 171. The differential Galois group of the
operator G D

18
9 fcc is included in SO 18,( ).

The symmetric square of the adjoint of G D
18
9 fcc annihilates the rational function

=G
x P x S x

P x
sol sym adjoint , 18R

D2
18
9 fcc

28
260 9

2

18
2

( ( ( ))) · ( ) · ( )
( )

( )

where P x18 ( ) is the apparent polynomial of the operator G D
18
9 fcc, S x9 ( ) is a degree-9

polynomial corresponding to the finite singularities given in appendix A, and P260 is a degree-
260 polynomial.

Heavy calculations give the canonical decomposition [11] of G D
18
9 fcc as (again, the indices

denote the order):

= + G A B C D E F G H I J r x . 19D
18
9 fcc

1 1 1 1 1 1 1 1 1 9( · · · · · · · · · ) · ( ) ( )

All the factors are self-adjoint. The decomposition contains 89 terms and is obtained through
a sequence of nine Euclidean right divisions starting from the homomorphism that maps the
solutions of G D

18
9 fcc to the solutions of the adjoint:

=L G G Ladjoint adjoint . 20D D
17 18

9 fcc
18
9 fcc

17( ) · ( ) · ( )

Here also, we see that the conjecture of [9] is verified. The order of the last self-adjoint factor
(i.e. J9) is equal to the dimension of the lattice, =d 9.

4.3. The differential Galois groups of G10Dfcc
22 , G11Dfcc

27 and G12Dfcc
32

The detailed calculations done for the decompositions of G D
14
8 fcc and G D

18
9 fcc are too huge to

be performed on G D
22
10 fcc andG D

27
11 fcc. However, it is straightforward to obtain that the exterior

square of G D
22
10 fcc is of order 230, instead of the generic order 231. The differential Galois

group of the linear differential operator G D
22
10 fcc is included in Sp 22,( ). The symmetric

square of G D
27
11 fcc is of order 377, instead of the generic order 378. The differential Galois

group of the operator G D
27
11 fcc is included in SO 27,( ). Also, the exterior square of the

known modulo a prime G D
32
12 fcc, is of order 495 instead of the generic order 496. The

differential Galois group of the operator G D
32
12 fcc is included in Sp 32,( ).
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5. Coupling of lattices

In section 2.2, we mentioned that some recurrences on the coefficients t n p,d ( ) have been
used to improve the efficiency of the computations. Recall that to obtain the recursion relation
giving the coefficients t n p,d ( ), we introduced [9]

å å åz s= =
= = + =

k k kcos cos , cos , 21d
i

d

j i

d

i j d
i

d

i
1 1 1

( ) · ( ) ( ) ( )

in terms of which the coefficients t n p,d ( ) are given by

z s= +t n p, 4 , 22d
n p

d
n

d
p2( ) · ⟨ · ⟩ ( )

where the symbol ⟨·⟩ means that the integration on the variables kj, occurring in the
integrand, has been performed (with the normalization pd).

It is straightforward to see that the coefficients t n p,d ( ) correspond to the coefficients in
the expansion around 0, 0( ) of the d-dimensional integral

ò ò
åå
p z s

=
- -

=

p p

= =

 
T z y

k k

z y

z y t n p

,
1 d d

1 4 1 4

, , 23

d d
d

d d

n p

n p
d

0 0

1
2

0 0

( )
( ) · ( )

· · ( ) ( )

which gives the zLGFd ( ) of the d-dimensional fcc lattice for =y 0, and the yLGFd ( ) of the d-
dimensional simple cubic lattice for =z 0. Note that for the simple cubic lattice, sd

2 should be
sd. The expansion of the LGF of the simple cubic lattice corresponds to the expansion of (23)
with =z 0 and =y x d 42( ) , where x is the expansion parameter.

From the computation of t n p,d ( ) for some values of d , we infer the first terms of the
expansion around 0, 0( ) of T z y,d ( )

= + + - + - + -
+ - - + - -

+ - + + - + 

T z y d y d d z d d zy d d y

d d d z d d d z y

d d zy d d d y

, 1 2 2 1 4 1 6 2 1

8 1 2 4 1 5 7

48 1 20 4 6 9 .

24

d
2 2

3 2

2 2 2 3

( ) · · ( ) · · ( ) · · ( ) ·
· ( )( ) · · ( )( ) ·

· ( ) · · ( ) ·
( )

Even if there is no obvious lattice corresponding to the Green function (23), we found
that it might be worthy to analyze the bivariate series T z y,d ( ), per se.

In the sequel, we address6 the system of linear PDE that annihilates the D-finite bivariate
series T z y,d ( ) for =d 2.

6. PDEs for T 2 ðz ;yÞ

To find the PDEs that annihilate T z y,2 ( ) we can either proceed as for the linear ODEs, i.e.
by the guessing method, or apply the creative telescoping technique [17–19]; the latter is
computationally more costly, but provides a certificate of correctness of the obtained
differential equations. For example [4], it was powerful enough to find and prove the
ODEs satisfied by the LGF for =d 4, 5, 6, but failed for d 7. All the differential

6 See e.g. [16] for an introduction on PDEs.
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equations mentioned in this and the following sections are also available in electronic
form [15].

In order to apply the guessing method we assume a PDE of order Q in the homogeneous
partial derivatives ¶ ¶z z· and ¶ ¶y y· , with polynomials in z and y of degree D that
annihilates T z y,2 ( ):

ååå
¶
¶

¶
¶

=
= = =

-⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟a z y z

z
y

y
T z y, 0. 25

q

Q

n

D

p

D

n p
q n p

q Q q

0 0 0
, 2· · · · · · · ( ) ( )( )

This linear system fixes the coefficients an p
q
,

( ), and leaves some of them free. The number of
nonfixed coefficients is the number of PDEs with order Q and degree D. If all the coefficients
are such that =a 0n p

q
,

( ) , we increase the order Q and/or the degree D.
For =Q 1, and various increasing values of D, all the coefficients are such that
=a 0n p

q
,

( ) . For =Q 2 and =D 2, there is only one PDE, that we denote PDE2. For =Q 3
and =D 1, there are only two PDEs, called PDE3

1( ) and PDE3
2( ). Note that there is no

concept of ‘minimal order’ for PDEs, while there is one for ODEs. Instead, one can consider
a Gröbner basis (see appendix B) in the ring of partial differential operators, as is demon-
strated in section 6.4. It is obvious that there are as many PDEs that annihilate T z y,2 ( ) as we
wish (namely, all elements of the left ideal Tann 2( ), see appendix B). For instance, for =Q 4
and =D 1, we obtain five PDEs, three of them are of order four and two of them are
combinations of PDE3

1( ) and PDE3
2( ).

6.1. Two PDEs for T 2 ðz ; yÞ

With the notation

=
¶
¶ ¶

+
D

z y
, 26zy

n p
n p

n p
, ( )( )

the system of two partial differential operators for T z y,2 ( ) reads

= - + + -

+ + - - + +

+ + - - + + -

+ + + - +

+ +

y y D y z zy y D

yz zy y z D yz z D

yz zy y z D y zy y D

yz z D y y zy D

y z D

PDE 2 16 1 3 16 12 1

48 12 1 2 12 4 1

4 60 24 1 2 24 80 3

24 6 1 2 68 1 72

8 6 1 ,

27

zy zy

zy zy

zy zy

zy zy

zy

3
1 3 0,3 2 1,2

2 2,1 2 2,0

1,1 2 0,2

1,0 0,1

0,0

· ( ) · · ( ) ·

· ( ) · · ( ) ·

· ( ) · · ( ) ·

· ( ) · · ( ) ·

· ( ) ·
( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

and:

= - + + - +

+ - + + +

+ + - + + + - +

+ + + + + -

+ +

y y D y z y zy z D

yz zy y D yz z D

yz zy y z D y zy y z D

yz z D y y z zy D

y z D

PDE 2 16 1 24 32 3 4

32 1 8 8 4 1

4 40 16 1 2 16 80 3 2

16 6 1 2 68 2 48 1

8 4 1 .

28

zy zy

zy zy

zy zy

zy zy

zy

3
2 3 0,3 2 1,2

2 2,1 2 2,0

1,1 2 0,2

1,0 0,1

0,0

· ( ) · · ( ) ·

· ( ) · · ( ) ·

· ( ) · · ( ) ·

· ( ) · · ( ) ·

· ( ) ·
( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )
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These two operators annihilate (by construction) a finite truncation of the power series
T z y,2 ( ), where the truncation index has been chosen such that it is very likely that they also
annihilate the infinite series T z y,2 ( ). That they indeed annihilate T z y,2 ( ) will be made
rigorous in section 6.4. In particular, it follows that PDE3

1( ) and PDE3
2( ) are compatible. By

assuming a common solution of the form

åå
= =

b z y , 29
n p

n p
n p

0 0
, · · ( )

we find a unique solution to the system of PDEs that identifies with T z y,2 ( ), up to an overall
constant. Only one constant means that if we switch to recurrences on the coefficients we will
need only one initial condition.

The recursions for =t n p U n p, ,2 ( ) ( ) are

- + + + + + +
+ + + + + + + + + +
- + + + =

p p np n n U n p
n n U n p n p p n U n p

n n p U n p

4 8 17 9 9 8 3 1,
2 1 , 1 2 2 3 1, 1
48 1 1 , 0, 30

2 2· ( ) · ( )
· ( ) · ( ) ( )( ) · ( )
· ( )( ) · ( ) ( )

and

+ + + + + +
+ + + + + - + + + + +
+ + + + =

p p np n n U n p
n p U n p p n p n U n p
n n p U n p

8 3 4 7 3 3 1,
4 1 1 , 1 2 2 3 1, 1
32 1 1 , 0, 31

2 2· ( ) · ( )
· ( )( ) · ( ) ( )( ) · ( )
· ( )( ) · ( ) ( )

with the auxiliary recurrence:

+ + - + =p U p p U p1 0, 1 4 2 1 0, 0. 322 2( ) · ( ) · ( ) · ( ) ( )
With the coefficient U 0, 0( ) given, these three recurrences generate all the U n p,( ).

6.2. One PDE for T 2 ðz ; yÞ

There is only one partial differential operator of order =Q 2 and degree =D 2 that
annihilates T z y,2 ( )

= - + -

+ - - - +

- - + - - - +

+ - - - - +

- + + -

z z z y D

zy z y z z y D

y y D z z y z zy y D

y z y z y zy z D

z zy y z y D

PDE 4 1 4 1 4 1

64 16 4 20 3

2 16 1 192 48 32 12 1

2 32 8 32 24 2 1

16 32 8 64 ,

33

zy

zy

zy zy

zy

zy

2
2 2,0

2 2 1,1

2 0,2 2 2 1,0

2 2 0,1

2 2 0,0

· ( )( )( ) ·

· ( ) ·

· ( ) · ( ) ·

· ( ) ·

( ) ·
( )

( )

( )

( ) ( )

( )

( )

which acting on the bivariate form (29) generates, remarkably, a unique solution that
identifies with T z y,2 ( ), up to an overall constant.

The coefficients =t n p U n p, ,2 ( ) ( ) are given by the recursion

- + + + + + +
+ + + + - + + + +
+ + + + + + +
- + + +
- + + + +

np p n p n U n p
n n p U n p p n U n p

p n p n U n p
p n U n p

n n p U n p

20 72 40 24 32 4 2,
64 1 1 , 4 1 2 1, 1

3 2 4 2, 1
64 48 32 1,

16 1 2 , 1 34

2 2( ) · ( )
( )( ) · ( ) ( )( ) · ( )

( )( ) · ( )
( ) · ( )

· ( )( ) · ( ) ( )
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with the auxiliary recursions:

+ + - + = =
+ + - + =
+ + + - + +
= + + + +

n U n n U n U

p U p p U p
p p U p p p U p

p U p p U p

2 2, 0 16 1 , 0 0, 1, 0 0,

1 0, 1 4 2 1 0, 0,
2 2 3 1, 1 4 1 5 8 1,

16 2 3 0, 4 1 0, 1 . 35

2 2

2 2

( ) · ( ) · ( ) · ( ) ( )
( ) · ( ) ( ) · ( )
( )( ) · ( ) ( )( ) · ( )

· ( ) · ( ) ( ) · ( ) ( )

Here also, these recurrences generate all the coefficients starting with U 0, 0( ).

6.3. On the logarithmic solutions

The system of PDEs given in (27), (28) has no logarithmic solution of the form

åå
= =

-F z y z y, ln ln , 36
n p

n

n p
n n p

0 0
, ( ) · ( ) · ( ) ( )

where F z y,n p, ( ) are analytic at 0, 0( ) bivariate series.
In contrast, the PDE given in (33) seems to have no bound in the summation on n (we

obtained logarithmic solutions up to =n 17). Furthermore, we find that the logarithms zln( ),
and yln( ), appear in the solutions as:

åå m-
= =

F z y z y, ln ln . 37
n p

n

n p
p

0 0
, ( ) · ( ( ) · ( )) ( )

The number of logarithmic solutions depends now on the value of μ. For m = 1 and
m = 1 2, we find no bound to n (in our calculations, we reached =n 17). For any other
value of m ¹ 1, 1 2, there is only one logarithmic solution i.e. =n 1. For generic μ the
solutions are T z y,2 ( ) and7:

m

m m m m

m m m m

m

-

+ + - + + + -

- + - + - + -

- + + 

⎜

⎟

⎛
⎝

⎞
⎠

T z y z y

z z zy

y z z y zy

y

, ln ln

1

2
2 4 2 3 5 4 1

13 12
304

9

2

3
33 16

8

15
31 90

4

9
559 420 . 38

2

2

2 3 2 2

3

( ) · ( ( ) · ( ))

· · ( ) · · ( ) ·

( ) · · · ( ) · · ( ) ·

· ( ) · ( )

Let us address the details of the computations on how the values m = 1, and m = 1 2
appear. Acting by PDE2 on the form (37) rewritten as

m- +F z y z y, ln ln , 39n n
n

, ( ) · ( ( ) · ( )) ( )

gives the choice of zeroing

m m- - =a 1 2 1 0, 400,0 · ( )( ) ( )

where a0,0 is the leading coefficient of the bivariate series F z y,n n, ( ). The choice m = 1 (or
m = 1 2) allows ¹a 00,0 , which permits n to be higher. The choice =a 00,0 will decrease
the degree n, and the process continues with -n 1.

7 Note that the derivative with respect to μ of the logarithmic solution is also a solution.

J. Phys. A: Math. Theor. 49 (2016) 164003 S Hassani et al

12



The choice (40) comes from the action of PDE2 on (39), and the leading coefficient of
the expansion to be cancelled is:

m m m- - - - +-n n a z y O z y1 1 2 1 ln ln , . 41n
0,0

2 1 1· ( ) · · ( )( ) · ( ( ) · ( )) ( ) ( )

6.4. Gröbner basis of PDEs for T 2 ðz; yÞ

A Gröbner basis for Tann 2( ), the annihilating ideal of PDEs for T z y,2 ( ), can be obtained
by applying Buchberger’s algorithm to the input PDE , PDE , PDE3

1
3
2

2{ }( ) ( ) (some basics
about Gröbner bases are given in appendix B). Alternatively, we can compute the
annihilating ideal from scratch, i.e. from the integral representation(23) of T z y,2 ( ), by
the method of creative telescoping. Both tasks can be performed with the Holono-
micFunctions package [20] and yield the same result. The second approach, however,
gives an independent proof that the guessed PDEs presented in the previous sections are
correct.

The Gröbner basis of Tann 2( ) (with respect to degree-lexicographic order and D Dy z)
consists of 3 operators, whose supports are given as follows:

D D D D D D

D D D D D D

D D D D D D

, , , , , ,

, , , , , ,

, , , , , .

zy zy zy zy zy zy

zy zy zy zy zy zy

zy zy zy zy zy zy

2,0 1,1 0,2 1,0 0,1 0,0

0,3 1,1 0,2 1,0 0,1 0,0

1,2 1,1 0,2 1,0 0,1 0,0

{ }

{ }

{ }

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

Note that the first basis element is exactly PDE2. By investigating the leading
monomials D D D, ,zy zy zy

2,0 0,3 1,2( ) ( ) ( ) one immediately finds that there are five monomials under

the stairs, namely the monomials D D D D D, , , ,zy zy zy zy zy
1,1 0,2 1,0 0,1 0,0( ) ( ) ( ) ( ) ( ), which cannot be reduced

by either of the leading monomials. We say that Tann 2( ) has holonomic rank5. Hence one
could expect that five initial conditions have to be given to identify the particular solution
T z y,2 ( ). As discussed before, we remarkably need only one initial condition.

7. ODEs for T 2 ðz ;yÞ

The bivariate series T z y,2 ( ) may be seen as depending on the variable z (or y) where y
(or z) is a parameter. By derivation of the PDE system, and elimination of the unwanted
derivatives, one obtains a linear ODE on the variable z (or y) that annihilates T z y,2 ( ).
Such elimination can be conveniently performed by using the Gröbner basis presented in
section 6.4.

7.1. ODE with the derivative on z for T 2 ðz; yÞ

The linear ODE with the variable z, that annihilates T z y,2 ( ), is of order five, and we call the
corresponding operator L z

5
( ), (with the derivative = ¶

¶
Dz z

):

å=
=

L P z y D, . 42z

n
n z

n
5

0

5

( ) · ( )( )

The polynomial in front of the highest derivative is

- + - + + -z z z z y z y y zy z P4 1 4 1 4 16 8 4 , 432 2 2
app· ( ) · ( ) · ( ) · ( ) · ( )
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where Papp carries apparent singularities:

= - - + - + -

- + - + - +

P y y z y y z y y z

y y z y y z y

192 4 1 128 32 12 4 80 19

40 4 1 1 . 44

app
5 2 4 3

2 2 2

· ( ) · ( ) · ( ) ·
( ) · · ( ) · ( )

The factorization of the order-five linear differential operator L z
5
( ) reads (the indices are

the orders)

= Å ÅL L L L L L L , 45z
5 1

2
1

1
1

3
1

1
2 1

1( · ) ( · ) ( · ) ( )( ) ( ) ( ) ( ) ( ) ( )

where the four factors are given in appendix C.
The solution of L1

1( ) reads:

=
- - + +

L
z

z y y z zy y
sol

4 4 4 1 8
. 461

1
2

( )
( ) · ( · ( ) · )

( )( )

The second solution of L L1
2

1
1·( ) ( ) reads:

ò - - + +

-
L

z

z y y z zy y
zsol

4 4 4 1 8
d . 471

1
3 2

2
( ) ·

( )( · ( ) · )
· ( )( )

The integral can be evaluated in terms of the incomplete elliptic integrals, so that the second
solution of L L1

2
1

1·( ) ( ) reads

-
-

- -

-
-

-

⎛
⎝⎜

⎞
⎠⎟L

y y

y
E z z

y y

y y
F z z

z y y
sol

4

2
,

4 8 1 2

16 1
,

2

4
,1

1
2 1 2 1 2( ) ·

( )
· ( )

· ( )
· ( )

· ( )
( )

( )

with

=
-

-
=

+

-
z

y z

z y
z

y

y

4 1

4
,

4 1

4 1
481

2

2

2

2

( ) ( )
( )

( )

and where E and F are the incomplete elliptic integrals:

ò ò=
-

-
=

- -
E z k

k t

t
t F z k

k t t
t,

1

1
d , ,

1

1 1
d . 49

z z

0

2 2

2 0 2 2 2
( ) · ( ) · ( )

The second solution of L L1
3

1
1·( ) ( ) can be written as the general Heun function

⎜ ⎟⎛
⎝

⎞
⎠f z a q g zHeun , ,

1

2
, 1,

3

2
,

1

2
, , 50( ) · ( ) ( )

with

=
+ -

+ + - -

=
+ - + - -

+ + -

f z
z z y y z

z y y zy z z y

g z
zy zy y z z y z y

y z y y zy z

4 2

16 8 4 4
,

64 16 12 1 2 4

4 16 8 4
, 51

2 2

2 2

( )
·

( ) ·

( )
· ( ) · · ( )

· ( )
( )

and:

= +
+

=
+

a
y

y
q

a1

2

16 1

16
,

1

4
. 52( )
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The solution of L L2 1
1· ( ) which is not solution of L1

1( ) can be written as

òL
L

L
zsol

sol

sol
d , 531

1 2

1
1

( ) · )
( )

· ( )( )
( )

where one of the solutions of L2 reads

=
- - + - -

- + + -

+
+ - - + - -

- + + -

L
z z z y z y z zy y

y z y y zy z y z

H z

z

z z y z z y z y z zy y

y z y y zy z y z
H z

sol
16 1 64 80 16 36 3

3 4 8 16 4

d

d

4
256 112 512 224 32 3

4 8 16 4
,

54

2

2 3 2 2

2 2

4 3 3 2

2 2

( ) · ( )( )
( )( )

· ( )

· · ( )
· ( )( )

· ( )
( )

where H z( ) is the hypergeometric function

=
⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟H z F z

3

2
,

5

2
, 1 , 16 . 552 1

2( ) [ ] ( )

7.2. ODE with the derivative on y for T 2 ðz; yÞ

The bivariate seriesT z y,2 ( ), where z is a parameter, is annihilated by an order-five linear
differential operator N y

5
( ) (with the derivative = ¶

¶
Dy y

):

å=
=

N Q z y D, . 56y

n
n y

n
5

0

5

( ) · ( )( )

The polynomial, in front of the highest derivative, reads

- - + + -y y z y z y y zy z P16 1 4 16 8 4 , 572 2 2
app· ( ) · ( ) · ( ) · ( )

where Papp carries apparent singularities:

=- + - -

+ - + - +
- + - - + + - -

P z z z y

z z z z y

z z z z y z z z

12 4 1 32 12 1

1344 8 20 114 64

1 12 20 264 48 32 1 6 . 58

app
2 3

3 2 4 2

2 3 4 2 2

· ( ) · ( ) ·
( ) ·
( ) · ( ) · ( )

The order-five operator N y
5
( ) has the following direct sum factorization

= Å ÅN N N N N N N , 59y
5 1

2
1

1
1

3
1

1
2 1

1( · ) ( · ) ( · ) ( )( ) ( ) ( ) ( ) ( ) ( )

where the four factors are given in appendix C.
The solution of N1

1( ) reads:

=
- - + +

N
y

z y y z zy y
sol

4 4 4 1 8
. 601

1
2

( )
( )( · ( ) · )

( )( )

The second solution of N N1
2

1
1·( ) ( ) reads:

ò
+

- - + +

-
N

y y

z y y z zy y
ysol

16 1

4 4 4 1 8
d . 611

1
3 2

2
( ) · · ( )

( ) · ( · ( ) )
· ( )( )

The integral can be evaluated in terms of the incomplete elliptic integrals and the second
solution of N N1

2
1

1·( ) ( ) reads
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-
+

+ +
-

-
⎛
⎝⎜

⎞
⎠⎟N

z

z
E z z

z z

z z
F z z

z
sol

4 1

2
,

80 1 8

2 4 1
,

1

2
, 621

1
5 2 1 2

2

5 2 1 2 3
( ) · ( ) · ( ) ( )

· ( )
· ( ) ( )( )

with:

= -
+ + -

= -
-

z
z y y zy z

z
z

z

z

16 8 4

4
,

16

4 1
. 631

2 2

2 2 2( )
( )

The second solution of N N1
3

1
1·( ) ( ) is a general Heun function

⎜ ⎟⎛
⎝

⎞
⎠N y a q

y

z
sol Heun , ,

1

2
, 1,

3

2
,

1

2
,

4
, 641

1( ) · · ( )( )

with:

=
+

=
+

a
z

z
q

a16

4 1
,

1

4
. 65

2( )
( )

The solution of N N2 1
1· ( ) which is not solution of N1

1( ) can be written as

òN
N

N
ysol

sol

sol
d , 661

1 2

1
1

( ) · ( )
( )

· ( )( )
( )

where one of the solutions of N2 reads

=
- + + - -

- + + -

+
+ + - - + -

- + + -

N
y y z y zy y z z

z z y y zy z y z

H y

y

z y y z y z y zy y z

z z y y zy z y z
H y

sol
16 1 64 48 16 20 3

3 4 8 16 4

d

d

2
256 384 112 112 24 2

4 8 16 4
,

67

y

y

2

2 2

5 2 2

2 2 2 2 2 2

5 2 2

( ) · ( ) · ( )
· · ( ) · ( )

·
( )

·
· ( ) · ( )

· ( )
( )

where H yy ( ) is the hypergeometric function:

=
⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟H y F y

3

2
,

5

2
, 1 , 16 . 68y 2 1( ) [ ] ( )

7.3. The linear ODE on z and y as PDE for T 2 ðz; yÞ

The linear differential equations corresponding to the operators L z
5
( ) and N y

5
( ) act on T z y,2 ( )

as a system of decoupled PDEs. Both ODEs annihilate (as it should) the bivariate series
T z y,2 ( ), and they generate a unique common bivariate series solution, analytic at 0, 0( ), that
identifies with T z y,2 ( ).

As for the solutions of the three PDEs of the previous sections, one remarks that Lsol 1
1( )( )

and Nsol 1
1( )( ) have simple structures, and we can check that

- + + -
yz

z y y zy y z4 8 4 4 1
. 69

2( ) · ( · ( ) · )
( )

is actually a solution of the three PDEs, PDE3
1( ), PDE3

2( ) and PDE2. Unfortunaly, the other
solutions are too complicated to be used to fabricate more general common solutions of the
three PDEs.

However, the bivariate series T z y,2 ( ) can be written as a combination of the solutions of
L z

5
( ). Let us call S z

1
( ), S z

2
( ) and S z

3
( ) the formal solutions analytic at =z 0 of (respectively) the

operators L L1
2

1
1·( ) ( ), L L1

3
1

1·( ) ( ) and L L2 1
1· ( ). The first terms of these solutions are given in

appendix D.
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The bivariate series T z y,2 ( ) reads

= + +T z y C y S C y S C y S, , 70z z z z z z
2 1 1 2 2 3 3( ) ( ) · ( ) · ( ) · ( )( ) ( ) ( ) ( ) ( ) ( )

where the combination coefficients C yj
z ( )( ) are given in appendix D.

Similarly, one may consider the bivariate series T z y,2 ( ) as a combination of the solutions
of N y

5
( ). With S y

1
( ), S y

2
( ) and S y

3
( ) the formal solutions analytic at y = 0 of (respectively) the

operators N N1
2

1
1·( ) ( ), N N1

3
1

1·( ) ( ) and N N2 1
1· ( ) (see appendix E), the bivariate series T z y,2 ( )

reads

= + +T z y C z S C z S C z S, , 71y y y y y y
2 1 1 2 2 3 3( ) ( ) · ( ) · ( ) · ( )( ) ( ) ( ) ( ) ( ) ( )

where the combination coefficient C zj
y ( )( ) are given in appendix E.

Note that we have used for the solutions Sj
z( ) (respectively Sj

y( )) the formal solutions of the
corresponding operators since this is easier. Otherwise a full closed expression for T z y,2 ( ) is
given in appendix F, which is obtained by integration of the double integral. One should note
that the expression is a ‘partition’ that does not reflect the factorization of (e.g.) L z

5
( ).

8. PDEs for T 3 ðz ;yÞ

Similar calculations can be performed for the bivariate series T z y,3 ( ) corresponding to the
expansion around 0, 0( ) of the integral (23) with =d 3. In this instance, however, the creative
telescoping method turned out to be too costly, and hence, all the PDEs presented below have
been obtained by the guessing method.

We find that, for =Q 3 and =D 3, there is only one PDE (denoted PDE3) and for
=Q 4, =D 2 there are two PDEs (called PDE4

1( ), PDE4
2( )). Here also, and similarly to

T z y,2 ( ), both PDE4
1( ), PDE4

2( ) acting on the generic bivariate series (29) generate the unique
T z y,3 ( ), while PDE3 is sufficient to generate a unique solution that identifies with T z y,3 ( ).

As for the logarithmic solutions, there is no solution of the form (36) for the system
(PDE4

1( ), PDE4
2( )). However, and similarly to what happened for T z y,2 ( ), the number of

logarithmic solutions for PDE3 depends on the value of m in the combination (37). For m = 1
and m = 1 2, there is nonfinite number of such solutions (we reached =n 17 in our
calculations).

For generic values of m ¹ 1, 1 2, one obtains three solutions, the bivariate series
T z y,3 ( ) and the logarithmic solutions

m m

m

- + - +

- +

T z y z y T z y T

T z y z y T

, ln ln ln ln ,

, ln ln
1

2
, 72

3
2

3
1

3
0

3 3
1

( ) · ( ( ) · ( )) · ( ( ) · ( ))

( ) · ( ( ) · ( )) ( )

( ) ( )

( )

where:

m m m

m m

= - - - - -

+ - - - + 
T z y z

yz y

4 1 4 4 7 1 2 24 17

4 13 40 6 87 7 73
3

1 2

2

· ( ) · · ( ) · · ( ) ·
· ( ) · · ( ) · ( )

( )

m m m m m

m m m m

= - + - - - +

- + - + + - + 

T z y z

yz y

8 1 5 2 8 11 2 3 2 31

4

3
57 41 9

1

2
700 392 831 74

3
0 2 2

2 2 2

· · ( ) · · ( ) · · ( ) ·

· ( ) · · ( ) · ( )

( )
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8.1. Decoupled linear differential equations for T 3 ðz; yÞ

For the PDE system PDE , PDE , PDE3 4
1

4
2{ }( ) ( ) annihilating T z y,3 ( ), we used Buchberger’s

algorithm as implemented in the HolonomicFunctions program [20] and obtained immedi-
ately a Gröbner basis (given in electronic form in [15]). It allows us to derive two (order-nine)
ODEs8 for T z y,3 ( ), one involving only Dz, the other one only Dy:

å å= =
= =

L P z y D N Q z y D, , , . 75z

n
n z

n y

n
n y

n
9

0

9

9
0

9

( ) · ( ) · ( )( ) ( )

One factorization of L z
9
( ) reads9 (the indices denote orders):

=L L L L L L L . 76z
9 3 1

4
1

3
1

2
1

1
2· · · · · ( )( ) ( ) ( ) ( ) ( )

The similar factorization of N y
9
( ) reads:

=N N N N N N N . 77y
9 3 1

4
1

3
1

2
1

1
2· · · · · ( )( ) ( ) ( ) ( ) ( )

The two order-two operators L2 and N2 are given in appendix G. They are self-adjoint, up to
a conjugation by their Wronskians W L2( ) and W N2( ) (see appendix G):

= =L W L W L L N W N W N Nadjoint , adjoint . 782 2 2 2 2 2 2 2· ( ) ( ) · ( ) · ( ) ( ) · ( ) ( )
We have been able to find one solution for L z

9
( ) (and N y

9
( )). Defining the hypergeometric

function

=
- +⎛

⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟S

y z

P
F

y z z y z

P

1

4
,

3

4
, 1 ,

64 3 1 4
, 79zy

zy zy
2 1

3 2

2
· [ ] · · ( ) · ( ) ( )

where

= - + + - + + -P y z yz z z y z y zy zy y1728 432 16 864 72 108 4 , 80zy
2 3 3 3 2 2 2 2 2 ( )

one checks that Szy is solution of the two most right order-two operators L2 and N2

= =L S N S0, 0. 81zy zy2 2( ) ( ) ( )

As was seen for the operators L z
5
( ) and N y

5
( ) corresponding to T z y,2 ( ), with the solution (69),

one can check that the solution (79) of L z
9
( ) (and N y

9
( )), is one solution to the whole PDE system:

= = =S S SPDE 0, PDE 0, PDE 0. 82zy zy zy3 4
1

4
2( ) ( ) ( ) ( )( ) ( )

This solution (79) of the whole PDE system is, in fact, quite remarkable. It corresponds
to a modular form [21–23]. In order to see this modular form structure, let us recall various
(nontrivial) identities on hypergeometric functions.

The use of the identity

=
+

-
+

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟F X

X
F

X X

X

1

4
,

3

4
, 1 ,

1

1 3

1

12
,

5

12
, 1 ,

27 1

1 3
, 832 1 1 4 2 1

2

3
[ ]

( )
· [ ] · ( )

( )
( )

together with the identity

=
-

-
-

⎜ ⎟
⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟F X

X
F

X X

X

1

4
,

3

4
, 1 ,

4

4 3

1

12
,

5

12
, 1 ,

27 1

3 4
, 842 1

1 4

2 1

2

3
[ ] · [ ] · ( )

( )
( )

8 Do not confuse the labels of some factors with those occurring for T z y,2 ( ).
9 The full factorization of L z

9
( ) as a direct sum is =L z

9
( ) Å Å Å ÅL L L L L L L L L L3 2 1

1
2 1

2
2 1

3
2 1

4
2˜ · · ˜ · ˜ · ˜ ·( ) ( ) ( ) ( ) .

J. Phys. A: Math. Theor. 49 (2016) 164003 S Hassani et al

18



implies the following identity on the same hypergeometric function

=
+
-

⎜ ⎟
⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟F A

X

X
F A

1

12
,

5

12
, 1 , 2

1 3

4 3

1

12
,

5

12
, 1 , , 852 1 1

1 4

2 1 2[ ] · · [ ] ( )

with the two different arguments10

=
-

+
=

-
-

= -A X
X X

X
A X

X X

X
A X

27 1

1 3
,

27 1

3 4
1 . 861

2

3 2

2

3 1( ) · · ( )
( )

( ) · · ( )
( )

( ) ( )

This enables to rewrite the solution Szy of (82), where Szy is given in (79), as a F2 1

hypergeometric function with two different pullbacks, namely A1 and A2 given by (86) where
X is given by (with Pzy given by (80)):

=
- +

X
yz z y z

P

64 3 1 4
, 87

zy

3 2

2

· · ( ) · ( ) ( )

and where - X1 reads:

+ - + - + + - +y z y z yz y yz z yz yz z y

P

144 96 40 16 8 144 24 16
.

88
zy

2 2 2 2 2 2 2 2 2

2

( )( )

( )
This shows that the solution Szy, given in (79), corresponds to a modular form, seen as a

function of z, or seen as a function of y.
The two pullbacks A1 and A2 are lying on the algebraic genus zero modular curve

- +

+ - +

- + + + + =

A A A A A A

A A A A A A

A A A A A A A A

1953125 187500

375 16 4027 16

64 1487 110592 0. 89

1
3

2
3

1
2

2
2

1 2

1 2 1
2

1 2 2
2

1 2 1
2

1 2 2
2

1 2

· · · ( )
· · ( )

· ( ) · ( ) ( )

If one introduces Z such that = +X Z Z 64( ), one can see clearly that this modular
equation11 (89) is the same as the one corresponding to the fundamental modular curve X0,
associated with the Landen transformation, and its well-known Hauptmodul rational
parametrization [21–23]:

=
+

=
+

A
Z

Z
A

Z

Z

1728

16
,

1728

256
. 901 3 2

2

3

·
( )

·
( )

( )

Remark. We have a quite remarkable result for the X=const. foliation. When X is a
constant, one finds that the curves X=const., are genus zero curves.

9. Remarks and comments

We give here some miscellaneous remarks on the calculations presented in the previous
sections.

Remark 1. The system of recurrence equations for t n j,2 ( ) can be obtained by the creative
telescoping method [17, 19]. For higher d, the computations get too heavy. But with the

10 Such nontrivial identity (85) is characteristic of modular forms [21–23].
11 Joyce already noticed the emergence of modular equations on LGFs [5].
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guessing method, the recurrences for d = 5 can be reached and this may yield an efficient
implementation, since one could take t n j,5 ( ) as initial values instead of t n j,2 ( ) in(4).

Remark 2. In our calculations, (sections 3 and 2.2), we have experienced that we do not
gain anything by doing the computation modulo primes, and then using chinese remaindering
to construct the true result in. The reason is that here we do not encounter an intermediate
expression swell, but rather the fact that the largest integers that occur during the computation
are basically those that are given as the final result (when this is considered to be the list of
Taylor coefficients). Of course, we are mostly interested in the linear differential operator,
which, itself, has much smaller integer coefficients. Therefore the natural strategy would be to
compute the Taylor coefficients modulo prime, and guess the operator modulo prime, and,
only after this is done for sufficiently many primes, use chinese remaindering and rational
reconstruction to get the true operator. Unfortunately, the operator also has quite large
integers in its coefficients so that this strategy is unfavorable. However, we can still use
homomorphic images for the purpose of prediction, e.g. how many terms are required for
guessing the linear differential operator.

As an example, in the case ( =d 11, 20 processes, 2464 terms), the timing is 18 days in
exact arithmetic calculations. When we compute modulo the prime -2 131 , our
implementation needs 58 h, but the rational reconstruction of the linear differential operator
requires 185 primes of this size.

Remark 3. With the emergence of the algebraic solution (69) for the system of =d 2
PDEs, and the emergence of the modular form solution (79) for the system of =d 3 PDEs, it
is tempting to conjecture that similar solutions of two variables exist for all the system of
PDEs for arbitrary value of d .

Remark 4. For one complex variable, the holonomic (or D-finite [6]) functions are solutions
of linear ODEs with polynomial coefficients in the complex variable. The singularities (and
apparent singularities) can be seen immediately as solutions of the head polynomial
coefficient of the linear ODE. For PDEs system annihilating holonomic functions of several
complex variables, the singular manifolds would be too complex or simply could not be well
defined. By considering several Picard-Fuchs systems of two-variables ‘associated’ to
Calabi–Yau ODEs12, we showed [24] that D-finite (holonomic) functions are actually a good
framework for actually finding properly the singular manifolds. The singular algebraic
varieties for some T z y,d ( ) are given in appendix H.

10. Conclusion

A recursive method has been introduced in [9] to generate the expansion of the LGF of the d-
dimensional fcc lattice. The method has been used to generate many coefficients for =d 7
and the corresponding linear differential equation has been obtained [9].

We have shown, here, the strength and the limit of this recursive method. Some
observations on the recursive method allow us to improve the computations and produce the
series up to d = 12. The corresponding linear differential equations have been obtained
(available online [15]) and show that the pattern (order, singularities, differential Galois
group) seen for the lower dʼs continues, as discussed in sections 3 and 4.

12 Along the line of the relation between LGFs and Calabi–Yau ODEs see for instance [8].
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In the recursive method, a two-dimensional array t n j,d ( ), defined in (4)–(7), is computed
where only the coefficients t n, 0d ( ) correspond to the expansion of the LGF. The two-
dimensional array t n j,d ( ) gives the expansion of a LDF T z y,d ( ) that depends on two
variables. These D-finite bivariate series are studied, in sections 6 and 7 for =d 2 and in
section 8 for =d 3, and the differential equations they are solution of, are addressed.

We have been able to produce some solutions of the PDEs annihilating the bivariate
series T z y,d ( ). In section 8 a remarkable modular form solution emerged for =d 3. The
corresponding Hauptmodul pullback is a simple rational function of y and z. In terms of this
Hauptmodul, the y z,( )-plane is a foliation of rational curves. Such kind of results are clearly a
strong incentive to generalize the search of solutions of the D-finite systems corresponding to
higher dimensionsd .
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Appendix A. Singularities of the ODEs for d ¼ 8;9;10; 11;12

The singularities, occurring at the head derivative of G D
14
8 fcc, are x S x P x11

8 14( ) · ( ). The roots
of the degree-95 polynomial P x14 ( ) are apparent singularities. The polynomial S x8 ( )
corresponding to the finite singularities reads:

= + - - - + + + +
´ + + + + + + +

´ + + + +

S x x x x x x x x x
x x x x x x x

x x x x

14 1 7 2 6 7 20 28
48 21 2 4 3 28 3 32 3 16 5 28 5

28 11 112 11 224 13 112 19 .

A.1

8
2( ) ( ) ( )( )( )( )( )( )( )

( )( )( )( )( )( )( )
( )( )( )( )

( )

The singularities of G D
18
9 fcc are x S x P x14

9 18· ( ) ( ). The roots of the degree-133 polynomial
P x18 ( ) are apparent singularities. The polynomial S x9 ( ) corresponding to the finite singu-
larities reads:

= + + + + + + + +
´ + + + + + + + +
´ - - -

S x x x x x x x x x
x x x x x x x x
x x x

9 7 9 4 9 3 2 9 7 36 5 27 12
2 27 5 72 15 18 2 45 27 36 63
2 9 5 9 1 . A.2

9
4( ) ( ) ( )( )( )( )( )( )( )

( )( )( )( )( )( )( )( )
( )( )( ) ( )

The singularities of G D
22
10 fcc are x S x P x18

10 22· ( ) · ( ). The roots of the degree-252
polynomial P x22 ( ) are apparent singularities. The polynomial S x10 ( ), corresponding to the
finite singularities, reads:
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= + - + + - + +
´ + + + + + +
´ + + + + + +
´ + - + + + -

´ + + + +

S x x x x x x x x
x x x x x x

x x x x x x
x x x x x x

x x x x

15 1 4 75 19 540 15 4 15 80
2 45 22 45 2 25 7 20 7 120 2 15
23 180 13 60 29 360 17 135 45 4 45

35 3 5 4 5 11 135 20 13 45

12 9 8 5 .

A.3

10
2( ) ( ) ( )( )( )( )( )( )

( )( )( )( )( )( )
( )( )( )( )( )( )
( )( )( )( )( )( )
( )( )( )( )

( )
The singularities of G D

27
11 fcc are x S x P x22

11 27( ) ( ). The roots of the degree-352 polynomial
P x27 ( ) are apparent singularities. The polynomial S x11( ), corresponding to the finite sin-
gularities, reads:

= + + - + + + +
´ + + - + + + +
´ + - + + + + +
´ - + + + + + +

´ +

S x x x x x x x x
x x x x x x x
x x x x x x x

x x x x x x x

x

11 55 1 8 55 29 55 4 55 2 55
4 11 7 165 7 55 2 33 17 55 44 13 275
3 55 7 11 13 55 7 110 35 3 22 99
19 55 7 33 9 11 15 9 55 17 275 3 77

23 165 .

A.4

11
6 2( ) ( ) ( ) ( )( )( )( )( )

( )( )( )( )( )( )( )
( )( )( )( )( )( )( )
( )( )( )( )( )( )( )
( )

( )
The singularities of G D

32
12 fcc are x S x P x27

12 32( ) ( ). The roots of the degree-580 polynomial
P x32 ( ) are apparent singularities. The polynomial S x12 ( ), corresponding to the finite sin-
gularities, reads:

= + + + + + +
´ + + + + + + +
´ + + + + + + +
´ + + + + + +
´ + + + + + + +
´ + + + - -
´ - - -

S x x x x x x x
x x x x x x x
x x x x x x x
x x x x x x

x x x x x x x
x x x x x

x x x

2 33 43 264 5 6 37 66 3 8 23 66
67 264 2 9 13 66 5 33 7 48 7 66 9 88
10 99 53 528 10 11 5 66 19 264 7 99
37 528 23 330 5 72 29 528 17 330 13 264

21 22 31 792 8 231 32 33 25 1056
54 66 120 33 2 11

13 33 2 3 1 . A.5

12
2( ) ( ) ( )( )( )( )( )

( )( )( )( )( )( )( )
( )( )( )( )( )( )( )
( )( )( )( )( )( )
( )( )( )( )( )( )( )
( )( )( )( )( )
( )( )( ) ( )

Appendix B. Gröbner basis basics

The theory of Gröbner bases has been initiated by Bruno Buchberger in his PhD Thesis [25]
in 1965. While originally it was formulated for commutative multivariate polynomial rings,
we are interested in its generalization to noncommutative rings. Here we can only mention a
few key facts that are important for the kind of applications that we have in mind. A very
instructive introduction to Gröbner bases is given in [26].

Let Dz denote the operator ¶ ¶z. The motivation for using operator notation is that it
turns ODEs and PDEs into (univariate respectively multivariate) polynomials. For example
the PDEs appearing in sections 6–8 can be represented by polynomials in the ring
 = z y D D, ,z y( )[ ], i.e., the ring of partial differential operators inz andy (it is an instance
of an Ore algebra). Note that this ring is not commutative, because of the Leibniz rule

= + ¶ ¶D a a D a zz z for all Îa z y,( ).
Let f be a power series (or some other kind of ‘function’); we define

 = Î =f P P fann 0 ,( ) { ∣ ( ) }

called the annihilating ideal off. It can be easily seen that this set is indeed a left ideal in,
as for example, the left-multiplication of ÎP byDz corresponds to differentiating the
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differential equation represented byP with respect toz. Since univariate polynomial rings are
principal ideal domains, fann( ) is generated by a single element if we consider only one
derivation; this unique generator corresponds to the minimal-order ODE. In fact the Gröbner
basis computation specializes to the greatest common right divisor in this setting. Of course,
in the case of PDEs, an annihilating ideal in general is generated by several operators.

We need some notion of leading term for PDEs (in the case of ODEs it is clear). For this
purpose one imposes a total order on the monomials in the ring under consideration, that is
compatible with multiplication and that has 1 as the smallest monomial; such an ordering is
called a monomial order. For example, the degree-lexicographic order on the ring
 z y D D, ,z y( )[ ] with D Dy z is defined by

+ < +  + = +  <D D D D i j k ℓ i j k ℓ i k . B.1z
i

y
j

z
k

y
ℓ ⟺ ( ) ( )

Using this notion of leading term, it is straightforward to define a multivariate polynomial
division (called reduction) of ÎP by some ¼ ÎQ Q, , r1 . It works by subtracting, in each
step, a suitable multiple of someQi such that the leading term of the dividend vanishes. In
some steps of this process one may have the choice between several of the Qi, and this has
the consequence that the remainder of the multivariate polynomial division is not unique in
general. Now, if I is an ideal, then a setG of generators ofI is called a Gröbner basis if for
each polynomial the remainder of the division byG is unique. In particular, we have that
the division of P by G has remainder0 if and only if ÎP I; this property allows to decide
the ideal membership problem. Gröbner bases are also a powerful tool for elimination
purposes, i.e., for finding elements in an ideal that do not depend on some of the variables
of the polynomial ring. There are several algorithms to compute, from an arbitrary set of
generators of an ideal, a Gröbner basis, the most classic one being Buchberger’s algo-
rithm [25].

Appendix C. The factorization of LðzÞ
5 and LðyÞ

5 for T 2 ðz ;yÞ

The factors in the decomposition (45) of L z
5
( ) read
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Appendix D. The matching of T 2 ðz ; yÞ with the solutions of LðzÞ
5

T z y,2 ( ) as a linear combination on the formal solutions of L z
5
( ) reads
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Appendix E. The matching of T 2 ðz ; yÞ with the solutions of N ðyÞ
5

T z y,2 ( ) as linear combination on the formal solutions of N y
5
( ) reads

= + +T z y C z S C z S C z S, , E.1y y y y y y
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Appendix F. Closed form expression of V 2 ðz ;yÞ

The bivariate series
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is related to the integral (23) with =d 2 by = T z y V z y, 4 , 42 2( ) ( ). The integral V z y,2 ( )
can be written in the closed form expression

d
d d

d

=
+ -

+ P
-

- P
+

+
-

- + -
P D - P D- +

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟V z y

y

zy y z
K y

z z

y
z

z

y
z

y y

z y zy y z
y y

,
2

, ,

1

2
, , , F.3

2
closed

2

2

2

2

2

( ) · ( ) · ( ) ( )

· ( ) ·
( )( )

· ( ( ) ( )) ( )

J. Phys. A: Math. Theor. 49 (2016) 164003 S Hassani et al

26



with
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Appendix G. The two right-most order-two operators L2 and N2 for T 3 ðz ;yÞ

• The right-most order-two linear differential operator L2 (see (76)) in the factorization of the
order-nine operators L z

9
( ) reads:
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This order-two operator L2 is self-adjoint up to a conjugation by its Wronskian W L2( )

=L W L W L Ladjoint , G.52 2 2 2· ( ) ( ) · ( ) ( )
where this Wronskian W L2( ) reads:
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• The right-most order-two linear differential operator N2 (see (77)) in the factorization
of the order-nine operators N y

9 reads:

= + +N D y
q z y

q z y
D

q z y

q z y

,

,

,

,
, G.7y y2

2 2 1

2

0

2

·
( )
( )

·
( )
( )

( )

where:

= - + -

´ + - + - +
´ + - +

q z y y yz y z y z

y z y z yz y yz z

yz yz z y

, 36 6 3

144 96 40 16 8

144 24 16 , G.8

2
2

2 2 2 2 2 2

2 2

( ) · ( ) · ( )
( )
( ) ( )

= - + +

- + + - - -
+ + - - -

+ + + + - - -

q z y z z z y

z z z z z z y

z z z z z y

z z z z y z z z

, 864 6 1 3 1 12 1

96 15552 25920 4428 1098 273 7

6 38016 7200 8184 1850 31

2 8064 6000 944 11 1360 104 ,

G.9

1
2 2 4

5 4 3 2 3

2 4 3 2 2

3 3 2 6 5 4

( ) · ( ) · ( ) · ( ) ·
· ( ) ·
· ( ) ·

· ( ) ·
( )

= + -

- + - -
+ - - - -
- + + - - -

+ - + +

q z y z z z y

z z z z y

z z z z z y

z z z z z z y

z z z y

, 4 16 25 4

2 2448 24 163 1

12 432 792 669 113 2

12 15552 22032 1188 1989 363 10

216 6 1 3 1 12 1 .

G.10

0
6 5

3 3 2 2

2 4 3 2 3

5 4 3 2 4

2 2 5

( ) · ( ) · ·
· ( ) ·

· ( ) ·
· ( ) ·

· ( )( ) ( ) ·
( )

J. Phys. A: Math. Theor. 49 (2016) 164003 S Hassani et al

28



This order-two operator N2 is self-adjoint up to a conjugation by its Wronskian W N2( )

=N W N W N Nadjoint , G.112 2 2 2· ( ) ( ) · ( ) ( )

where this Wronskian W N2( ) reads:
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Appendix H. Singularities of the Td ðz ; yÞ

Based on the singularities of the ODEs in one variable (the other being a parameter) or
Landau conditions methods [10], we have the following results. The bivariate series have
singularities bearing on the variable z, these singularities are those of the linear ODEs of the
LGF of the d-dimensional fcc lattice. Similarly, the singularities corresponding to the simple
lattice appear as singularities in the variable y. Besides these obvious and expected singu-
larities, one obtains algebraic curves on z y,( ) as singular varieties. For =d 2, =d 3 and
=d 4, they read:
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One may infer from the first two varieties of each d, the expressions in function of the
dimension
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