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Abstract
We give the Fuchsian linear differential equation satisfied by χ(4), the ‘four-
particle’ contribution to the susceptibility of the isotropic square lattice
Ising model. This Fuchsian differential equation is deduced from a series
expansion method introduced in two previous papers and is applied with some
symmetries and tricks specific to χ(4). The corresponding order ten linear
differential operator exhibits a large set of factorization properties. Among
these factorizations one is highly remarkable: it corresponds to the fact that
the two-particle contribution χ(2) is actually a solution of this order ten linear
differential operator. This result, together with a similar one for the order seven
differential operator corresponding to the three-particle contribution, χ(3), leads
us to a conjecture on the structure of all the n-particle contributions χ(n).

PACS numbers: 05.50.+q, 05.10.−a, 02.30.Hq, 02.30.Gp, 02.40.Xx
Mathematics Subject Classification: 34M55, 47E05, 81Qxx, 32G34, 34Lxx,
34Mxx, 14Kxx

1. Introduction

The magnetic susceptibility of square lattice Ising model, can be written [1] as an infinite sum

χ(T ) =
∞∑

n=1

χ(n)(T ) (1)

of individual contributions, with the odd (respectively even) n corresponding to high
(respectively low) temperature case. These individual contributions are (n − 1)-dimensional
integrals [2–7], and are seen as successive n-particle contributions to the susceptibility [1].
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To get an understanding of the analytical structure of χ , two approaches are usually taken
nowadays. One approach taking into account a fundamental nonlinear symmetry, namely
nonlinear Painlevé difference equations [8–13]. provides a series expansion for the whole
susceptibility χ . With this method coefficients of χ were recently generated [8].

The second approach considers the individual n-particle excitations as given by (n − 1)-
dimensional integrals. Isotropic series coefficients are generated [6–8]. This latter method
allows one to seek the differential equations satisfied by the χ(n), since they are D-finite in
contrast to the whole susceptibility χ for which there are strong indications that it has a natural
boundary in the complex plane of the variable s = sh(2K), where K = J/kT is the usual
Ising model coupling constant. This has been shown for the isotropic case [6] and for the
anisotropic case [14–16]. Such a function cannot be D-finite.

The understanding of the magnetic susceptibility may then require knowledge of each
(or some) of the individual contributions. This knowledge can be in the form of a closed
expression, as is the case for χ(1) and χ(2) or in the form of a differential equation as found
for χ(3) [17, 18]. The last case was far from being obvious and has required the building
of an original method of expansion. The use of a remarkable formula allowed us to give
the series expansion in the temperature variable (or a closely related variable) where the
(n − 1)-dimensional integrals have been fully performed.

In this paper, we continue to use this expansion method to tackle the next individual
contribution, namely, χ(4). We should note that, although, the method is general and applicable
for high or low temperature and for any n, some of the tricks and tools used may be specific
for a given χ(n). In section 2, we present the basic features of the expansion method that
allow us to obtain the fully integrated χ(4) as four sums of products of four hypergeometric
functions, without any numerical approximation. In section 3, we give the homogeneous
Fuchsian linear differential equation satisfied by χ(4). Section 4 contains some remarkable
algebraic properties of this differential equation. Finally, section 5 contains our conclusions.

2. Fully integrated χ̃(4) expansion

2.1. The expansion method

Let us focus on the fourth contribution to the susceptibility χ defined by the triple integral as
given in [7]

χ(4) = (1 − s−4)1/4 · χ̃ (4)

χ̃ (4) =
∫ 2π

0

dφ1

2π

∫ 2π

0

dφ2

2π

∫ 2π

0

dφ3

2π
· ỹ1ỹ2ỹ3ỹ4 · R(4) · H(4)

(2)

with

R(4) = 1 + x̃1x̃2x̃3x̃4

1 − x̃1x̃2x̃3x̃4
(3)

H(4) = 1

4!

∏
i<j

x̃i x̃j

(1 − x̃i x̃j )2
· (Zi − Zj)

2 (4)

Zn = exp(iφn), n = 1, . . . , 4 (5)

φ1 + φ2 + φ3 + φ4 = 0 (6)

x̃n = s

1 + s2 − s cos φn +
√

(1 + s2 − s cos φn)2 − s2
,

ỹn = s√
(1 + s2 − s cos φn)2 − s2

, n = 1, . . . , 4.
(7)
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Instead of the variable s, we found it more suitable to use w = 1
2 s/(1 + s2) which has, by

construction, Kramers–Wannier duality invariance (s ↔ 1/s) and thus allows us to deal with
both limits (high and low temperature, small and large s) on an equal footing [17, 18]. It is
also convenient to consider the scaled variables

xn = x̃n

w
= 2

1 − 2w cos φn +
√

(1 − 2w cos φn)2 − 4w2
,

yn = ỹn

2w
= 1√

(1 − 2w cos φn)2 − 4w2

(8)

which behave like 1 + O(w) at small w.
As performing the integrals in (2) is highly non-trivial, we apply the ‘expansion method’

previously described in [17, 18], where the key ingredient was the Fourier expansion of yxn,
a quantity appearing in any χ(p).

This remarkable formula, for yxn, that carries only one summation index reads

yxn = a(0, n) + 2
∞∑

k=1

wka(k, n) cos kφ

=
∞∑

k=−∞
A(k, n)Zk =

∞∑
k=−∞

A(k, n)Z−k (9)

with

A(k, n) = A(−k, n) = w|k|a(|k| , n) (10)

where a(k, n) is a non-terminating hypergeometric series that reads

a(k, n) =
(

m

k

)
× 4F3

(
(1 + m)

2
,
(1 + m)

2
,
(2 + m)

2
,
(2 + m)

2
; 1 + k, 1 + n, 1 + m; 16w2

)
(11)

where m = k + n. Note that a(k, n) = a(n, k).
The integrand of χ̃ (4) is expanded in the various variables xj , instead of the variable w.

In this framework, with the help of the Fourier expansion (9), the angular integration becomes
straightforward as was shown in [18] for the χ̃ (3) case (see below for the χ̃ (4) case).

2.2. Calculation of χ̃ (4)

With H(4) taken as in (4), χ̃ (4) will be given by five summations on products of four
hypergeometric functions. This is shown in appendix A. This route is feasible for any χ(n)

and does not use any symmetry or tricks specific to the considered χ(n).
In the following, we use alternatively a simplified form of H(4) equivalent, for integration

purposes, to (4) such that χ̃ (4) will be expressed by only four summations (i.e., one summation
less compared to expression (A.30) given in appendix A). Let us just sketch the salient steps
of this calculation. The details are left to appendices B, C and D.

With the help of the key relation

(Zi − Zj)
x̃i x̃j

1 − x̃i x̃j

= −(x̃i − x̃j )
ZiZj

1 − ZiZj

(12)

the quantity H(4) becomes4:

H(4) = 1

4!

∏
i<j

x̃i − x̃j

1 − x̃i x̃j

·
∏
i<j

Zi − Zj

1 − ZiZj

. (13)

4 We have used the constraint (6) in the form
∏

i Zi = 1.
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Using the symmetry of the rest of the integrand in the angular variables, the quantity H(4) can
be written (see appendix B) as5

H(4) ≡ −1

8
(Z1 − Z2)(Z3 − Z4)

Z1Z2

(1 − Z1Z2)2
· (

P
(x)
12–34 − (1 ↔ 3) − (2 ↔ 3)

)
(14)

where

P
(x)
12–34 = (x̃1 − x̃2)(x̃3 − x̃4) ·

(
x̃1x̃2

1 − x̃1x̃2

x̃3x̃4

1 − x̃3x̃4
+

(x̃1x̃2)
2

1 − x̃1x̃2
+

(x̃3x̃4)
2

1 − x̃3x̃4

)
. (15)

Taking expression (14) for H(4), expanding the integrand in the xj variables, one notes that
the integrand depends only on combinations of the form(

4∏
i=1

yi · x
ni

i

)
· (Z1 − Z2)(Z3 − Z4)

Z1Z2

(1 − Z1Z2)2
(16)

which have simple integration rules (see appendix C) and, thus, the problem of angular
integrations is settled.

Finally, the expansion method described above, together with the form (14) of H(4), allow
us to obtain χ̃ (4)(w) as a fully integrated expansion in the form (see appendix D)

χ̃ (4) = 16w16 ·
∞∑

m=0

∞∑
k=0

∞∑
n=0

∞∑
j=0

w8m+4k+4n+2j · (2m + 1)(2m + 2k + 1)

× (1 + θ(j − 1)) · (1 + θ(k − 1))

× 1

2
(V (m,m + k, n, n + j) + V (m,m + k, n + j, n)) (17)

where θ(x) is the step function defined as

θ(x) =
{

1, x � 0
0, x < 0

(18)

and

V (m, k, n, j) = d(m,m + 1; j + k + 2) · d(n + m + 2, n + m + 3; k)

+ d(m,m + 1; k) · d(n + m + 2, n + m + 3; j + k + 2)

+ d(m, n + m + 3; j + k + 2) · d(m + 1, n + m + 2; k)

+ d(m, n + m + 3; k) · d(m + 1, n + m + 2; j + k + 2)

− d(m, n + m + 2; j + k + 2) · d(m + 1, n + m + 3; k)

− d(m, n + m + 2; k) · d(m + 1, n + m + 3; j + k + 2) (19)

with

d(n1, n2; k) = a(n1, k + 1)a(n2, k) − a(n1, k)a(n2, k + 1). (20)

2.3. Series generation

Note that the summand in equation (17) depends only on combinations of Cd(n1, n2, k, j)

which is the coefficient of w2j in the expansion of d(n1, n2; k). It is given by

Cd(n1, n2, k, j) =
j∑

i=0

(Ca(n1, k + 1, i)Ca(n2, k, j − i)

−Ca(n1, k, i)Ca(n2, k + 1, j − i)) (21)

5 Throughout this paper the notation ≡ stands for equality for integration purposes.
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where Ca(n, k, i) is the coefficient of w2i in the expansion of a(n, k) which reads

Ca(n, k, i) =
(

n + k + 2i

i

)(
n + k + 2i

i + k

)
. (22)

From our integrated form of χ̃ (4), the generation of series coefficients becomes straightforward.
Recall that (17) is already integrated, and, thus, the computing time to obtain the series
coefficients comes from the evaluation of the sums. For the forms used, this time is of order
N7. Improvements can be made by optimal data storage in order to avoid repeated summation
evaluations. Actually, we have found it more efficient to store the coefficients Cd .

We have been able to generate, from formal calculations, a long series of coefficients from
expression (17) up to order6 432:

χ̃ (4)(w)

16w16
= 1 + 64w2 + 2470w4 + 74724w6 + · · · + O(w434) (23)

Note that our formal calculation program has been rewritten by J Dethridge7 into an optimized
C++ program that can give the series in few hours using very little memory.

3. The Fuchsian differential equation satisfied by χ̃(4)

It is clear from expression (17) that χ̃ (4) is even8 in w. We thus introduce, in the following, the
variable x = 16w2. With our long series, and with a dedicated program, we have succeeded
in obtaining the differential equation for χ̃ (4) that is given by (with x = 16w2)

10∑
n=1

an(x) · dn

dxn
F (x) = 0 (24)

with

a10 = −512x6(x − 4)(1 − x)6P10(x),

a9 = 256(1 − x)5x5P9(x), a8 = −384(1 − x)4x4P8(x),

a7 = 192(1 − x)3x3P7(x), a6 = −96(1 − x)2x2P6(x),

a5 = 144(1 − x)xP5(x), a4 = −72P4(x), a3 = −108P3(x)

a2 = −54P2(x) a1 = −27P1(x)

(25)

where P10(x), P9(x) . . . , P1(x) are polynomials of degree respectively 17, 19, 20, 21, 22, 23,
24, 23, 22 and 21 given9 in appendix E.

With (25), the differential equation needs 242 unknowns to be found (counting the
polynomial in front of the derivative of order 0, which is identically null). Our series expansion
for χ̃ (4)/16w16, having only 217 terms in the variable x = 16w2, is, thus, not long enough to
let the differential equation be found. This calls for some comments.

The differential equation (24) is of minimal order. It is obvious that one can obtain
other differential equations of greater order. As explained in [18] (see section 4), before
the differential equation built from a series expansion pops out, the singularities computed as

6 More precisely we obtained this series up to order 368 with a 2 Giga-memory computer, up to order 390 with a
3 Giga-memory computer, and up to order 432 with a 8 Giga-memory computer of the stix laboratory at the Ecole
Polytechnique (medicis platform for formal calculations).
7 Private communication.
8 This is also the case for any χ̃ (2n) (see for instance [7]).
9 We thank one of the referees, as well as A J Guttmann and I Jensen, for detecting the possible existence of a
misprint respectively in the submitted version of the paper and in the file released in the electronic arXiv (a minus
sign misprint in the last coefficient of polynomial P3).
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Table 1. Critical exponents for each regular singular point. P is the maximum power of the
logarithmic terms for each singularity. xP is any of the 17 roots of P10(x).

x-singularity s-singularity Critical exponents in x P

0 0, ∞ 8, 3, 3, 2, 2, 1, 1, 0, 0, −1/2 1
1 ±1 3, 2, 1, 1, 0, 0, 0, 0, −1,−3/2 3

4 ± 1
2 ± i

√
3

2 8, 7, 13/2, 6, 5, 4, 3, 2, 1, 0 0
∞ ±i 5/2, 3/2, 3/2, 1/2, 1/2, 1/2, 1/2, 0,−1/2,−1/2 3
xP , 17 roots sP , 68 roots 10, 8, 7, 6, 5, 4, 3, 2, 1, 0 0

roots of the polynomial in front of the highest derivative reach stabilized numerical values as
the degrees of the polynomials and/or the order gets higher. Even the minimal multiplicity of
the singularity can be seen. This leads us to take the following form for the χ̃ (4) differential
equation:

q∑
i=0

Ri(x) · xi(1 − x)i · di

dxi
F (x) = 0 (26)

where only the physical singularities are explicitly included. Note that the other (non-apparent)
singularity can also be included. If the differential equation can be identified with the number
of series coefficients at hand, the unnecessary terms will factor out. A compromise has to be
found with respect to how long the series is. Now, there are many ways to choose the degrees
of the polynomials Ri(x). We have taken

deg(Ri(x)) = µ + q − i, i = 0, 1, . . . , q (27)

in order to have the point at infinity as a regular singular point10.
If the differential equation of order q and degree µ exists, the series of χ̃ (4)/16w16 should

have at least N terms, with:

N = µ · (q + 1) + 1
2q · (q + 3). (28)

Staying below the above hyperbola, we have obtained, at q = 11 and µ = 9 which requires 185
terms in the series, two linearly independent differential equations that satisfy the remaining
30 terms of the series. The combination of these two differential equations gives (24) which
has been checked to be of minimal order. Note the fact that besides the Fuchsian differential
equation of minimal order with an apparent polynomial, there are other differential equations
of higher order that require less terms in the series to be identified. We plan to report on this
feature elsewhere.

The singularities of this differential equation x = 0, 1, 4 and x = ∞ are all regular
singular points. The roots of the polynomial P10(x) are apparent singularities. One notes, in
contrast, to χ(3) that no new singularity is found besides the known physical and non physical
singularities (i.e., Nickel’s [6, 7]). The critical exponents of all these singular points are given
in table 1 with the maximum power of logarithmic terms in the solutions. As was the case
for χ(3), these logarithmic terms appear due to the multiple roots of the indicial equation. A
noteworthy remark is the occurrence of logarithmic terms up to the power 3 for χ(4) to be
compared with the power 2 for χ(3) at the singular points w = ±1/4 and w = ∞.

It is worth recalling the Fuchsian-relation on Fuchsian type equations. Denoting by
x1, x2, . . . , xm, xm+1 = ∞, the regular singular points of a Fuchsian-type equation of order q

10 This feature can easily be seen, making the change of variable t = 1/x and looking for the necessary condition for
t = 0 to be a regular singular point from which (27) is deduced.
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and ρj,1, . . . , ρj,q(j = 1, . . . , m + 1) the q roots of the indicial equation [28, 29] corresponding
to each regular singular point wj , the following Fuchsian relation [28, 29] holds:

m+1∑
j=1

q∑
k=1

ρj,k = (m − 1)q(q − 1)

2
. (29)

The number of regular singular points here is m + 1 = 21 corresponding respectively to the
17 roots of P10, the x = 0, 1, 4, regular singular points and the point at infinity x = ∞. The
Fuchsian relation (29) is actually satisfied here with q = 10,m = 20.

Considering the Fuchsian relation (29), but now in the variable s, one first remarks that
the ρj,k exponents are the same as those in the x variable for the 68 roots of the apparent

polynomial, as well as for the four x = 4 singularities (namely s = ± 1
2 ± i

√
3

2 ), but are
multiplied by a factor two for all the other ones. This is obvious from the definition of
x = 4s2/(1 + s2)2 at x = 0 and x = ∞, and this can be seen for x = 1 from

1 − x =
(

1 − s2

1 + s2

)2

. (30)

The Fuchsian relation is actually satisfied in the s variable, but now, with q = 10,m = 77.
The singular behaviours of the solutions of the differential equation can be read easily

from table 1. Near x = 4, they are t13/2, where t = 4−x. Near x = ∞, they are t−1/2 logk(t),
(with k = 0, 1), t1/2 logk(t) (with k = 0, 1, 2, 3). t3/2 logk(t) (with k = 0, 1) and t5/2, where
t = 1/x. Near x = 1, they are t−3/2, t−1, logk(t) (with k = 1, 2, 3) and t log(t), where
t = 1 − x. Let us note that these behaviours are for the general solution of the differential
equation (24).

As far as the physical solution is concerned, the dominant singular behaviours at x = 4
(namely t13/2) and x = ∞ (namely t−1/2 log(t)) are present in the physical solution χ̃ (4)

confirming [7, 8]. At the ferromagnetic point (x = 1 which also corresponds to the anti-
ferromagnetic point for χ(4)), with the dominant behaviour t−3/2, the growth of the coefficients
would be (3/2)N /N ! ∼ √

N . Since this is not the case, the coefficients of the series, for
large values of N, behaving like CN ∼ 0.2544 × 10−4, this t−3/2 singular behaviour will not
contribute to the physical solution. Only the subdominant singular behaviours will be present.
We will return to these points in a forthcoming publication that will give the amplitudes of the
dominant and subdominant singular behaviours contributing in the physical solution χ̃ (4) near
each singular point of the differential equation.

4. Properties of the Fuchsian differential equation (24)

From table 1, and from the formal solutions around the singular points, it is easy to find the
following simple solutions of (24):

S0(x) = constant (31)

S1(x) = 8 − 12x + 3x2

8(1 − x)3/2
, (32)

S2(x) = 2 − 6x + x2

2(1 − x)
√

x
. (33)

These solutions correspond to solutions of some differential operators of order one. Let us
call these order one differential operators respectively L0, L1 and L2.

A remarkable finding is the following solution of the Fuchsian differential equation (24):

S3(x) = 1
64x2 · 2F1

(
5
2 , 3

2 ; 3; x
)

(34)
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which is nothing but the two-particle contribution to the magnetic susceptibility, i.e., χ̃ (2)

associated with an operator of order two, N0 (N0(S3) = 0). We will come back to this point
later.

The second solution of the order-two operator N0 is given in terms of the MeijerG function
[19]:

S̃3(x) = π

2
MeijerG ([[], [1/2, 3/2]], [[2, 0], []], x) (35)

which can also be written as

S̃3(x) = S3(x) log (x) + B(x) (36)

with

B(x) = 1

12π
·

∞∑
k=0

xk d

dk

(�(k − 1/2)�(k + 1/2)

�(k − 1)�(k + 1)

)
. (37)

With these five solutions corresponding to three differential operators of order one, and
one differential operator of order two, it is easy to construct 24 factorizations of L10, the
differential operator corresponding to the Fuchsian differential equation (24), which can be
written11 as

L10 = O5 · G(N). (38)

G(N) is a shorthand notation of a differential operator of order 5, factorizable in one operator
of order two and three operators of order 1. G(N) has 24 different factorizations involving
eight differential operators of order two and 24 operators of order one. The differential operator
O5 factorizes as M1 · L24, i.e., one operator of order four and one operator of order one. Let
us give two examples of the 24 factorizations12:

L10 = M1 · L24 · N4 · L12 · L3 · L0 (39)

L10 = M1 · L24 · L13 · N6 · L3 · L0. (40)

This large number of factorizations [22, 31, 21] induces the occurrence of intertwiners13.
In the examples above, one has N4 · L12 = L13 · N6. Seeking a similar relation for L24 · N4,
one finds N9 · L25. This last factorization introduces six factorizations that we denote as

L10 = M1 · N9 · G(L). (41)

G(L) is a notation for an operator of order four, factorizable as four operators of order one.
One factorization of G(L) reads

G(L) = L25 · L12 · L3 · L0. (42)

This differential operator G(L) that factorizes L10 at right, obviously has S0,S1 and S2 as
solutions. The fourth solution (of the order four differential operator G(L)) can be obtained
by order reduction. It reads

S4(x) = 4(x − 2)
√

4 − x

x − 1
+ 16 log

x

(2 +
√

4 − x)2

+ 16S1(x) · log g(x) − 16
√

xS2(x) · 2F1

(
1

2
,

1

2
; 3

2
; x

4

)
(43)

11 All the operators are such that the coefficient in front of the highest derivative is +1.
12 We denote by L the operators of order 1, by N, the operators of order 2 and by M the operators of order 4 (see
appendix F).
13 We thank Jacques-Arthur Weil for useful comments on the equivalence of linear differential operators [20] (see
equation (5) in [21]).
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with

g(x) = 1

x
((8 − 9x + 2x2) + 2(2 − x) ·

√
(1 − x)(4 − x)). (44)

To get more factorizations, we need to obtain simple solutions of L∗
10, the adjoint of the

differential operator L10. There is no solution of L∗
10 corresponding to an order-one operator,

however, we have been able to find a solution corresponding to an operator of order two
(denoted N∗

8 ). This solution14 of N∗
8 is a combination of elliptic integrals with polynomials of

quite large degrees and reads

S∗
1 (x) = x(1 − x)6(4 − x)

3840 000 · P10(x)
· (q1(x)K(x) + q2(x)E(x)) (45)

where

K(x) = 2F1
(

1
2 , 1

2 ; 1; x
)
, E(x) = 2F1

(− 1
2 , 1

2 ; 1; x
)

(46)

and

q1(x) = (1 − x)(47 352 014 438 400 − 246 257 318 625 280x + 275 880 211 382 272x2

+ 68 328 139 784 192x3 + 645 943 284 072 448x4 − 2774 821 715 853 312x5

+ 3217 221 650 489 344x6 − 683 914 539 437 568x7

− 2042 467 767 948 624x8 + 3083 863 919 521 506x9

− 2746 206 480 894 969x10 + 1558 224 994 851 490x11

− 347 705 392 468 761x12 − 145 625 559 012 638x13

+ 117 842 186 745 065x14 − 30 744 722 745 590x15

+ 3089 482 306 025x16 + 18 651 488 480x17

− 21 574 317 760x18 + 821 760 000x19) (47)

q2(x) = −47 352 014 438 400 + 269 933 325 844 480x − 390 130 367 987 712x2

+ 27 877 970 018 304x3 − 580 571 855 978 496x4 + 3135 069 528 473 600x5

− 4488 375 407 386 624x6 + 1736 922 901 371 392x7

+ 2600 277 912 748 368x8 − 5123 144 341 863 018x9

+ 5224 617 790 090 830x10 − 3547 418 998 359 865x11

+ 1453 586 336 314 895x12 − 273 126 255 420 088x13

− 8194 519 962 996x14 + 11 308 926 014 655x15

− 1235 672 485 785x16 − 60 982 101 700x17

+ 15 765 744 320x18 − 607 865 600x19 − 3840 000x20. (48)

This order 2 operator N8 completes the factorization scheme of L10, the differential
operator of order ten. Let us recap the factorizations

L10 = N8 · M2 · G(L) L10 = M1 · N9 · G(L) L10 = M1 · L24 · G(N). (49)

G(L) is a differential operator of order four, factorizable in order one operators. It has six
different factorizations involving 13 differential operators of order one. G(N) is an operator
of order five, factorizable in one operator of order two and three operators of order one. G(N)

has 24 different factorizations involving eight differential operators of order two, and 24 order
one operators with 12 appearing in G(L).

14 We did not look for the second solution of N∗
8 , our purpose being the factorization of L10.
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All these 36 factorizations (49) are given in appendix F. Appendix F shows that these 36
factorizations can be considered as only one factorization up to a set of equivalence symmetries
[20–26].

From the ten solutions of the differential equation (24), six solutions are given explicitly,
S0,S1,S2,S4 (this last being a solution of an order four operator) and two solutions (S3, S̃3)

corresponding to the differential equation of χ̃ (2). The remaining four solutions are those of
the operator of order eight, M2 · G(L).

From the 36 factorizations shown in appendix F, those six of the form N8 · M2 · G(L) are
of the most importance. Their occurrence allows us to get the contribution α of χ̃ (2) in the
physical solution χ̃ (4) from M2 ·G(L)(χ̃ (4) −αχ̃(2)) = 0. This contribution is obtained easily
and gives

χ̃ (4) = 1
3 χ̃ (2) + �4 (50)

where �4 is solution of the order eight differential operator M2 · G(L).
Recall that the same situation occurred for the differential equation of order seven for χ̃ (3).

One can see that the rational solution w/(1 − 4w) occurring15 in the differential equation of
order seven for χ̃ (3) is nothing but χ̃ (1). With this remark we can rewrite a decomposition of
χ̃ (3) we gave in [17, 18] as follows:

χ̃ (3) = 1
6 χ̃ (1) + �3 (51)

where �3 is solution of the order six differential operator (noted L6 in [17, 18]).

5. Comments and speculations

Denoting L4 the order ten differential operator associated with the ordinary differential
equation satisfied by χ̃ (4), and more generally, Ln the differential operators associated with
the ordinary differential equation satisfied by χ̃ (n), one has

L4(χ̃
(4)) = L4(χ̃

(2)) = 0. (52)

Furthermore, one can see that the rational solution w/(1 − 4w), occurring in the differential
equation of order seven for χ̃ (3), is nothing but χ̃ (1) and thus one has

L3(χ̃
(3)) = L3(χ̃

(1)) = 0. (53)

Both relations come from the factorizations of the differential operators corresponding to χ̃ (3)

and χ̃ (4).
At this point, it is tempting to make some conjectures generalizing relations (52), (53)

and relations (50), (51).
From (52) and (53) the conjecture is

L2n+1(χ̃
(2n+1)) = L2n+1(χ̃

(1)) = 0, L2n(χ̃
(2n)) = L2n(χ̃

(2)) = 0 (54)

meaning that the differential operator of χ(1) (respectively χ(2)) right divides the differential
operator corresponding to χ(2n+1) (respectively χ(2n)).

One stronger conjecture is to expect the same situation as in (50), (51) occurring in the
higher particle contributions, i.e.,

χ̃ (2n) = α2nχ̃
(2) + �2n, χ̃ (2n+1) = α2n+1χ̃

(1) + �2n+1 (55)

where �2n (respectively �2n+1) is the solution of a differential operator that right divides the
differential operator L2n (respectively L2n+1) and is not divisible by the differential operator

15 This corresponds to the solution S1 given in [17, 18] which is S1 = χ̃ (1)/2.
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L2 (respectively L1). In this situation, it is easy to obtain the numbers αn which give the
contribution of χ̃ (1) and χ̃ (2) in the higher χ̃ (n) as explained for χ̃ (4) (see text before (50)).

Let us note that both conjectures are free from any constraint due to the singularities that
occur in the differential equations, since any χ̃ (2n+1) (respectively χ̃ (2n)) has the singularities
occurring in χ̃ (1) (respectively χ̃ (2)).

A much stronger conjecture is to expect any χ(m) to be ‘embedded’ in any χ(n) where m
divides n with same odd-even parity.

Ln(χ̃
(n)) = Ln(χ̃

(m)) = 0, Ln = L(m)
n · Lm. (56)

This means that Ln might be built from the least common left multiple (lclm) of the differential
operators associated with the Lm where m divides the integer n respecting even–odd parity.
The fact that n should be multiple of m is due to the non-physical singularities appearing
in the differential equations. For instance, no ‘embedding’ like χ(3) being solution of the
differential equations of χ(5) has to be expected. Whether χ(3) is a solution of the differential
equation satisfied by, e.g., χ(9) is not ruled out, the (non-apparent) singularities of the first
being (non-apparent) singularities of the last. But, then, the new singularities discovered [17]
for χ(3) have to occur in the differential equation of χ(9).

Similarly one can expect, with this last conjecture, the fol lowing relations for L12 and
L15 (associated with χ̃ (12) and χ̃ (15)):

L12(χ̃
(12)) = L12(χ̃

(6)) = L12(χ̃
(4)) = L12(χ̃

(2)) = 0

L15(χ̃
(15)) = L15(χ̃

(5)) = L15(χ̃
(3)) = L15(χ̃

(1)) = 0
(57)

and thus
L12 = L(6)

12 · L6 = L(4)
12 · L4 = L(2)

12 · L2

L15 = L(5)

15 · L5 = L(3)

15 · L3 = L(1)

15 · L1.
(58)

For instance, finding the differential operator satisfied by χ̃ (15) would enable us to see if
the differential operator L15 actually has some relation with the least common left multiple of
L1, L3 and L5.

6. Conclusion

Considering the isotropic Ising square lattice model susceptibility, we extended our ‘expansion
method’ (that allowed us to find the differential equation satisfied by χ(3)), to the four-particle
contribution to the susceptibility, namely χ(4). We first obtained χ(4) as a fully integrated
multisum on products of four hypergeometric functions, and obtained a long series for χ(4).
From this long series, we gave the Fuchsian differential equation of order ten satisfied by χ(4).
This differential equation has a rich structure in terms of factorizations.

We have given in closed form six, of the ten solutions of the differential equation (24),
namely, S0,S1,S2,S4,S3 and S̃3. The remaining four solutions are those of an operator of
order eight.

One of these solutions is highly remarkable: it is actually the two-particle contribution
χ(2). A similar situation also occurred for the differential equation of the three particle
contribution χ(3), which actually had χ(1) as solution.

In general, for all the χ̃ (n), it is tempting to expect χ̃ (1) to be a solution of the differential
equation satisfied by the χ̃ (2n+1) and χ̃ (2) to be a solution of the differential equation satisfied
by the χ̃ (2n).

Beyond, one can contemplate much stronger conjectures corresponding to further
‘embedding’, namely χ̃ (m) being solution of the differential equation of χ̃ (n), when n is a
multiple of m, n and m having the same parity.



12 N Zenine et al

A confirmation of these various embeddings and conjectures is crucial because it
corresponds to a global structure of the χ̃ (n) and thus of χ itself. We will investigate this feature
in a future publication.
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Appendix A

In this appendix, we show that, with H(4) taken as in (4), i.e., not the alternative simplified
form we use in this paper, our expansion method applied to χ̃ (4) produces five summations on
products of four hypergeometric functions. Note that this method is applicable to any χ(n).

Let us write the product R(4) · H(4) as

R(4) · H(4) = T (4) · A(4) (A.1)

with

T (4) = R(4) ·
∏
i<j

x̃i x̃j

(1 − x̃i x̃j )2
(A.2)

A(4) = 1

4!
·
∏
i<j

(Zi − Zj)
2. (A.3)

By standard expansion of the quantity T (4), defined by (A.2), in the variables x̃i , one
obtains

T (4) =
∞∑

p=0

∞∑
i1=0

∞∑
i2=0

∞∑
i3=0

∞∑
i4=0

∞∑
i5=0

∞∑
i6=0

(1 + θ(p − 1)) ·
6∏

k=1

(ik + 1)

× x̃
p+i1+i2+i3+3
1 x̃

p+i1+i4+i5+3
2 x̃

p+i2+i4+i6+3
3 x̃

p+i3+i5+i6+3
4

(A.4)

where θ(x) is the step function given in (18). Defining

n1 = p + i1 + i2 + i3, n2 = p + i1 + i4 + i5

n3 = p + i2 + i4 + i6, n4 = p + i3 + i5 + i6,
(A.5)
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one can solve (A.5) in the indices (i3, i4, i5, i6), to obtain

i3 = −(p + i1 + i2) + n1 (A.6)

i4 = −(p + i1 + i2) + 1
2 (n1 + n2 + n3 − n4) (A.7)

i5 = i2 − 1
2 (n1 − n2 + n3 − n4) (A.8)

i6 = i1 − 1
2 (n1 + n2 − n3 − n4). (A.9)

All these indices should be integers, inducing constraints on the ni and limitations on the
summations of the remaining indices (i.e., p, i1, i2). With this change of summation indices,
T (4) becomes

T (4) =
∞∑

n1=0

∞∑
n2=0

∞∑
n3=0

∞∑
n4=0

C(n1, n2, n3, n4) · x̃
n1+3
1 x̃

n2+3
2 x̃

n3+3
3 x̃

n4+3
4 (A.10)

and, since T (4) is completely symmetric in the variables x̃i , the coefficient C(n1, n2, n3, n4) is
completely symmetric in the ni indices and is given by summation on the remaining indices
p, i1 and i2:

C(n1, n2, n3, n4) =
∞∑

p=0

∞∑
i1=0

∞∑
i2=0

(1 + θ(p − 1)) ·
6∏

k=1

(ik + 1)

× θ(i3) · θ(i4) · θ(i5) · θ(i6) · σ(n1 + n2 + n3 + n4)

× θ

(
1

2
(n1 + n2 + n3 − n4)

)
(A.11)

where theta functions (18) of indices (i3, i4, i5, i6) take place to keep track of the fact that
these indices should be positive integers. The symbol σ(n) defined as

σ(n) = 1
2 (1 + (−1)n) (A.12)

comes from the fact that i3, i4, i5, i6 are integers, due to the right most terms at right-hand side
of (A.7)–(A.9), the ni should verify n1 + n2 + n3 + n4 = eveninteger. The argument in the last
theta in (A.11) comes from (A.7).

Let us define the index q and its upper limit of summation (see (A.6), (A.7)):

q = p + i1 + i2 (A.13)

q0 = min

(
n1,

n1 + n2 + n3 − n4

2

)
. (A.14)

Furthermore, the coefficient C(n1, n2, n3, n4) being symmetric in all its arguments, it is
sufficient to compute it in the case where

n1 � n2 � n3 � n4. (A.15)

The coefficient C(n1, n2, n3, n4) now becomes

C(n1, n2, n3, n4) = θ

(
n1 + n2 + n3 − n4

2

)
· σ(n1 + n2 + n3 + n4)

×
q0∑

q=0

q∑
p=0

(
(1 + θ(p − 1)) ·

q−p∑
i1=0

(
6∏

k=1

(ik + 1)

))
(A.16)
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where the indices i3, i4, i5, i6 are given by (A.6)–(A.9) and i2 = q − p − i1. The three
summations can be performed and one obtains

C(n1, n2, n3, n4) = θ

(
n1 + n2 + n3 − n4

2

)
· σ(n1 + n2 + n3 + n4)

×
(

q0 + 4

4

)
Q(n1, n2, n3, n4, q0) (A.17)

with the polynomial Q(n1, n2, n3, n4, q0) given by

Q(n1, n2, n3, n4, q0) = 1

8
Q0(n1, n2, n3, n4) +

q0

2520
Q1(n1, n2, n3, n4)

+
q2

0

7560
Q2(n1, n2, n3, n4) +

q3
0

1890
Q3(n1, n2, n3, n4)

+
q4

0

540
(92 − 81n1 − 9n2 − 9n3 + 63n4) +

4q5
0

135
(A.18)

with

Q0(n1, n2, n3, n4) = (1 + n1)(n1 + n2 − n3 − n4 − 2)

× (n1 − n2 + n3 − n4 − 2)(2 + n1 + n2 + n3 − n4) (A.19)

Q1(n1, n2, n3, n4) = −2216 + 2472n1 + 1194n2
1 − 1281n3

1 + 126n4
1

− 48n2 + 1392n1n2 − 987n2
1n2 + 126n3

1n2 + 774n2
2 + 441n1n

2
2

− 126n2
1n

2
2 + 147n3

2 − 126n1n
3
2 − 48n3 + 1392n1n3 − 987n2

1n3

+ 126n3
1n3 − 1548n2n3 − 882n1n2n3 + 252n2

1n2n3 − 147n2
2n3

+ 126n1n
2
2n3 + 774n2

3 + 441n1n
2
3 − 126n2

1n
2
3 − 147n2n

2
3

+ 126n1n2n
2
3 + 147n3

3 − 126n1n
3
3 − 2568n4 − 708n1n4

+ 2709n2
1n4 − 378n3

1n4 − 288n2n4 + 1134n1n2n4 − 252n2
1n2n4

− 147n2
2n4 + 126n1n

2
2n4 − 288n3n4 + 1134n1n3n4 − 147n2

3n4

+ 294n2n3n4 − 252n1n2n3n4 − 252n2
1n3n4 + 126n1n2n

2
4

+ 126n1n
2
3n4 − 486n2

4 − 1575n1n
2
4 + 378n2

1n
2
4 − 147n2n

2
4

− 147n3n
2
4 + 126n1n3n

2
4 + 147n3

4 − 126n1n
3
4 (A.20)

Q2(n1, n2, n3, n4) = −2992 − 4446n1 + 6534n2
1 − 1449n3

1 − 1926n2

− 819n2
1n2 − 270n2

2 + 945n1n
2
2 + 315n3

2 − 1926n3 + 2808n1n3

− 819n2
1n3 + 540n2n3 − 1890n1n2n3 − 315n2

2n3 + 2808n1n2

− 270n2
3 + 945n1n

2
3 − 315n2n

2
3 + 315n3

3 + 594n4 − 315n3n
2
4

− 8532n1n4 + 3213n2
1n4 − 1728n2n4 + 1134n1n2n4 + 315n3

4

− 315n2
2n4 − 1728n3n4 + 1134n1n3n4 + 630n2n3n4

− 315n2
3n4 + 1998n2

4 − 2079n1n
2
4 − 315n2n

2
4 (A.21)

Q3(n1, n2, n3, n4) = 520 − 1215n1 + 495n2
1 − 207n2 + 144n1n2

+ 144n1n3 + 270n2n3 − 135n2
3 + 801n4 − 738n1n4

− 108n3n4 + 243n2
4 − 135n2

2 − 207n3 − 108n2n4. (A.22)
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From the definition of χ̃ (4) in (2), and from (A.1), (A.10), one gets

χ̃ (4) = 16w16 ·
∞∑

n1=0

∞∑
n2=0

∞∑
n3=0

∞∑
n4=0

wn1+n2+n3+n4C(n1, n2, n3, n4) · M(n1, n2, n3, n4). (A.23)

The expansion method on the variables xi introduces some summations free of any angular
dependence. These summations appear in the coefficient C(n1, n2, n3, n4) which is a kind of
‘geometrical factor’ that appears for all the χ(n) with n � 4.

At this step the integrations have not yet been performed. They are contained in

M(n1, n2, n3, n4) =
∫ 2π

0

dφ1

2π

∫ 2π

0

dφ2

2π

∫ 2π

0

dφ3

2π

(
4∏

i=1

yi · x
ni+3
i

)
· A(4). (A.24)

Due to its structure, it is obvious that M(n1, n2, n3, n4) is completely symmetric in the
indices ni . We write M(n1, n2, n3, n4) as an integral over the four angles (φ1, φ2, φ3, φ4), by
introducing Dirac delta function δ(φ1 + φ2 + φ3 + φ4) as a Fourier expansion that reads

2πδ(φ1 + φ2 + φ3 + φ4) =
∞∑

k=−∞
(Z1Z2Z3Z4)

k. (A.25)

M(n1, n2, n3, n4) thus becomes

M(n1, n2, n3, n4) =
∞∑

k=−∞
M(n1, n2, n3, n4; k) (A.26)

where

M(n1, n2, n3, n4; k) =
∫ 2π

0

dφ1

2π

∫ 2π

0

dφ2

2π

∫ 2π

0

dφ3

2π

∫ 2π

0

dφ4

2π

×
(

4∏
i=1

yi · x
ni+3
i

)
A(4) · (Z1Z2Z3Z4)

k. (A.27)

The Fourier expansion (9) implies the following integration rule:∫ 2π

0

dφ

2π
(yxm) · Zj = A(m, j). (A.28)

The calculation of (A.27) thus becomes straightforward and does not induce any summation.
The quantity M(n1, n2, n3, n4; k) comes out as a huge expression with 201 terms, each of
them being a product of four hypergeometric functions. Due to definition (A.26) where k runs
from −∞ to ∞, and to the symmetry of (A.26) under the permutation of the ni , these 201
terms reduce to only 16 terms and M(n1, n2, n3, n4; k) reads

M(n1, n2, n3, n4; k) ≡ A(n1, k)A(n2, k)A(n3, k)A(n4, k)

−A(n1, k)A(n2, k)A(n3, k)A(n4, k + 4)A(n1, k)A(n2, k)A(n3, k + 2)

×A(n4, k + 2) + 2A(n1, k)A(n2, k)A(n3, k + 1)A(n4, k + 3)

− 3A(n1, k)A(n2, k + 1)A(n3, k + 1)A(n4, k + 2)

−A(n1, k)A(n2, k)A(n3, k + 3)A(n4, k + 5)

+ A(n1, k)A(n2, k)A(n3, k + 4)A(n4, k + 4)

− 2A(n1, k)A(n2, k + 1)A(n3, k + 3)A(n4, k + 4)

+ 2A(n1, k)A(n2, k + 1)A(n3, k + 2)A(n4, k + 5)

+ 2A(n1, k)A(n2, k + 2)A(n3, k + 3)A(n4, k + 3)
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−A(n1, k)A(n2, k + 2)A(n3, k + 2)A(n4, k + 4)

+ A(n1, k)A(n2, k + 2)A(n3, k + 4)A(n4, k + 6)

−A(n1, k)A(n2, k + 2)A(n3, k + 5)A(n4, k + 5)

−A(n1, k)A(n2, k + 3)A(n3, k + 3)A(n4, k + 6)

+ 2A(n1, k)A(n2, k + 3)A(n3, k + 4)A(n4, k + 5)

−A(n1, k)A(n2, k + 4)A(n3, k + 4)A(n4, k + 4) (A.29)

which is equal to (A.27) for summation purposes.
Finally, collecting (A.23), (A.26), χ̃ (4) can be written as

χ̃ (4) = 16w16 ·
∞∑

n1=0

∞∑
n2=0

∞∑
n3=0

∞∑
n4=0

wn1+n2+n3+n4C(n1, n2, n3, n4) · M(n1, n2, n3, n4) (A.30)

Appendix B

In this appendix, we give the explicit derivation of expression (14) given in section 2.
Considering H(4) as in (13), we define the following relations:∏

i<j

x̃i − x̃j

1 − x̃i x̃j

= P
(x)
12–34 − (1 ↔ 3) − (2 ↔ 3) (B.1)

∏
i<j

Zi − Zj

1 − ZiZj

= P
(Z)
12–34 − (1 ↔ 3) − (2 ↔ 3) (B.2)

where P
(x)
12–34 is given in (15). Using the constraint (6), P

(Z)
12–34 reads

P
(Z)
12–34 = Ã(4) + (Z2 − Z1)(Z3 − Z4)(1 + Z1Z2 + Z3Z4) (B.3)

with

Â(4) = (Z2 − Z1)(Z3 − Z4) · Z1Z2

(1 − Z1Z2)2
. (B.4)

Note that, while H(4) and R(4) are completely symmetric under the permutation of the angles
φi , the right-hand side of (B.1), (B.2) are anti-symmetric under the same transformation.

From (13), (B.1), (B.2) and using the symmetry of the rest of the integrand (namely R(4)

times the product over yi variables), we can write H(4) as

H(4) ≡ 1
8P

(Z)
12–34 · (

P
(x)
12–34 − (1 ↔ 3) − (2 ↔ 3)

)
. (B.5)

We obtain H(4), given in (14), from (B.5) with the first term at the right-hand side of
(B.3). Again using the property of complete symmetry of the integrand, that part of (B.5) with
the second term at the right-hand side of (B.3) can be written as

− 1
8P

(x)
12–34 · ((Z1 − Z2)(Z3 − Z4)(1 + Z1Z2 + Z3Z4) − (1 ↔ 3) − (2 ↔ 3)) (B.6)

and is identically null.

Appendix C

In this appendix, we give the explicit integration rules corresponding to the form (16) given in
the main text. For this purpose, let us consider

J (n1, n2, n3, n4) =
∫ 2π

0

dφ1

2π

∫ 2π

0

dφ2

2π

∫ 2π

0

dφ3

2π

(
4∏

i=1

yix
ni

i

)
· Â(4) (C.1)
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where Â(4) is given in (B.4). Expression J (n1, n2, n3, n4) has the following properties:

J (n, n, n3, n4) = J (n1, n2, n, n) = 0

J (n1, n2, n3, n4) = −J (n2, n1, n3, n4) = J (n3, n4, n1, n2)
(C.2)

where the last identity comes from the fact that

Z1Z2

(1 − Z1Z2)2
= Z3Z4

(1 − Z3Z4)2
. (C.3)

Changing the integration variables from (φ1, φ2, φ3) to (φ = φ1 + φ2, φ2, φ3), Â
(4), defined in

(B.4), becomes

Â(4) = 1

(1 − Z)2
·
[(

1

Z2Z3
+ Z2Z3

)
· Z − Z2

Z3
− Z3

Z2
Z2

]
(C.4)

with Z = Z1Z2. Taking Â(4) in the form (C.4), expanding y1x
n1
1 and y4x

n4
4 , and using the

Fourier expansion (9), the integration over φ2 and φ3 is straightforward16. Some standard
manipulations give

J (n1, n2, n3, n4) = −
∫ 2π

0

dφ

2π
·

∞∑
i=−∞

∞∑
j=−∞

D(n1, n2; i)D(n3, n4; j) · Zj−i+1

(1 − Z)2 (C.5)

where

D(n1, n2; k) = A(n1, k + 1)A(n2, k) − A(n1, k)A(n2, k + 1). (C.6)

From the definition (10) of A(n, k), one can easily show that

D(n1, n2;−k) = −D(n1, n2; k − 1). (C.7)

With this property (C.7), and after some manipulations, J (n1, n2, n3, n4) reads

J (n1, n2, n3, n4) =
∞∑
i=0

∞∑
j=0

D(n1, n2; i)D(n3, n4; j)N(i, j) (C.8)

where

N(i, j) =
∫ 2π

0

dφ

2π
Z−j−i 1 − Z2i+1

1 − Z

1 − Z2j+1

1 − Z
(C.9)

which, by expansion in powers of Z and integration, simply reads

N(i, j) = 2 min(i, j) + 1. (C.10)

Finally, taking the form (C.8), together with (C.10), and using the definition (10) of A(n, k),
we obtain

J (n1, n2, n3, n4) = 1

2

∞∑
j=0

∞∑
k=0

w2j+4k+2 (2k + 1) (1 + θ(j − 1))

× (d(n1, n2; k)d(n3, n4; j + k) + d(n1, n2; j + k)d(n3, n4; k)) (C.11)

where d(n1, n2; k) is defined in (20).

16 see the integration rule (A.28).
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Appendix D

In this appendix, we give all the necessary details of the derivation of the result (17) given in
the text. We consider χ̃ (4) in the form (2), with H(4) given in (14).

The first step is to consider the expansion of the product R(4) · P
(x)
12–34. Let us give the

expansions, in the xi variables, for the first two terms in the brackets in (15):

R(4) · x̃1x̃2

1 − x̃1x̃2

x̃3x̃4

1 − x̃3x̃4
=

∞∑
m=0

∞∑
l=0

(x̃1x̃2)
m (x̃3x̃4)

l θ(m − 1)θ(l − 1) (2 min(m, l) − 1)

(D.1)

R(4) · (x̃1x̃2)
2

1 − x̃1x̃2
=

∞∑
m=0

∞∑
l=0

(x̃1x̃2)
m (x̃3x̃4)

l θ(m − l − 2)θ(m − 2) (1 + θ(l − 1)) . (D.2)

R(4) · P
(x)
12–34 can be expanded as

R(4) · P
(x)
12–34 = (x1 − x2) · (x3 − x4) ·

∞∑
m=0

∞∑
l=0

w2m+2l+2 (x1x2)
m (x3x4)

l · c(m, l) (D.3)

with

c(m, l) = θ(m − 1)θ(l − 1) · (2 min(m, l) − 1) + θ(m − l − 2)θ(m − 2) · (1 + θ(l − 1))

+ θ(l − m − 2)θ(l − 2) · (1 + θ(m − 1)). (D.4)

Considering χ̃ (4) in the form (2), with H(4) given by (14), taking the expansion of R(4) · P (x)
ij−kl

in the form (D.3), performing the angular integration using definition (C.1), and collecting all
terms, gives

χ̃ (4) = 16w6 ·
∞∑

m=0

∞∑
p=0

1

2
w2m+2pc(m, p)I (m, p) (D.5)

where

I (m, p) = J (m,m + 1, p, p + 1) − J (m, p,m + 1, p + 1) − J (m, p + 1, p,m + 1). (D.6)

Using identities (C.2) for expression J (n1, n2, n3, n4), one has

I (p,m) = I (m, p) I (m,m) = I (m,m + 1) = 0. (D.7)

The symmetry of c(m, p), together with relations (D.7), allow us, after some manipulations,
to write χ̃ (4) as

χ̃ (4) = 16w10 ·
∞∑

m=0

∞∑
n=0

w4m+2n(2m + 1) · I (m, n + m + 2) (D.8)

where we have used the following identity c(m, n + m + 2) = 2m + 1.
From the previous equation, taking definition (D.6) together with expression (C.11), one

obtains

χ̃ (4) = 16w12 ·
∞∑

m,k,n,j=0

w4m+4k+2n+2j (2m + 1) (2k + 1)
1

2

(
1 + θ(j − 1)

) · V (m, k, n, j − 2)

(D.9)

where V (m, k, n, j) is defined in (19), with the constraints:

V (m, k, n,−2) = V (m, k, n,−1) = 0. (D.10)
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Thus, χ̃ (4) reads

χ̃ (4) = 16w16 ·
∞∑

m,k,n,j=0

w4m+4k+2n+2j (2m + 1) · (2k + 1) · V (m, k, n, j). (D.11)

The last simplification comes from the following identity on V (m, k, n, j):

V (k,m, j, n) = V (m, k, n, j) (D.12)

which is obtained with the help of the symmetry of a(n, k), namely a(n, k) = a(k, n).
Finally, using the general identity

∞∑
p1=0

∞∑
p2=0

s(p1, p2) =
∞∑

p=0

∞∑
i=0

(1 + θ(i − 1))
1

2
(s(p + i, p) + s(p, p + i)) (D.13)

and identity (D.12), expression (D.11) for χ̃ (4) can, after some manipulation, be written in the
form (17) displayed in the text.

Appendix E

P10(x) = 192 598 769 664 000 − 943722 860 380 160x + 1154 055 263 764 480x2

+ 223 612 469 147 648x3 + 498 965 092 419 008x4 − 4709 824 359 388 336x5

+ 6098 813 329 440 179x6 − 2687 506 699 337 617x7

− 752 969 324 018 818x8 + 1919 011 581 320 339x9

− 1526 656 430 056 013x10 + 660 280 621 356 073x11

− 134 468 923 815 612x12 + 7980 003 107 181x13

+ 671 991 155 376x14 − 17 122 807 680x15

− 5111 390 208x16 + 43 929 600x17 (E.1)

P9(x) = 39 290 149 011 456 000 − 297 447 362 118 287 360x + 785 045 342 889 902 080x2

− 738 039 510 467 911 680x3 + 115 430 038 068 948 224x4

− 1014 554 971 757 285 568x5 + 3530 827 584 228 091 380x6

− 4191 676 869 770 939 784x7 + 2038 314 404 276 922 993x8

+ 302 242 744 021 242 129x9 − 1228 406 406 705 470 056x10

+ 1043 856 642 401 535 101x11 − 506 114 460 611 418 219x12

+ 139 123 852 417 110 463x13 − 18 756 086 615 529 738x14

+ 585 977 956 065 027x15 + 80 289 868 813 296x16

+ 338 076 239 232x17 − 554 882 826 240x18 + 4524 748 800x19 (E.2)

P8(x) = −197 221 140 135 936 000 + 2237 384 185 085 952 000x − 9353 251 554 131 968 000x2

+ 17 417 661 939 469 352 960x3 − 12 764 493 479 941 255 168x4

+ 5721 656 503 410 538 176x5 − 31 513 487 740 861 948 240x6

+ 74 327 124 872 294 722 259x7 − 74 793 556 916 527 926 194x8

+ 31 202 576 844 037 093 699x9 + 8393 285 642 528 898 691x10

− 21 583 664 946 799 604 164x11 + 16 831 944 005 767 359 920x12

− 7706 219 890 490 209 273x13 + 2036 277 808 796 847 523x14
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− 267 301 496 692 115 881x15 + 8265 260 736 796 220x16

+ 1095 242 827 496 832x17 + 4127 794 059 264x18

− 7320 844 222 464x19 + 58 514 227 200x20 (E.3)

P7(x) = 764 231 918 026 752 000 − 16 971 026 878 221 516 800x

+ 115 553 546 628 494 786 560x2 − 357 128 015 448 284 200 960x3

+527 925 844 930 277 396 480x4 − 327 328 761 204 753 779 200x5

+ 264 654 998 297 650 108 784x6 − 1129 192 842 855 079 731 378x7

+ 2154 212 025 640 162 544 967x8 − 1923 633 718 567 453 943 246x9

+ 708 245 350 538 757 849 333x10 + 257 335 760 183 269 925 607x11

− 530 877 971 609 916 541 978x12 + 387 828 430 484 350 338 476x13

− 169 278 351 316 199 852 707x14 + 43 213 759 197 299 807 177x15

− 5540 993 509 581 072 863x16 + 171 042 063 471 920 404x17

+ 21 596 554 335 396 864x18 + 67 975 771 296 768x19

− 139 524 297 965 568x20 + 1091 386 982 400x21 (E.4)

P6(x) = 2366 653 681 631 232 000 + 15 657 511 469 396 787 200x

− 418 375 361 108 283 228 160x2 + 2413 740 972 333 717 913 600x3

− 6304 389 540 169 208 659 968x4 + 7885 479 774 610 742 167 552x5

− 4194 762 998 349 204 963 264x6 + 4787 870 532 372 577 669 360x7

− 18 347 979 159 424 299 125 323x8 + 30 953 188 609 834 801 509 491x9

− 25 453 291 295 484 088 365 791x10 + 8618 062 554 065 795 648 668x11

+ 3501 102 053 489 313 155 231x12 − 6497 943 932 928 673 199 052x13

+ 4524 991 429 929 970 477 637x14 − 1899 642 804 937 798 765 560x15

+ 470 903 276 066 137 118 684x16 − 59 187 343 449 427 131 707x17

+ 1841 781 629 480 835 082x18 + 217 686 233 501 214 240x19

+ 505 738 155 562 752x20 − 1358 525 988 175 872x21 + 10 379 070 873 600x22

(E.5)

P5(x) = −4240 254 512 922 624 000 + 62 906 863 287 743 283 200x

− 176 844 924 247 909 335 040x2 − 926 585 736 920 055 152 640x3

+ 6926 618 061 828 909 694 976x4 − 17 270 267 632 607 743 877 120x5

+ 19 088 006 038 191 340 885 888x6 − 7801 708 756 272 263 419 344x7

+ 10 929 800 840 921 163 293 912x8 − 45 123 693 732 451 251 946 951x9

+ 72 469 347 127 122 031 920 503x10 − 57 004 940 985 415 997 264 335x11

+ 18 768 946 563 950 160 696 028x12 + 7071 447 265 880 540 507 399x13

− 12 955 437 249 853 164 400 164x14 + 8753 288 431 922 263 351 485x15

− 3567 263 867 581 256 107 712x16 + 863 585 677 517 038 259 840x17

− 106 841 634 606 075 117 511x18 + 3 388 641 803 935 920 834x19

+ 366 870 695 477 680 992x20 + 460 940 531 245 824x21

− 2210 964 576 190 464x22 + 16 454 358 835 200x23 (E.6)
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P4(x) = 2366 653 681 631 232 000 − 121 147 207 913 255 731 200x

+ 1204 116 891 510 820 044 800x2 − 4471 702 378 853 957 632 000x3

+ 3882 247 113 210 548 060 160x4 + 19 050 981 728 126 452 531 200x5

− 60 173 463 653 707 794 252 800x6 + 61 647 224 332 324 323 946 560x7

− 8902 468 613 107 108 100 784x8 + 12 826 049 043 414 461 768 619x9

− 130 168 614 999 998 943 881 548x10 + 224 001 261 613 376 678 757 254x11

− 177 856 326 190 823 713 976 989x12 + 61 054 390 293 590 247 070 213x13

+ 16 702 537 875 405 165 273 835x14 − 34 504 858 377 234 313 267 137x15

+ 23 145 136 640 956 770 024 901x16 − 9263 503 411 249 994 637 068x17

+ 2206 094 527 520 924 501 173x18 − 270 104 745 702 122 623 849x19

+ 8 842 661 536 198 397 940x20 + 853 061 197 515 225 600x21

− 104 681 638 038 528x22 − 4965 596 931 735 552x23

+ 35 863 949 721 600x24 (E.7)

P3(x) = −11 833 268 408 156 160 000 + 296 345 375 978 029 056 000x

− 2144 074 027 349 363 916 800x2 + 6754 783 276 113 459 937 280x3

− 8346 802 888 116 933 918 720x4 − 3858 851 854 352 328 468 480x5

+ 18 632 235 498 956 809 831 680x6 − 5896 832 882 414 934 369 872x7

− 20 092 581 953 702 558 202 578x8 + 9039 258 514 198 720 200 789x9

+ 30 407 815 233 273 202 124 059x10 − 44 070 504 829 347 073 747 333x11

+ 24 353 838 992 694 268 159 678x12 − 2634 376 094 447 814 881 673x13

− 5786 419 996 453 628 346 078x14 + 5219 893 433 655 665 719 185x15

− 2420 429 903 132 324 343 712x16 + 639 931 684 854 726 532 004x17

− 85 290 635 341 359 290 409x18 + 3288 947 218 141 266 164x19

+ 249 618 983 188 012 416x20 − 1896 484 503 705 600x21

− 1406 458 574 438 400x22 + 9 870 981 120 000x23 (E.8)

P2(x) = 36 978 963 775 488 000 000 − 561 176 784 419 998 924 800x

+ 3011 344 824 723 628 359 680x2 − 7448 695 810 925 636 485 120x3

+ 7522 952 469 866 279 936 000x4 + 1571 640 457 415 428 633 600x5

− 6448 286 163 781 893 470 272x6 − 5723 224 826 762 698 171 248x7

+ 17 523 982 043 162 827 496 339x8 − 10 871 737 924 438 446 047 496x9

− 1585 720 216 853 837 551 908x10 + 4808 127 638 071 252 147 363x11

− 1996 433 111 317 397 547 653x12 − 255 305 750 980 018 902 593x13

+ 746 533 058 733 318 361 745x14 − 451 215 245 481 551 846 087x15

+ 139 082 951 228 390 470 494x16 − 20 614 123 445 854 835 699x17

+ 931 298 896 466 844 519x18 + 53 593 802 936 851 536x19

−845 315 534 083 200x20 − 297 344 753 664 000x21 + 2006 484 480 000x22

(E.9)
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P1(x) = −14 878 398 029 915 750 400 + 132 065 832 050 507 120 640x

− 489 750 894 279 960 821 760x2 + 843 938 312 965 142 528 000x3

− 436 158 709 746 751 846 400x4 − 504 050 378 774 640 931 456x5

+ 362 705 915 662 042 967 696x6 + 930 077 072 222 989 626 372x7

− 1516 628 759 565 419 342 933x8 + 919 766 159 750 634 600 991x9

− 236 614 768 621 801 865 201x10 − 4425 339 208 940 491 244x11

+ 15 751 985 529 081 115 811x12 + 356 035 582 683 101 460x13

− 3725 421 245 175 199 951x14 + 1704 676 309 420 947 212x15

− 304 427 228 661 108 302x16 + 16 257 997 137 256 137x17

+ 635 239 438 099 728x18 − 16 870 300 732 800x19

− 3641 326 080 000x20 + 23 063 040 000x21 (E.10)

Appendix F

Let us recall a few elementary facts on factorization of differential operators, without
introducing any sophisticated D-module theory. Two differential operators D1 and D2 of
order N are said to be equivalent (see for instance equation (5) in [21]) if there exist two
(intertwining) differential operators R and S of orders at most N − 1, such that

D2 · R = S · D1. (F.1)

The factorization of differential operators is not in general unique. There can be several
factorizations, even an infinite number of factorizations, as can be seen in the simple exemple:

d2

dx2
=

(
d

dx
+

a

ax + b

)
·
(

d

dx
− a

ax + b

)
(F.2)

where factorization (F.2) holds for every constant a and b. This can be seen as a consequence
of the relation: (

d

dx
− a

ax + b

)
· (ax + b) = (ax + b) · d

dx
(F.3)

which means that the multiplication by ax + b transforms the solutions of the differential
operator d/dx into a solution of d/dx − a/(ax + b). Relation (F.3) is a simple example
of equivalence (F.1) of two differential operators. The occurrence of this infinite set of
factorizations can be seen to be a consequence of the fact that the various differential operators
of (F.2), (F.3) have solutions the ratio of which can be rational functions. In general this is not
the case and one will only have a finite number of factorizations, these various factorizations
being basically the same up to some permutation of the differential operators, each operator in
the factorization being changed (‘by some transmutation’ (F.1)) into an equivalent one during
the permutation process.

This is typically the situation we encounter with the operator L10 associated with the
ordinary differential equation of order ten satisfied by χ̃ (4).

This order ten operator L10 has 36 factorizations with two operators of order four
(M1 and M2), ten operators of order two (N0, N1, . . . , N9) and 26 operators of order one
(L0, L1, . . . L25). All these operators have been normalized in such a way that the coefficient
of the highest derivative is normalized to +1. The operators L0, L1, L2, N0 and N8 below are
such that L0(S0) = 0, L1(S1) = 0, L2(S2) = 0, N0(S3) = 0 and N∗

8 (S∗
1 ) = 0. These 36
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factorizations17 of L10 read

L10 = N8 · M2 · L25 · L12 · L3 · L0

= M1 · N9 · L25 · L12 · L3 · L0

= M1 · L24 · N4 · L12 · L3 · L0

= M1 · L24 · L13 · N6 · L3 · L0

= M1 · L24 · L13 · L17 · N3 · L0

= M1 · L24 · L13 · L17 · L11 · N0 (F.4)

L10 = N8 · M2 · L25 · L14 · L4 · L0

= M1 · N9 · L25 · L14 · L4 · L0

= M1 · L24 · N4 · L14 · L4 · L0

= M1 · L24 · L15 · N7 · L4 · L0

= M1 · L24 · L15 · L16 · N3 · L0

= M1 · L24 · L15 · L16 · L11 · N0 (F.5)

L10 = N8 · M2 · L25 · L18 · L5 · L1

= M1 · N9 · L25 · L18 · L5 · L1

= M1 · L24 · N4 · L18 · L5 · L1

= M1 · L24 · L19 · N5 · L5 · L1

= M1 · L24 · L19 · L23 · N1 · L1

= M1 · L24 · L19 · L23 · L10 · N0 (F.6)

L10 = N8 · M2 · L25 · L14 · L6 · L1

= M1 · N9 · L25 · L14 · L6 · L1

= M1 · L24 · N4 · L14 · L6 · L1

= M1 · L24 · L15 · N7 · L6 · L1

= M1 · L24 · L15 · L20 · N1 · L1

= M1 · L24 · L15 · L20 · L10 · N0 (F.7)

L10 = N8 · M2 · L25 · L18 · L7 · L2

= M1 · N9 · L25 · L18 · L7 · L2

= M1 · L24 · N4 · L18 · L7 · L2

= M1 · L24 · L19 · N5 · L7 · L2

= M1 · L24 · L19 · L21 · N2 · L2

= M1 · L24 · L19 · L21 · L9 · N0 (F.8)

L10 = N8 · M2 · L25 · L12 · L8 · L2

= M1 · N9 · L25 · L12 · L8 · L2

= M1 · L24 · N4 · L12 · L8 · L2

= M1 · L24 · L13 · N6 · L8 · L2

= M1 · L24 · L13 · L22 · N2 · L2

= M1 · L24 · L13 · L22 · L9 · N0. (F.9)
17 The DFactor command [27] of DEtools can give the second factorization in (F.4), namely L10 = M1 · N9 · L25 ·
L12 · L3 · L0.
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All these 36 factorizations can be seen as the consequence of ‘transmutations’ like (F.1),
where one differential operator becomes an equivalent one, thus yielding some elementary
permutation of the operator. For instance, the two differential operators of order four, namely
M1 and M2, are equivalent, their ‘intertwiners’ being two order two differential operators N8

and N9:

N8 · M2 = M1 · N9. (F.10)

Actually, one sees clearly that the two first factorizations in (F.4) are just deduced from one
another by (F.10).

Nine order-two differential operators N0, . . . , N8 can be seen to be related by various
equivalence relations requiring the introduction of 26 differential operators Li of order one
(the intertwiners):

N1 · L1 = L10 · N0, N2 · L2 = L9 · N0

N3 · L0 = L11 · N0, N4 · L12 = L13 · N6

N4 · L14 = L15 · N7, N4 · L18 = L19 · N5

N5 · L5 = L23 · N1, N5 · L7 = L21 · N2

N6 · L3 = L17 · N3, N6 · L8 = L22 · N2

N7 · L4 = L16 · N3, N7 · L6 = L20 · N1

N9 · L25 = L24 · N4.

(F.11)

The 26 order-one differential operators Li can also be seen to be related by various
equivalence relations. The Li being order one differential operators, their intertwiners
(R and S in (F.1)) should be order zero differential operators, that is some function fi,j .
As a consequence of the normalization to +1 of the highest order derivative (here d/dx), the
two intertwiners R and S in (F.1) are identical and one thus gets relations like:

Li · fi,j = fi,j · Lj . (F.12)

Furthermore one also verifies the following relations between the order one operators Li :

L3 · L0 = L8 · L2, L4 · L0 = L6 · L1 L5 · L1 = L7 · L2 (F.13)
L12 · L3 = L14 · L4, L13 · L17 = L15 · L16 L18 · L5 = L14 · L6,

L19 · L23 = L15 · L20 L18 · L7 = L12 · L8, L19 · L21 = L13 · L22
(F.14)

L17 · L11 = L22 · L9, L16 · L11 = L20 · L10 L23 · L10 = L21 · L9. (F.15)

It is straightforward to see that a relation like Li · Lj = Lk · Lm yields relations like:

Li · (Lj − Lm) = (Lk − Li) · Lm, (Li − Lk) · Lj = Lk · (Lm − Lj),

fi,m = Lj − Lm = Lk − Li, fk,j = Lm − Lj = Li − Lk

The number of intertwiners fi,j between the operators of order one in (F.12), is at first sight
325, but due to the above identities only 15 are independent.
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