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Abstract: This paper is a plea for diagonals and telescopers of rational, or algebraic, functions using 1

creative telescoping, in a computer algebra experimental mathematics learn-by-examples approach. 2

We show that diagonals of rational functions (and this is also the case with diagonals of algebraic 3

functions) are left invariant when one performs an infinite set of birational transformations on the 4

rational functions. These invariance results generalize to telescopers. We cast light on the almost 5

systematic property of homomorphism to their adjoint of the telescopers of rational, or algebraic, 6

functions. We shed some light on the reason why the telescopers, annihilating the diagonals of 7

rational functions of the form P/Qk and 1/Q, are homomorphic. For telescopers with solutions 8

(periods) corresponding to integration over non-vanishing cycles, we have a slight generalization 9

of this result. We introduce some challenging examples of generalization of diagonals of rational 10

functions, like diagonals of transcendental functions, yielding simple 2F1 hypergeometric functions 11

associated with elliptic curves, or (differentially algebraic) lambda-extension of correlation of the 12

Ising model. 13

Keywords: Diagonals of rational or algebraic functions, creative telescoping, globally bounded series, 14

modular forms, multi-Taylor expansions, multivariate series expansions, magnetic susceptibility of 15

the Ising model, lattice Green functions, Fuchsian linear differential equations, homomorphisms of 16

differential operators, self-adjoint operators, Poincaré duality, differential Galois groups 17

PACS: 05.50.+q, 05.10.-a, 02.10.De, 02.10.Ox 18

Contribution to the themed Issue "The Languages of Physics" in honor of Professor Richard 19

Kerner on the occasion of his 80th Birthday 20

1. Introduction: plea for a computer algebra experimental mathematics learn by example 21

approach 22

A paper in the honor of Professor Richard Kerner must be a paper on theoretical 23

physics, mathematical physics, physical mathematics, applied mathematics, applicable 24

mathematics or even experimental mathematics [1]. These different domains have large 25

overlaps and, quite often, their differences, or shades, are slightly irrelevant, only corre- 26

sponding to social membership to different “mathematical tribes”. This computer algebra 27

paper will actually be a plea for diagonals and telescopers of rational (or algebraic) functions 28

and for creative telescoping, with a computer algebra experimental mathematics learn-by- 29

examples approach. 30

1.1. Honor, pride and prejudice 31

The Journal of Mathematical Physics defines mathematical physics as "the application 32

of mathematics to problems in physics and the development of mathematical methods 33

suitable for such applications and for the formulation of physical theories". An alternative 34

definition would also include those mathematics that are inspired by physics (also known 35

as physical mathematics). Mathematical physics clearly raises the question of the watershed 36
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between mathematics and physics (especially in France ...). Does “Mirror Symmetry” [2–5] 37

which is a relationship between geometric objects called Calabi–Yau manifolds, belong 38

to algebraic geometry or theoretical physics? Does “Special Relativity” belong to physics 39

or mathematics, Einstein or Poincaré? “Einstein was reluctant to acknowledge that the 40

Michelson-Morley experiment had a significant influence on his road to special relativ- 41

ity” [6]. In fact, “once Maxwell’s equations are properly understood mathematically, special 42

relativity is an inevitable consequence” [6]. Physical mathematics is sometimes viewed with 43

suspicion by both physicists and mathematicians. On the one hand, mathematicians regard 44

it as deficient, for lack of proper mathematical rigor. In the years since this “mathematical 45

physics debate” erupted [7] there have been many spectacular successes scored by physical 46

mathematics, thanks to the “unreasonable effectiveness” of physics in the mathematical 47

sciences. Dyson famously proclaimed: “As a working physicist, I am actualy aware of the 48

fact that the marriage between mathematics and physics, which was so enormously fruitful 49

in past centuries, has recently ended in divorce”. This “divorce” is particularly serious in 50

France, because of the overwhelmingly leading figure of Alexander Grothendieck and the 51

huge influence of the Bourbaki group, which raises the question of rigor versus creativity 52

(“We should not confuse rigor with rigor mortis”, Isadore Singer, see [6]). Recalling Pierre 53

Cartier [8], the Bourbaki group has been criticized by several mathematicians, including 54

its own former members, for a variety of reasons. “ Criticisms have included the choice 55

of presentation of certain topics within the Éléments [9] at the expense of others, dislike 56

of the method of presentation for given topics, dislike of the group’s working style, and a 57

perceived elitist mentality around Bourbaki’s project and its books, especially during the 58

collective’s most productive years in the 1950s and 1960s. There is essentially no analysis 59

beyond the foundations: nothing about partial differential equations, nothing about probability. 60

There is also nothing about combinatorics, nothing about algebraic topology [10], nothing 61

about concrete geometry. Anything connected with mathematical physics is totally absent from 62

Bourbaki’s text.” Dieudonné (founding member), later, regretted that Bourbaki’s success 63

had contributed to a snobbery for pure mathematics in France, at the expense of applied 64

mathematics [11,12]. In an interview (to Marian Schmidt in 1990), he said: "It is possible to 65

say that there was no serious applied mathematics in France for forty years after Poincaré. 66

There was even a snobbery for pure mathematics. When one noticed a talented student, 67

one would tell him “You should do pure math.” On the other hand, one would advise 68

a mediocre student to do applied mathematics while thinking, “It’s all that he can do! 69

...”. Apart from french mathematicians (when in doubt, blame the french), this snobbery 70

for pure mathematics met with harsh criticism from Vladimir Arnold in his deliciously 71

polemical paper [13] “Sur l’éducation mathématique”. 72

Quantum groups emerged from one (Yang-Baxter integrable) explicit example, namely 73

Quantum Toda, and not from an ex-nihilo abstract, formal, construction of a noncommu- 74

tative algebra formalism, and other C⋆-algebras, dressed with coassociative coproducts. 75

In theoretical physics we get used to the emergence of modular forms [14] and sometimes 76

automorphic forms [15] like Shimura forms [16]. If a physicist asks a mathematician for 77

more information on these structures he will probably only get the academical Poincaré 78

upper half-plane definition and formalism which is totally and utterly useless for him and 79

he will not recognize the representation of modular forms and Shimura forms which naturally 80

emerges in physics [16,17] in terms of pullbacked 2F1 hypergeometric functions. In theoret- 81

ical physics we are flooded by elliptic curves, K3 surfaces, Calabi-Yau manifolds [3,18–23]. If 82

a physicist tries to discuss with a mathematician of the elliptic curve he just discovered (he 83

has even calculated the j-invariant, or the Hauptmodul, of this elliptic curve ...), he might 84

be severely rebuked that he has absolutely no right to talk of an elliptic curve because an 85

elliptic curve must have a “specified point”, or will be seen with suspicion because his 86

elliptic curve does not correspond to the complete intersection of quadrics [24,25] frame- 87

work mathematicians like to consider in their theorems. Along this (slightly polemical ...) 88

line, pure mathematicians will, often, refuse to provide representation of their formalism, 89

in particular they will refuse to provide examples. If a physicist, eager to understand a 90
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mathematical concept, asks for an example of an algebraic variety, an example of holonomic 91

function, or an example of functor, some mathematicians will, maliciously, reply: a point, 92

the constant function and the oblivion functor. In such a frustrating “dialogue of the deaf” 93

between physicists and mathematicians, mathematical physics is probably the perfect 94

place to be criticized by physicists to be too abstract, or too mathematical, and also by 95

mathematicians for a lack of rigor, a lack of mathematical proofs. 96

Jean-Louis Verdier performed his thesis under the direction of Alexandre Grothendieck. 97

He was a member of the Bourbaki group. He passed away in August 1989. At this step, one 98

of us (JMM) would like to seize the opportunity of this experimental mathematics paper in 99

honor of Professor Richard Kerner, to express his deep regrets for the numerous fruitful 100

conversations with Jean-Louis Verdier and his very generous pedagogical explanations. A 101

discussion with him was not flooded with “Derived Categories” or “p-adic cohomology”, 102

but with simple examples and representations of the mathematical concepts. A really good 103

mathematician can provide examples, he is not afraid, or ashamed, to provide examples 104

and representations. For Jean-Louis Verdier mathematics was not an obfuscation contest. 105

This paper is an experimental mathematics [1] paper with a learn-by-example ap- 106

proach: we get puzzling exact results from computer algebra (Maple, Mathematica), and 107

we hope mathematicians will be interested to provide proofs of these results, in a proper 108

framework. Furthermore, these exact results, useful for physics, raise a lot of fascinating 109

new questions at the crossroad of different domains of mathematics. 110

1.2. Diagonal of rational functions, creative telescoping, birational transformations and effective 111

algebtraic geometry 112

Diagonals of rational functions (or diagonals of algebraic functions) have been shown 113

to emerge naturally [26] for n-fold integrals in physics (corresponding to solutions of 114

linear differential operators of quite high order [27,28]), field theory, enumerative com- 115

binatorics [29,30], seen as “Periods” [31] of algebraic varieties (corresponding to the de- 116

nominators of these rational functions). The fact that diagonals of rational, or algebraic, 117

functions occur frequently in physics, explains many unexpected mathematical properties 118

encountered in physics, that are far more obvious from a physics viewpoint. Physicists are 119

clearly very interested to see if the critical exponents of the three-dimensional Ising model 120

are, or are not, rational numbers. In contrast, since many lattice Green functions in any 121

dimension [32] are diagonals of rational functions, their critical exponents are necessarily 122

rational numbers in any dimension. Along this line, the linear differential operators, annihi- 123

lating these “Periods”, are globally nilpotent [33,34], and, consequently, the critical exponents 124

of all the (regular) singular points of these operators are necessarily rational numbers (Katz 125

theorem states that globally nilpotent linear differential operators are fuchsian with rational 126

exponents, see for instance [35]). These n-fold integrals are also globally bounded [26,36] 127

series, which means that they can be recast into (finite radius of convergence) series with 128

integer coefficients. Furthermore, these series, with integer coefficients, reduce modulo every 129

prime to algebraic functions. The calculation of the linear differential operators annihilating 130

these n-fold integrals of algebraic functions can be systematically performed using the 131

creative telescoping method [37–39] which corresponds, essentially, to successive differential 132

algebra eliminations which are blind to the cycles over which one performs the n-fold integrals. 133

At first sight one expects the analysis of these n-fold integrals to require, as in the S-matrix 134

theory [40], a lot of complex analysis of several complex variables, but one quickly discovers, 135

with creative telescoping, that one needs differential algebra, possibly algebraic geometry [41], 136

because of the crucial role of an algebraic variety and, surprisingly one finds out almost 137

“arithmetical” properties (like in the Grothendieck–Katz p-curvature conjecture which is 138

a local-global principle for linear ordinary differential equations, related to differential 139

Galois theory). More experimentally, this time, one finds out that almost all the diagonals of 140

rational, or algebraic, functions, corresponding, or not, to physics, are annihilated by linear 141

differential operators which are homomorphic to their adjoint, and consequently, their differ- 142

ential Galois groups are (or are a subgroup of) selected Sp(n, C) symplectic or SO(n, C) 143
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orthogonal groups [34,42,43]. More generally, one finds out that the telescopers of almost all 144

the rational, or algebraic, functions are also homomorphic to their adjoint [42]. A physicist, 145

already surprised to see the emergence of all these mathematical concepts in his backyard, 146

will have the prejudice that these selected differential Galois groups are probably a conse- 147

quence of some “sampling bias”, these diagonals and telescopers being, in fact, related to 148

(Yang-Baxter) integrable models, like the χ(n) components of the susceptibility of the Ising 149

model [27,28], or beyond, Calabi-Yau manifolds, Mirror Symmetries, Picard-Fuchs systems, 150

and other theory “integrable” in some way (Yang-Mills ...). In contrast, a mathematician 151

will have the prejudice that this is nothing but the Poincaré duality [44] since we have a 152

canonical algebraic variety for all these diagonals or telescopers [41]. Experimentally it is 153

quite hard to find telescopers, or linear differential operators, that are not homomorphic to 154

their adjoint, i.e. that do not have selected symplectic, or orthogonal, differential Galois 155

groups [34,42,43]. Christol conjectured [45,46] that every D-finite globally bounded series 156

is the diagonal of a rational function. If one considers Christol’s conjecture [45–49], one 157

can seek for nFn−1 hypergeometric series with integer coefficients that are candidates to be 158

counter-examples to Christol’s conjecture [45–48]. Among these candidates a sub-set has 159

actually been seen [49] to be diagonals of rational, or algebraic, functions like for instance 160

3F2([2/9, 5/9, 8/9], [2/3, 1], x), or 3F2([1/9, 4/9, 7/9], [1/3, 1], x). The fact that the others, 161

like the original example of G. Christol, 3F2([1/9, 4/9, 5/9], [1/3, 1], 36 x), are, or are not, 162

diagonals of rational or algebraic functions remains an open question. It turns out that the 163

linear differential operators of these nFn−1 candidates precisely provide such rare examples 164

of linear differential operators (annihilating diagonals of rational, or algebraic, functions), 165

that are not homomorphic to their adjoint. The existence of such examples (curiously related 166

to Christol’s conjecture ...) shows that seeing the emergence of such selected differential 167

Galois groups [42] for diagonals of rational, or algebraic, functions cannot simply be seen 168

as some consequence of the Poincaré duality. The Poincaré duality works for any algebraic 169

variety: the diagonal of any rational, or algebraic, function should always yield “self-dual” 170

linear differential operators in the sense that they are homomorphic to their adjoint. This is 171

not the case. Could it be that the physicist’s prejudice is right and that, trying to be generic 172

in our computer algebra experiments, we were, in fact, just exploring diagonals of selected 173

subsets of rational, or algebraic, functions related to some kind of “integrable” physics? 174

Like Monsieur Jourdain (in “Le Bourgeois Gentilhomme”, Molière) speaking “prose” 175

without noticing himself, physicists often perform some fundamental mathematics when 176

they work on their n-fold integrals without noticing these n-fold integrals are, in fact, 177

diagonals of rational, or algebraic, functions. In fact diagonals of rational, or algebraic, 178

functions, and more generally telescopers, are a perfect subject of analysis in mathematical 179

physics: they are, essentially, not well-known by mathematicians and by physicists (even 180

if physicists speak “diagonal” without noticing ...), and even when these concepts are 181

superficially known, they are not taken seriously by mathematicians, probably because 182

the definition is so simple, and the calculations are just “computer algebra” which is not 183

highly regarded in the “mathematical food chain”. This is in contrast with the fact that 184

almost every calculation of a diagonal of rational, or algebraic, function, or calculation 185

of a telescoper, yields interesting, or remarkable, sometimes even puzzling exact results, 186

providing answers in physics and mathematics, but also raising new interesting questions, 187

that could be called “speculative mathematics”. 188

In a learn-by-example approach we are going to address the previous questions of 189

“duality-breaking” of some telescopers of rational, or algebraic, functions, and we will also 190

sketch some remarkable birational symmetries [24,25,50,51] of the diagonals and telescopers 191

of rational, or algebraic, functions. 192

2. Definition of the diagonals of rational, or algebraic, functions. Definition of 193

telescopers. 194

The purpose of this paper is not to provide an introduction to creative telescoping [37– 195

39,52–55] but, rather, to provide many (non-trivial) pedagogical examples of telescopers 196
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using extensively the “HolonomicFunctions” package [56]. One can obtain these telescopers 197

using Chyzak’s algorithm [55] or Koutschan’s semi-algorithm [56] (semi-algorithm because 198

the termination is not proven). For the examples displayed in this paper, Koutschan’s 199

package [56] is more users-friendly or efficient. 200

Creative telescoping [37–39,52–55] is a methodology to deal with parametrized sym- 201

bolic sums and integrals that yields differential/recurrence equations for such expressions. 202

This methodology became popular in computer algebra in the past twenty five years. By 203

“telescoper” of a rational function, say R(x, y, z), we here refer to the output of the creative 204

telescoping program [56]. The telescoper T represents a linear differential operator that is 205

satisfied by the diagonal Diag(R), and also all the other “periods”. 206

The paper is essentially dedicated to solutions of telescopers of rational functions 207

which are not necessarily diagonals of rational functions. These solutions correspond to 208

“periods” [31] of algebraic varieties over some cycles which are not necessarily vanishing 209

cycles [57], like in the case of diagonals of rational functions. 210

The reader interested in the connection between the process of taking diagonals, 211

calculating telescopers, and the notion of “Periods”, de Rham cohomology (i.e. differential 212

forms) and other Picard-Fuchs equations can read the thesis of Pierre Lairez [58] (see 213

also [31]). 214

2.1. Definition 215

Let us recall that the diagonal of a rational function in (for example) three variables is 216

obtained through its multi-Taylor expansion [19,20] 217

R(x, y, z) = ∑
m

∑
n

∑
l

am,n,l · xm yn zl , (1)

by extracting the “diagonal” terms, i.e. the powers of the product p = xyz: 218

Diag
(

R(x, y, z)
)

= ∑
m

am,m,m · pm. (2)

In order to avoid a proliferation of variables, the variable p, the diagonal (2) depends on, 219

is, in the following, simply denoted x (see below (3)). Extracting these diagonal terms 220

essentially amounts to finding constant terms [59] in several complex variables expansions, 221

i.e. amounts to performing a residue calculation in several complex variables expansions 222

Diag
(

R(x, y, z)
)

=
∫
C

1
y z

· R
( x

y z
, y, z

)
· dy dz (3)

=
1

2 i π

∫ 1
2 i π

∫
∑
m

∑
n

∑
l

am,n,l · xm yn−m zl−m · dy
y

dz
z

= ∑
m

am,m,m · xm,

or equivalently 223

Diag
(

R(x, y, z)
)

=
∫
C

1
y z

· R
( x

y
,

y
z

, z
)
· dy dz, (4)

where C denotes a vanishing cycle [57], where
∫
C is a symbolic notation for the n-fold 224

integral with the well-suited pre-factors, and where the diagonal (4) is seen as a function of 225

the remaining variable x. This is the very reason why diagonals of rational, or algebraic, 226

functions can be interpreted as n-fold integrals [26]. More generally, with n variables, one 227
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can write the diagonal of a rational function of n-variables as the residue in n − 1 variables 228

x2, · · · , xn: 229

Diag
(

R(x1, x2, · · · , xn)
)

(5)

=
1

2 i π

∫
· · · 1

2 i π

∫ 1
x2 · · · xn

· R
( x1

x2 · · · xn
, x2, · · · , xn

)
· dx2 · · · dxn.

If the definition of the diagonal of a rational or algebraic function is very simple, it does 230

not mean that calculating such a diagonal is simple ! By “calculating” we mean finding that 231

the series, corresponding to the diagonal, is the series expansion of some known special 232

function [60–63] (an algebraic function [64], a pullbacked 2F1 hypergeometric function 233

which turns out to be a modular form [16,65,66], a nFn−1 hypergeometric function, a Heun 234

function [67], etc). Most of the time, it means, since diagonals of rational, or algebraic, 235

functions are selected (Fuchsian [27,28,68], G-nilpotent operators, globally bounded se- 236

ries [36]) D-finite functions, finding the linear differential operator annihilating the diagonal 237

series, even if we are not able to “solve” this linear differential equation. Finding this linear 238

differential operator can be performed by first getting large series expansion of the diagonal 239

and then finding, by a “guessing” approach, the linear differential operator, or getting the 240

linear differential operator from a more global differential algebra approach, called creative 241

telescoping. 242

2.2. Telescopers 243

For pedagogical reason let us sketch creative telescoping [37–39,52–55] in the case of a 244

rational function of three variables. By “telescoper” of a rational function, say R(x, y, z), we 245

here refer to the output of the creative telescoping program [56], applied to the transformed 246

rational function R̂ = R(x/y, y/z, z)/(yz). Such a telescoper is a linear differential 247

operator T in x and ∂x, such that 248

T ·
( 1

y z
· R

( x
y

,
y
z

, z
))

+
∂U
∂y

+
∂V
∂z

= 0, (6)

where the so-called “certificates” U, V are rational functions in x, y, z. These rational 249

functions are often quite large rational functions. This equation is called the telescoping 250

equation. Extracting the diagonal of a rational function amounts to calculating residues in 251

several complex variables, namely 252

Diag
(

R(x, y, z)
)

=
∫
C

1
y z

· R
( x

y
,

y
z

, z
)

, (7)

where the cycle C is a vanishing cycle [57]. Performing the previous integration over a cycle 253

C on the LHS of the telescoping equation (6) one will get (with the reasonable assumption 254

that the linear differential operator T commutes with the integration): 255

T · Diag
(

R(x, y, z)
)

+
∫
C

(∂U
∂y

+
∂V
∂z

)
= 0. (8)

Again (with reasonable assumptions) one can expect the second term in (8) to be equal to 256

zero, thus yielding the equation: 257

T · Diag
(

R(x, y, z)
)

= T ·
∫
C

1
y z

· R
( x

y
,

y
z

, z
)

= 0. (9)

In other words, the telescoper T represents a linear differential operator annihilating the 258

diagonal Diag(R). For the calculation of a diagonal, the cycle C has to be a vanishing cycle 259

(residue calculation). Note that the creative telescoping calculations giving as an output 260

the telescoper T and the two “certificates” U and V, essentially amounts to performing 261
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differential algebra calculations (similar to integration by part for several complex variables). 262

Since these creative telescoping calculations are differential algebra eliminations, they are 263

totally and utterly blind to the cycle C. Consequently, even if one performs an integration 264

over a non-vanishing cycle, the telescoper T will also be such that 265

T · P = 0 where: P =
∫
C

1
y z

· R
( x

y
,

y
z

, z
)

, (10)

this integral being not necessarily equal to the diagonal Diag(R(x, y, z)) (which could be, for 266

instance, equal to zero). Equation (10) means that the telescoper annihilates all the periods 267

P . 268

The paper is essentially dedicated to solutions of telescopers of rational functions 269

which are not necessarily diagonals of rational functions. These solutions correspond to 270

periods [31] of algebraic varieties over some cycles which are not necessarily vanishing cycles 271

like in the case of diagonals of rational functions. 272

To sum-up: In order to calculate the diagonal of a rational function one can try, in a 273

very down-to-earth way, to get large enough series expansions of this diagonal from multi- 274

series expansion, and then try some guessing approach to obtain the linear differential 275

operator annihilating the diagonal of a rational function, or one can perform the creative 276

telescoping approach that will provide this telescoper even if the diagonal is zero, or cannot 277

be nicely defined because the rational function does not have a multi-Taylor expansion: in 278

that case the telescoper annihilates periods corresponding to all the cycles, in particular 279

non-vanishing cycles. 280

2.3. Diagonals versus telescopers: vanishing cycles versus non-vanishing cycles 281

2.3.1. Diagonals versus telescopers: a first example 282

283

Let us first consider the following rational function of three variables 284

R(x, y, z) =
1

−x − y − z2 . (11)

This rational function does not have a multi-Taylor expansion, and thus we cannot define 285

the diagonal of the rational function. This rational function has, however, a telescoper which 286

is a linear differential operator of order one, namely 5 θ + 2, where θ = x Dx = x d/dx is 287

the homogeneous derivative. Let us now consider a slightly more general rational function: 288

R(x, y, z) =
1

α − x − y − z2 . (12)

This rational function (12) has a multi-Taylor expansion, and one can, thus, get the first 289

terms of the diagonal of this rational function (12): 290

Diag
(

R(x, y, z)
)

=
1
α

+
30
α6 · x2 +

3150
α11 · x4 +

420420
α16 · x6 + · · · (13)

The α-dependent rational function (12) has an order-four α-dependent telescoper L4(α) 291

x2 · L4(α) = −5 · x2 · (5 θ + 2) · (5 θ + 4) · (5 θ + 6) · (5 θ + 8)

+16 · α5 · θ2 · (θ − 1)2, (14)

which has the following 4F3 hypergeometric function solution: 292

1
α
· 4F3

(
[
1
5

,
2
5

,
3
5

,
4
5
], [

1
2

,
1
2

, 1],
3125
16 α5 · x2

)
. (15)
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The series expansion of this 4F3 hypergeometric function (15) is in agreement with the 293

series expansion (13). In the α → 0 limit the order-four α-dependent telescoper L4(α) 294

becomes the direct-sum: 295

−5 · x4 ·
(
(5 θ + 2)⊕ (5 θ + 4)⊕ (5 θ + 6)⊕ (5 θ + 8)

)
. (16)

We thus see, in this α → 0 limit, that one recovers, among the different factors in (16), 296

the order-one telescoper of the rational function (11), namely 5 θ + 2. This first example 297

being a bit too simple, or degenerate, let us consider another example. 298

2.3.2. Diagonals versus telescopers: a second example 299

300

Let us now consider the rational function of three variables: 301

R(x, y, z) =
1

−x − y − z − x5 y
. (17)

This rational function has a telescoper L4, which is a linear differential operator of order 302

four, which reads: 303

L4 = −(800000 x5 − 27) · x4 D4
x − (11200000 x5 + 27) · x3 D3

x

−15 · (2800000 x5 − 1) · x2 D2
x − 60 · (700000 x5 − 1) · x Dx

−12 · (437500 x5 + 9), (18)

or, introducing the homogeneous derivative θ = x Dx, 304

L4 = −50000 · x5 · (2 θ + 7) (2 θ + 5) (2 θ + 3) (2 θ + 1)

+3 · (3 θ + 1) (3 θ − 4) (θ − 3)2. (19)

The rational function (17) does not have a multi-Taylor expansion. We have a problem to 305

define the diagonal of the rational function (17). The analytic solutions of (18), or (19), are 306

thus just “Periods” of the rational function (17), i.e. integrals over a non-vanishing cycle of 307

the rational function (17). A solution of (18), or (19), is, for instance, the hypergeometric 308

function: 309

x3 · 4F3

(
[

7
10

,
9
10

,
11
10

,
13
10

], [1,
4
3

,
5
3
],

800000
27

· x5
)

. (20)

If one finds that the concept of diagonal is easier to understand, compared to“Periods” 310

over non-vanishing cycles that are not really defined (we just know they exist), such a 311

result may look a bit too abstract, and thus slightly frustrating. In fact one can recover some 312

contact with the easier concept of diagonals, performing some kind of “desingularization”. 313

Let us consider the more general α-dependent rational function of three variables: 314

R(x, y, z) =
1

α − x − y − z − x5 y
. (21)

It has a telescoper which is a linear differential operator of order four M4(α). The first terms 315

of the diagonal of that rational function (21) can easily be calculated. We have calculated 316

this order four linear differential operator M4(α). It is a bit too large to be given here. 317

However one remarks that this α-dependent order four linear differential operator M4(α), 318

is actually related to the previous order-four linear differential operator L4, in the α → 0 319

limit: 320

M4(0) = −675000000 x11 · L4. (22)
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To sum-up: The telescoper corresponding to “Periods” over a non-vanishing cycles can 321

be obtained from a one-parameter telescoper having clear-cut diagonal solutions (“Periods” 322

over a vanishing cycle). 323

2.4. The Devil is in the detail: the number of variables 324

Let us consider the diagonal of the following rational function of four variables: 325

1
1 − α x − y − z − β · x u

. (23)

Its telescoper is, for any value of α, and for β ̸= 0, the order-two linear differential operator 326

L2 = (1 − 27 β · x) · x D2
x + (1 − 54 β · x) · Dx − 6 β, (24)

which has the following hypergeometric 2F1 solution: 327

2F1

(
[
1
3

,
2
3
], [1], 27 β · x

)
. (25)

Recalling the definition of the diagonal of a rational function based on multi-Taylor 328

expansion, it is easy to see, on this almost trivial example, that the various powers of the 329

product t = x y z u that the diagonal extracts, require the occurrence of the variable u 330

which only occurs, in the denominator of (23), through the product x u yielding automati- 331

cally the occurrence of the variable x. Consequently, any further occurrence of the variable 332

x, from the −α x monomial in the denominator of (23), is excluded. This explains why the 333

diagonal of (23) is actually blind to the −α x term. In other words, the diagonal of the four 334

variables rational function (23) is, in fact the diagonal of a rational function of three variables y, 335

z, and the product x u. 336

Remark 2.1: To take into account this problem, we will introduce the concept of 337

“effective number” of variables. In the previous example the number of variables is four 338

but the “effective number” of variables is three. 339

2.5. Understanding the complexity of the diagonal of a rational function 340

2.5.1. Order of the linear differential operator and number of variables 341

342

The simplest example of diagonal of rational function of n variables, corresponds to 343

the diagonal of the rational function 344

1
1 − x1 − x2 − x3 · · · − xn

. (26)

The diagonal of (26) is annihilated by an order-(n − 1) linear differential operator with a 345

n−1Fn−2 hypergeometric solution: 346

n−1Fn−2

(
[
1
n

,
2
n

,
3
n

, · · · ,
n − 1

n
], [1, 1, · · · , 1], nn · x

)
. (27)

This simple example may provide the prejudice that, for a given globally bounded series 347

(36), the number of variables of the rational function is related to the (minimal) order of the 348

linear differential operator annihilating the series. One should note, however, for the class 349

of the above example, that the corresponding linear differential operator has the Maximally 350

Unipotent Monodromy property (MUM) which means that all its indicial exponents (at the 351

origin) of the operator are equal (see for instance [22,32]) . 352

This result is reminiscent of the well-known 4F3([1/5, 2/5, 3/5, 4/5], [1, 1, 1], x) Can- 353

delas et al. hypergeometric series emerging in [3] for a particular Calabi-Yau manifold. 354

The simplest Calabi-Yau series (see for instance [18]) are 4F3 hypergeometric series like 355
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4F2([1/2, 1/2, 1/2, 1/2], [1, 1, 1], x), or 4F2([1/5, 2/5, 3/5, 4/5], [1, 1, 1], x) (see equation 356

3.11 in [3]). 357

Let us recall that Calabi-operators [22], annihilating Calabi-Yau series [18], are (self- 358

adjoint) order-four linear differential operators which have the Maximally Unipotent 359

Monodromy property (MUM) at x = 0: if one considers their formal series expansions at 360

x = 0, among the four formal series expansions, one is analytic (it actually corresponds to 361

our diagonals of rational functions), another one is a formal series with a ln(x)1, another 362

one is a formal series with a ln(x)2, and the last one is a formal series with a ln(x)3. 363

Along this line ((26) yielding (27)), one would expect that the diagonal of rational function 364

representation of a Calabi-Yau series (solution of an order-four linear differential operator) 365

should require, at least five variables for the rational function. 366

2.5.2. Order of the linear differential operator and degree in the variables 367

368

Let us now consider the diagonal of the following rational function of three variables 369

1
1 − x − α y − z2 , (28)

whose diagonal writes as a simple 4F3 hypergeometric solution: 370

4F3

(
[
1
5

,
2
5

,
3
5

,
4
5
], [1,

1
2

,
1
2
],

55

24 · α2 · x2
)

. (29)

In contrast with the example (26), here, we just need, for the rational function, three 371

variables, instead of the expected five variables. Note however, that the order-four linear 372

differential operator L4, annihilating this hypergeometric solution (29), does not have 373

MUM. As usual, this order-four linear differential operator is homomorphic to it adjoint 374

with a very simple order-two intertwiner: 375

L4 ·
(

x D2
x + Dx

)
=

(
x D2

x + Dx

)
· adjoint(L4). (30)

One thus expects [43] this order-four linear differential operator L4 to have a symplectic 376

differential Galois group included in Sp(4, C). Actually the exterior square of this o.rder- 377

four operator L4 has a simple rational function solution [43], namely 1/x/(55 · x2 − 24). 378

Let us now consider the diagonal of the following rational function of three variables: 379

1
1 − x − α y − z3 . (31)

The linear differential operator annihilating this diagonal is an order-six linear differential 380

operator with a quite simple 6F5 hypergeometric solution: 381

6F5

(
[
1
7

,
2
7

,
3
7

,
4
7

,
5
7

,
6
7
], [1,

1
3

,
1
3

,
2
3

,
2
3
],

77

36 · α3 · x3
)

. (32)

Let us restrict to α = 1. The order-six linear differential operator, annihilating the diagonal 382

of (31), does not have MUM. One has three series analytic at x = 0, one of the form 383

x · (1 + 2377375/6561 x3 + · · · ), one of the form x2 · (1 + 16509584/32805 x3 + · · · ), and 384

the third one being the diagonal of the rational function which is the expansion of (32): 385

1 + 140 x3 + 84084 x6 + 64664600 x9 + 55367594100 x12 + 50356110752640 x15

+47606217704845800 x18 + 46236665756994672960 x21 + · · · (33)

One also has three other formal series solutions with a ln(x)1, but no ln(x)2 or ln(x)3. 386
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As usual, this order-six linear differential operator is homomorphic to its adjoint with 387

a very simple order-four intertwiner: 388

L6 ·
(

x2 D4
x + 4 x D3

x + 2 D2
x

)
=

(
x2 D4

x + 4 x D3
x + 2 D2

x

)
· adjoint(L6). (34)

One expects [43] this order-six linear differential operator L6 to have a symplectic dif- 389

ferential Galois group included in Sp(6, C). Actually the exterior square of this order- 390

six linear differential operator L6 has a simple rational function solution [43], namely 391

1/x/(77 · x3 − 36). 392

Remark 2.2: This result can be generalised. Let us consider the rational function: 393

1
1 − x − y − zn . (35)

The linear differential operator L(1)
2n , annihilating this diagonal, is an order-(2 n) linear 394

differential operator with a quite simple 2nF2n−1 hypergeometric solution: 395

2nF2n−1

(
[

1
2 n + 1

,
2

2 n + 1
,

3
2 n + 1

, · · · ,
2 n

2 n + 1
],

[1,
1
n

,
1
n

,
2
n

,
2
n

, · · · ,
n − 1

n
,

n − 1
n

],
(2 n + 1)(2 n+1)

n2 n · xn
)

. (36)

Let us also consider the linear differential operators L(m)
2n annihilating the diagonal of the 396

rational function: 397( 1
1 − x − y − zn

)m
. (37)

One finds (using the Homomorphisms command in Maple) the following homomorphisms 398

between successive linear differential operators L(m)
2n : 399

Homomorphisms
(

L(m)
2n , L(m+1)

2n

)
= (2 n + 1) · x · Dx + m · n. (38)

In other words one has the relations: 400

L(m+1)
2n ·

(
(2 n + 1) · θ + m · n

)
= Z1(m) · L(m)

2n , (39)

where Z1(m) is an order-one linear differential operator. The linear differential operator 401

L(1)
2n is simply homomorphic to its adjoint: 402

Homomorphisms
(

adjoint(L(1)
2n ), L(1)

2n

)
=

1
xn−1 · θ2 · (θ − 1)2 · (θ − 2)2 · (θ − 3)2 · · ·

(
θ − (n − 2)

)2
. (40)

Remark 2.3: With the previous, rather simple, examples we see that the order of the 403

linear differential operator annihilating the diagonal of a rational function, is not related 404

to the number of variables of the rational function (or even to the number of “effective” 405

variables see section 2.4). Furthermore, a given globally bounded series can be seen to be the 406

diagonals of an infinite number of rational functions of a certain number of variables, but 407

also, in the same time, of other infinite number of rational functions with a different number 408

of variables. For a given globally bounded series we can find the (minimal order) linear 409

differential operator annihilating this series. Having this (minimal order) linear differential 410

operator, the question is: can we find the minimal number of variables necessary to see this 411
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globally bounded series as the diagonal of a rational function of that number of variables? 412

We will address these questions in a forthcoming paper [69]. 413

3. Diagonals of rational functions: should we restrict to rational functions of the form 414

1/Q? 415

With P and Q multivariate polynomials (with Q(0) ̸= 0), the diagonals of the rational 416

functions P/Qk are, for fixed polynomial Q, and for arbitrary integer k, a finite dimensinal 417

vectorial space related, as shown by Christol [45,46], to the de Rham cohomology (we are 418

thankful to P. Lairez for having clarified this point). There are so many cohomologies in 419

mathematics. For non-mathematicians let us just say that the introduction of a cohomology 420

often amounts to seeing that “something” you expect, at first sight, to be infinite, for 421

instance the number of solutions of a system of PDE’s (partial differential equations), is 422

in fact a finite set (for instance for D-finite systems of PDE’s). For physicists, not familiar 423

with de Rham cohomology, let us just say that this can be seen as a consequence of the 424

fact that these P/Qk rational functions are solutions of D-finite systems, which means that 425

these systems of PDE’s have a finite set of solutions of the form P/Qk. Being in such a 426

“finite box” will force the telescopers of the diagonals of P/Qk and 1/Q, to be related (by 427

homomorphisms). This requires to find a “cyclic vector” in mathematicians wording. 428

Experimentally, if one considers the (minimal order) linear differential operators for the 429

diagonal of P/Qk and for the diagonal of 1/Q, these two linear differential operators are 430

actually homomorphic. Note that this experimental result, valid for diagonals (i.e. integrals 431

over vanishing cycles), is no longer valid for telescopers of rational functions with analytic 432

solutions corresponding to “periods”, n-fold integrals, over non-vanishing cycles. In this 433

case we have a slight generalization of that homomorphism between telescopers P/Qk
434

and telescopers 1/Q, that will be described in the sequel (see section 5.2 below). 435

It is true that the analysis of lattice Green functions (LGF) [70–74] in physics naturally 436

yields to diagonals of rational functions in the form R = 1/Q, where Q is a polynomial. 437

However, the other n-fold integrals, emerging in physics, are much more complex (for 438

instance the χ(n) terms of the susceptibility of the two-dimensional Ising model [28]). The 439

lattice Green functions [32,32,70–75] and some Occam’s razor simplicity argument are 440

not sufficient to justify a bias of studying, quite systematically, rational functions of the 441

form R = 1/Q (as we often do). In fact these de Rham cohomology arguments are the 442

reason why, for diagonals (and diagonals only), one can restrict to rational functions in the 443

form R = 1/Q, but since these arguments may look too esoteric for physicists, let us, in 444

a learn-by-example, pedagogical approach, provide examples showing that telescopers 445

of rational functions in the form R = 1/Qk are homomorphic to telescopers of rational 446

functions in the form R = 1/Q, and then that telescopers of rational functions in the form 447

R = P/Q are homomorphic to telescopers of rational functions in the form R = 1/Q. 448

3.1. Diagonals of rational functions: R = 1/Qk reducing to 1/Q 449

Let us denote Q the polynomial: 450

Q = 1 + x y + y z + z x + 3 · (x2 + y2 + z2). (41)

Let us denote L(n)
4 the telescopers of Diag(1/Qn): 451

L(n)
4 · Diag

( 1
Qn

)
= 0. (42)

One remarks that these telescopers are all of order four. One actually finds the following 452

homomorphisms between successive telescopers (42): 453

Homomorphisms
(

L(n)
4 , L(n+1)

4

)
= 3 x · Dx + 2 n. (43)
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In other words one has the relations: 454

L(n+1)
4 · (3 θ + 2 n) = Z1(n) · L(n)

4 , (44)

where Z1(n) is an order-one linear differential operator, the intertwining relation (44) 455

yielding: 456

L(n+1)
4 · (3 θ + 2 n) · · · (3 θ + 6) · (3 θ + 4) · (3 θ + 2)

= Z1(n) · · · Z1(3) · Z1(2) · Z1(1) · L(1)
4 . (45)

One deduces: 457

2n · n! · Diag
( 1

Qn+1

)
= (3 θ + 2 n) · · · (3 θ + 6) · (3 θ + 4) · (3 θ + 2) · Diag

( 1
Q

)
. (46)

In other words the diagonal of 1/Qn+1 can be simply deduced from the diagonal of 1/Q. 458

Remark 3.1: The product (3 θ + 2 n) · · · (3 θ + 6) · (3 θ + 4) · (3 θ + 2), in the inter- 459

twining relation (45), is in fact a direct sum: 460

(3 θ + 6) · (3 θ + 4) · (3 θ + 2)

= 27 x3 · LCLM
(
(3 θ + 6), (3 θ + 4), (3 θ + 2)

)
. (47)

One has, for instance, the relations: 461

2 · Diag
( 1

Q2

)
= (3 θ + 2) · Diag

( 1
Q

)
8 · Diag

( 1
Q3

)
= (3 θ + 4) · (3 θ + 2) · Diag

( 1
Q

)
(48)

48 · Diag
( 1

Q4

)
= (3 θ + 6) · (3 θ + 4) · (3 θ + 2) · Diag

( 1
Q

)
384 · Diag

( 1
Q5

)
= (3 θ + 8) · (3 θ + 6) · (3 θ + 4) · (3 θ + 2) · Diag

( 1
Q

)
.

Of course, since the telescoper of Diag
(

1
Q

)
is an order four linear differential operator, the 462

order-(k − 1) product in front of Diag
(

1
Q

)
in (48) can be, for Diag

(
1

Qk

)
, reduced to an 463

order-three linear differential operator (the simple products (3 θ + 2 · (k − 1)) · · · (3 θ + 464

4) · (3 θ + 2) in (48) being taken “modulo” L4, for k ≥ 5). 465

3.2. Diagonals of rational functions: R = P/Q reducing to 1/Q 466

Experimentally one finds, quite often, that the telescoper of a rational function of the 467

form R = P/Q and the telescoper of the simple rational function 1/Q with its numerator 468

normalized to 1, are homomorphic. The intertwiner M occurring in the homomorphisms 469

of these two telescopers yields a relation of the form 470

Diag
( P

Q

)
= M · Diag

( 1
Q

)
, (49)

yielding the prejudice that the diagonals of the rational functions of the form P/Q should 471

reduce to the “simplest” diagonal, namely Diag(1/Q). In fact things are slightly more 472

subtle, as will be seen below. In fact one is looking for a cyclic vector, and the cyclic vector is 473

not necessarily Diag(1/Q) (see relation (58) and (59) below). 474
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Sticking with the polynomial (41), one has 475

L(1)
4 · Diag

( 1
Q

)
= 0, (50)

and considering the diagonal of x y/Q, one obtains an order-five differential operator with 476

unique factorization: 477

L(xy)
4 · Dx · Diag

( x y
Q

)
= 0. (51)

The homomorphisms between L(1)
4 and L(xy)

4 amounts to seeking for linear differential 478

operators that map the solutions of one differential operator into the other. These relations 479

are 480

L(xy)
4 · Q3 = K3 · L(1)

4 , (52)

and 481

L(1)
4 · J3 = P3 · L(xy)

4 , (53)

where the intertwiners Q3, K3, J3 and P3 are linear differential operators of order three. 482

Note that the above two relations show [23] that the linear differential operator J3 · Q3 483

(resp. Q3 · J3) leaves the solutions of L(1)
4 (resp. L(xy)

4 ) unchanged, 484

J3 · Q3 · Diag
( 1

Q

)
= Diag

( 1
Q

)
(54)

= 1 − 195 x2 + 135225 x4 − 143647728 x6 + 182699446545 x8

−252437965534755 x10 + 364803972334074000 x12 + · · ·

and: 485

Q3 · J3 · Dx · Diag
( x y

Q

)
= Dx · Diag

( x y
Q

)
(55)

= 16 x − 38400 x3 + 71593536 x5 − 126120445440 x7

+218901889206000 x9 − 378463218115207680 x11 + · · · (56)

Equivalently, the adjoint of P3 · K3 (resp. the adjoint of K3 · P3) leaves the solutions of the 486

adjoint of L4 (resp. the adjoint of L(xy)
4 ) unchanged. 487

Introducing the differential operator Dx on both sides of (53), and using (51), one 488

obtains: 489

L(1)
4 · J3 · Dx · Diag

( x y
Q

)
= P3 · (L(xy)

4 · Dx) · Diag
( x y

Q

)
. (57)

The RHS of (57) cancels and therefore, the LHS of (57), according to (50), leads to 490

Diag
( 1

Q

)
= J3 · Dx · Diag

( x y
Q

)
. (58)

Also, acting by both sides of (52) on Diag(1/Q), using (50), and (51) in mind leads to: 491

Dx · Diag
( x y

Q

)
= Q3 · Diag

( 1
Q

)
. (59)
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With these relations we see that the derivative of the diagonal of xy/Q simply reduces 492

to the diagonal of 1/Q, but the diagonal of xy/Q does not simply reduce to the diagonal 493

of 1/Q. Here 1/Q is not the “cyclic vector”. 494

4. Diagonals of algebraic functions 495

4.1. Diagonals of algebraic functions: a first example 496

Let us consider the algebraic functions: 497

A(x, y) =
1(

1 − α · (x + y)
)1/n n = 2, 3, · · · (60)

The telescopers of these algebraic functions are order-two linear differential operators with 498

the simple 2F1 hypergeometric solution: 499

2F1

(
[

1
2 n

,
n + 1

2 n
], [1], 4 · α2 · x

)
= 1 +

n + 1
n2 α2 x +

(1 + n) · (1 + 2 n) · (1 + 3 n)
4 · n4 α4 x2 + · · · (61)

Note that, among these 2F1 hypergeometric functions, the n = 2, n = 3, n = 4, n = 6 500

cases correspond to modular forms (see Appendix B in [16]). 501

These hypergeometric series can be seen to be, as it should, the diagonals of the 502

algebraic functions (60). In particular, for n = 2, one gets: 503

2F1

(
[
1
4

,
3
4
], [1], 4 · α2 · x

)
=

( 1
1 − 3 α2 x

)1/4
· 2F1

(
[

1
12

,
5

12
], [1],

27
4

· α4 · x2 · (1 − 4 α2 x)
(1 − 3 α2 x)3

)
(62)

= 1 +
3
4

α2 x +
105
64

α4 x2 +
1155
256

α6 x3 +
225225
16384

α8 x4 + · · ·

For n = 2 it is natural to associate the denominator of (60), with the algebraic surface 504

z2 = 1 − α · (x + y), (63)

and, following ideas developped in [41], since calculating the diagonal of the function (60) 505

for n = 2, amounts, in the multi-Taylor expansion, to extracting the terms depending only 506

on the product p = x y, take the intersection of the algebraic surface (63) with the surface 507

p = x y. This amounts, for instance, to eliminating y = p/x in (63), thus getting the 508

algebraic curve 509

−α · x2 − x z2 − α · p + x = 0, (64)

which turns out to be an elliptic curve (genus-one). Calculating the j-invariant of the elliptic 510

curve (64), one deduces the following Hauptmodul 511

H =
1728

j
=

27
4

· α4 · p2 · (1 − 4 α2 p)
(1 − 3 α2 p)3 , (65)

which is actually the Hauptmodul pullback in (62). This example gives some hope that the 512

effective algebraic geometry approach of diagonals of rational functions, detailed in [41], 513

could also work with diagonals of algebraic functions. 514

For n ̸= 2 it is tempting to associate the denominator of (60), with the algebraic 515

surface 516

zn = 1 − α · (x + y), (66)
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and after the elimination y = p/x in (63), the algebraic curve 517

−α · x2 − x zn − α · p + x = 0, (67)

but such algebraic curves turn out to be of genus g = n − 1. Understanding the emergence 518

of modular forms for the n = 3, n = 4, n = 6 subcases of (61) from (respectively) genus 2, 519

3, and 5 algebraic curves, is an open (and challenging) problem. 520

Remark 4.1: From the definition of the diagonals of a rational, or algebraic, functions 521

it is straightforward to see that the diagonals of the algebraic functions (60) are series of 522

the variable α2 x. Consequently, the previous calculations for a particular value of α, are 523

sufficient to recover the previous results valid for arbitrary α. For that reason we will, in 524

the next example, take specific values of the parameters. 525

4.2. Diagonals of algebraic functions: a second example 526

Let us consider the algebraic functions: 527

A(x, y) =
1(

1 − 3 · (x + y) + 5 · (x2 + y2)
)1/n , n = 2, 3, · · · (68)

For n = 2 the telescoper of the algebraic function (68) is an order-two linear differential 528

operator with the pullbacked 2F1 hypergeometric solution: 529

1
(1 − 30 x)1/2 · 2F1

(
[
1
4

,
3
4
], [1], −4 · (11 − 200 x) · x

(1 − 30 x)2

)
=

1
(1 − 27 x + 300 x2)1/4 (69)

× 2F1

(
[

1
12

,
5

12
], [1],

27
4

· x2 · (11 − 200 x)2 · (1 − 16 x + 100 x2)

(1 − 27 x + 300 x2)3

)
= 1 +

27
4

x +
4305

64
x2 +

199395
256

x3 +
167040825

16384
x4 + · · ·

From multi-Taylor series expansion, it is straightforward to see that the hypergeometric 530

series is actually the diagonal of the algebraic function (68) for n = 2. 531

As in the previous subsection we introduce the algebraic surface 532

z2 = 1 − 3 · (x + y) + 5 · (x2 + y2), (70)

and, again, eliminate y = p/x in (70), thus getting the algebraic curve 533

5 x4 − x2 z2 − 3 x3 + 5 p2 − 3 p x + x2 = 0, (71)

which turns out to be an elliptic curve (genus-one). Calculating the j-invariant of the elliptic 534

curve (71), one deduces the following Hauptmodul 535

H =
1728

j
=

27
4

· p2 · (11 − 200 p)2 · (1 − 16 p + 100 p2)

(1 − 27 p + 300 p2)3 , (72)

which is actually the Hauptmodul pullback in (69). Again, this last example gives some hope 536

that the effective algebraic geometry approach of diagonals of rational functions, detailed 537

in [41], could also work with diagonals of algebraic functions. For n ̸= 2, it is tempting to 538

introduce the algebraic surface 539

zn = 1 − 3 · (x + y) + 5 · (x2 + y2), (73)
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and, again, eliminate y = p/x in (70), thus getting the algebraic curve 540

5 x4 − x2 zn − 3 x3 + 5 p2 − 3 p x + x2 = 0, (74)

which is an algebraic curve of genus g = 2 n − 3 for n even, and g = 2 n − 2 for n odd. 541

For n = 3 (genus 4) the telescoper of the algebraic function (68) is an (irreducible) order- 542

three linear differential operator which is not homomorphic to its adjoint. The interpretation 543

of such non-self-dual order-three linear differential operators from these higher genus 544

algebraic curves is a totally open problem. 545

5. Understanding the emergence of selected differential Galois groups for diagonals of 546

rational functions 547

Experimentally one finds that almost all the linear differential operators annihilating 548

the diagonal of a rational, or algebraic, function are homomorphic to their adjoint [42]. For 549

instance, recalling an example in [42] 550

4F3

(
[
1
3

,
1
3

,
2
3

,
2
3
], [

1
2

, 1, 1],
729

4
· x

)
= Diag

( 1
1 − (1 + u) · (x + y + z)

)
= 1 + 18 x + 1350 x2 + · · · (75)

we find the corresponding order-four linear differential operator 551

x · L4 = 2 · x · (3 θ + 2)2 · (3 θ + 1)2 − 81 · θ3 · (2 θ − 1), (76)

which can be seen to be non-trivially homomorphic to its adjoint: 552

L4 ·
(

θ +
1
2

)
=

(
θ +

1
2

)
· adjoint(L4). (77)

Beyond diagonals of a rational, or algebraic, functions, one also finds experimentally, 553

that almost all the telescopers of rational or algebraic functions are homomorphic to their 554

adjoint. This homomorphism to the adjoint property is so systematic that, following a 555

mathematician’s prejudice one can imagine that this is nothing but the Poincaré duality. 556

The Poincaré duality [44] works for any algebraic variety: the diagonal of any rational, 557

or algebraic, function should yield self-dual linear differential operators in the sense that 558

they are homomorophic to their adjoint. This is not the case. It turns out that the linear 559

differential operators of some nFn−1, candidates to rule-out Christol’s conjecture [45,46,49], 560

precisely provide such rare examples of linear differential operators annihilating diagonal 561

of rational or algebraic functions that are not homomorphic to their adjoint. Among these 562

candidates a large set has been seen to actually be diagonals of rational, or algebraic, 563

functions [49,76]. 564

5.1. A recall on Christol’s conjecture 565

Let us recall one of the 3F2 hypergeometric candidates introduced to rule out Christol’s 566

conjecture: 567

3F2

(
[
2
9

,
5
9

,
8
9
], [

2
3

, 1], 27 · x
)

(78)

= 1 +
40
9

· x +
5236

81
· x2 +

7827820
6561

· x3 +
1444588600

59049
· x4 + · · ·

It is a globally bounded series (change x → 33 · x to get a series with integer coefficients). 568

In fact it actually corresponds [49] to the diagonal of the algebraic function: 569

(1 − y − z)1/3

1 − x − y − z
. (79)
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The telescoper of the algebraic function (79) is the order-three linear differential operator 570

which has (78) as a solution. This order-three linear differential operator is not homomorphic 571

to its adjoint. We have a SL(3, C) differential Galois group. 572

Other similar examples are, for instance: 573

3F2

(
[
1
9

,
4
9

,
7
9
], [

2
3

, 1], 27 · x
)

= Diag
( (1 − y − 2 z)2/3

1 − x − y − z

)
, (80)

or 574

3F2

(
[
2
9

,
5
9

,
8
9
], [

5
6

, 1], 27 · x
)

= Diag
( (1 − y − 2 z)1/3

1 − x − y − z

)
, (81)

or even the 4F3 hypergeometric function: 575

4F3

(
[
2
9

,
5
9

,
8
9

,
1
2
], [

1
3

,
5
6

, 1], 27 · x
)

= Diag
( (1 − x)1/3

1 − x − y − z

)
. (82)

Again these three diagonals (80), (81) and (82) are solutions of telescopers that are not 576

homomorphic to their adjoint. 577

These examples are taken in a list of 116 potential counter-examples constructed in 578

2011 by Bostan et al. [26]. Note that, more recently, 38 cases in that list of 116, have actually 579

been found to be diagonals of algebraic functions [76]. The two relations (80) and (81) can 580

be generalized [76,77] as follows: 581

4F3

(
[
1 − (R + S)

3
,

2 − (R + S)
3

,
3 − (R + S)

3
,

1 − S
2

],

[
1 − (R + S)

2
,

2 − (R + S)
2

, 1], 27 · x
)

= Diag
( (1 − x)R · (1 − x − 2 y)S

1 − x − y − z

)
, (83)

where R and S are rational numbers. These diagonals are annihilated by the order-four 582

linear differential operator: 583

2 · x · (S − 1 − 2 θ) · (S + R − 3 θ) · (S + R − 1 − 3 θ) · (S + R − 2 − 3 θ)

−θ2 · (S + R + 1 − 2 θ) · (S + R − 2 θ). (84)

This order-four linear differential operator is not homomorphic to its adjoint. Other more 584

involved similar relations can be found in section 2.1 of chapter 2 of [76]. 585

Experimentally we found, after quite systematic calculations of thousands of telescop- 586

ers of rational, or algebraic, functions, that the telescopers are (almost always) homomorphic 587

to their adjoint, or if they are not irreducible, that each of the factors of these telescopers 588

are homomorphic to their adjoint. Such previous examples like (78), (79), or (80) and 589

(81), curiously related to Christol’s conjecture, provide the rare examples of diagonals of 590

algebraic functions such that their corresponding telescopers are not homomorphic to their 591

adjoint. We have similar results with the algebraic function: 592

x1/3

1 − x − y − z
. (85)

In order to understand this “duality-breaking” (the telescoper is not self-adjoint up to 593

homomorphisms), it is tempting to introduce the (algebraic) function: 594

1
1 − x − y − z − α · x1/3 . (86)



Version October 15, 2023 submitted to Universe 19 of 44

However, in order to avoid the introduction of rational functions of n-th roots of variables, 595

we will (changing x, y, z into x3, y3, z3) rather introduce the diagonal of the following 596

rational function: 597

1
1 − x3 − y3 − z3 − α · x

. (87)

5.2. Understanding the emergence of selected differential Galois groups for almost all the diagonal of 598

rational functions 599

The linear differential operator annihilating the diagonal of the rational function (87) 600

is a (quite large) order-eight linear differential operator L8(α), depending on the parameter 601

α, which is homomorphic to its adjoint with an order-six intertwiner. This order-eight linear 602

differential operator L8(α) is irreducible except at α = 0. For α = 1, α = 2, α = 3 603

the order-eight linear differential operator L8(α) is homomorphic to its adjoint with an 604

order-six intertwiner. The differential Galois group should, thus, be included in Sp(8, C). 605

This is confirmed when calculating [43] the exterior square of L8(α). This exterior square 606

has a rational function solution Pa/x/Qa, where the polynomials Pa and Qa read: 607

Pa = (4 α3 − 27) · (20 α3 − 81) + 18 · (−6561 − 891 α3 + 500 α6) · x3 + 1594323 x6,

Qa = 387420489 x9 − 531441 · (81 + 100 α3) · x6 (88)

+(1594323 − 2972133 α3 + 729000 α6 − 50000 α9) · x3 − 27 · (4 α3 − 27)2.

Let us now take the α → 0 limit of the order-eight linear differential operator L8(α). 608

In this limit the order-eight linear differential operator just becomes the direct-sum 609

L2 ⊕ L3 ⊕ M3, (89)

where the order-two linear differential operator L2 has the 2F1 hypergeometric solution 610

2F1

(
[
1
3

,
2
3
], [1], 27 x3

)
, (90)

where the order-three linear differential operator L3 has the 3F2 hypergeometric function 611

solution 612

3F2

(
[
5
9

,
8
9

,
11
9
], [

2
3

, 1], 27 x3
)

, (91)

and where the order-three linear differential operator M3 has the 3F2 hypergeometric 613

function solution: 614

3F2

(
[
7
9

,
10
9

,
13
9
], [

1
3

, 1], 27 x3
)

. (92)

These two order-three linear differential operators, similarly to the previous exam- 615

ple (78), are not homomorphic to their adjoint: they break the self-adjoint duality (up to 616

homomorphisms of operators), and thus have a SL(3, C) differential Galois group. 617

These two hypergeometric series are exactly on the same footing as (78): they are 618

globally bounded series (just change x3 → 33 x3 in order to get a series with integer coeffi- 619

cients), and their respective order-three linear differential operators are not homomorphic to 620

their adjoint, their differential Galois group being SL(3, C). Let us note, however, that the 621

order-three linear differential operator L3 is actually homomorphic to the adjoint of M3, and of 622

course the order-three linear differential operators M3 is homomorphic to the adjoint of 623

L3. 624

If, in an algebraic geometry perspective [41], one sees the fact that all our linear 625

differential operators, annihilating diagonals of rational functions, are homomorphic to 626

their adjoint as the differential algebra expression of the Poincaré duality on the algebraic 627
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varieties corresponding to the denominators of our rational functions [41], the fact that this 628

Poincaré duality is broken for L3 or M3 is, in fact, restored in the bigger picture (87) with the 629

linear differential order-eight operator. In the α → 0 limit we see that these two linear 630

differential operators breaking the duality, actually emerge in a dual pair, thus restoring the 631

duality. For instance, if one focuses on L6 = L3 ⊕ M3 in (90), one finds easily that this 632

order-six linear differential operator is homomorphic to its adjoint. Its exterior square has 633

the following rational function solution: 634

4 + 621 x3

(1 − 27 x3)3 · x
. (93)

Since these calculations are in the α → 0 limit, let us expand, in α, the rational 635

function (87): 636

1
1 − x3 − y3 − z3 − α · x

=
1

1 − x3 − y3 − z3 +
x

(1 − x3 − y3 − z3)2 · α

+
x2

(1 − x3 − y3 − z3)3 · α2 +
x3

(1 − x3 − y3 − z3)4 · α3

+
x4

(1 − x3 − y3 − z3)5 · α4 + · · · (94)

The diagonal of a sum is clearly the sum of the diagonals. Thus the diagonal of the LHS of 637

(94) will be the sum of the various rational function terms in αn in the RHS of (94). The 638

diagonal of the α1 term in the α-expansion (94) 639

x
(1 − x3 − y3 − z3)2 , (95)

is clearly equal to zero, since the diagonal extracts, in the multi-Taylor series, the terms 640

in the product p = x y z, or, in this case, the terms in the product x3 y3 z3. Similarly the 641

diagonal of the α2 term in the α-expansion (94) 642

x2

(1 − x3 − y3 − z3)3 , (96)

is also zero, but the diagonal of the α3 term 643

x3

(1 − x3 − y3 − z3)4 , (97)

is not zero. Actually this last diagonal reads: 644

−1
9
· 1 + 216 x3

(1 − 27 x3)3 · x · d
dx 2F1

(
[
1
3

,
2
3
], [1], 27 x3

)
−18 · x3

(1 − 27 x3)2 · 2F1

(
[
1
3

,
2
3
], [1], 27 x3

)
. (98)

= −20 x3 − 1680 x6 − 92400 x9 − 4204200 x12 − 171531360 x15 + · · ·

It is annihilated by an order-two operator M2. 645

We have a different story with telescopers. Since the telescoper of a sum of rational 646

functions is the direct sum (LCLM) of the telescopers of these rational functions (or at least 647

is a rightdivisor of the LCLM of the telescopers) let us consider the telescopers of the first 648

five terms in the RHS of (94). The telescoper of the first term is, of course, the order-two 649

linear differential operator L2 annihilating the diagonal of this rational function. The 650

telescoper of the second term (in α1), is the previous order-three linear differential operator 651
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L3. The telescoper of the third term (in α2) is exactly the previous M3. The telescoper of 652

the fourth term (in α3), is the order-two linear differential operator M2. The telescoper of 653

the sum of the first orders in α in the expansion (94) 654

1
1 − x3 − y3 − z3 +

x
(1 − x3 − y3 − z3)2 · α +

x2

(1 − x3 − y3 − z3)3 · α2, (99)

is actually the LCLM of the three telescopers L2, L3 and M3 which is precisely the α → 0 655

limit of the order-eight linear differential operator ! 656

5.3. Revisiting 1/Q → P/Qk for telescopers 657

The next terms in the α-expansion (94), namely the terms in α4+3 n with n = 0, 1, · · · 658

x4+3 n

(1 − x3 − y3 − z3)5+3 n , (100)

have telescopers actually homomorphic to the telescoper L3 for (95). Similarly, considering in 659

the α-expansion (94), namely the terms in α5+3 n with n = 0, 1, · · · 660

x5+3 n

(1 − x3 − y3 − z3)6+3 n , (101)

have telescopers actually homomorphic to the telescoper M3 for (96). Finally, the terms in 661

α3+3 n with n = 0, 1, · · · 662

x3+3 n

(1 − x3 − y3 − z3)4+3 n , (102)

have telescopers homomorphic to the telescoper L2, generalizing the result (98) for n = 0. 663

This last sequence of telescopers can be understood from the ideas sketched in sections 664

(3.1) and (3.2) for diagonals (changing for instance (x, y, z) into (x3, y3, z3)). However, we 665

see that these ideas do not work anymore when we compare the telescopers for (100) (resp. 666

the telescopers for (101)) with the telescopers for (102). These different telescopers are not 667

homomorphic. They correspond to three different sequences of telescopers of different nature, 668

corresponding to three hypergeometric function of quite different nature: 669

2F1

(
[
1
3

,
2
3
], [1], 27 x3

)
, 3F2

(
[
7
9

,
10
9

,
13
9
], [

1
3

, 1], 27 x3
)

, 3F2

(
[
5
9

,
8
9

,
11
9
], [

2
3

, 1], 27 x3
)

.

Along this line similar α-dependent examples are sketched in Appendix A. 670

To sum-up: The ideas sketched in subsections (3.1) and (3.2) for diagonals, can be 671

generalized to telescopers (which may correspond to vanishing cycles i.e. diagonals), with 672

the caveat that the unique “root” rational function 1/Q, has to be replaced by a finite set of 673

rational functions (1/Q1, 1/Q2, 1/Q3 in our previous example). 674

6. An infinite number of birational symmetries of the diagonals and telescopers 675

Let us consider the simplest example of non-trivial diagonal of rational function, 676

namely the diagonal of the rational function of three variables: 677

R(x, y, z) =
1

1 − x − y − z
. (103)

Let us consider the birational transformation B: 678

B : (x, y, z) −→
(

x, y · (1 + 3 x + 7 x2),
z

1 + 3 x + 7 x2

)
. (104)
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It is birational because its compositional inverse is also a rational function: 679

(x, y, z) −→
(

x,
y

1 + 3 x + 7 x2 , z · (1 + 3 x + 7 x2)
)

. (105)

Note that this birational transformation preserves the product p = x y z, as well as the 680

neighbourhood of the point (x, y, z) = (0, 0, 0). This birational transformation is an 681

infinite order transformation. The composition of this transformation n times gives: 682

(x, y, z) −→
(

x, y · (1 + 3 x + 7 x2)n,
z

(1 + 3 x + 7 x2)n

)
. (106)

The rational function (103), transformed by the (infinite order) birational transformation 683

(104), reads: 684

RB(x, y, z) = R
(

x, y · (1 + 3 x + 7 x2),
z

1 + 3 x + 7 x2

)
=

1
1 − x − y · (1 + 3 x + 7 x2) − z/(1 + 3 x + 7 x2)

. (107)

On the multi-Taylor expansion of (107) one finds easily that the diagonal of (103) and (107) 685

are actually identical. 686

More generally, let us consider 687

Bx : (x, y, z) −→
(

x, y · Q1(x),
z

Q1(x)

)
, (108)

where Q1(x) is a rational function (see however section (6.4)) with a Taylor expansion such 688

that Q1(0) ̸= 0. One also finds for any such rational function Q1(x), that the diagonal of 689

(103) and (107) are actually identical. This can be seen from the multi-Taylor expansion of 690

(107): 691

RB(x, y, z) = ∑
m

∑
n

∑
l

am,n,l · xm · yn · Q1(x)n · zl · Q1(x)−l (109)

= ∑
m

am,m,m · (x y z)m + ∑
(m,n,l) ̸= (m,m,m)

am,n,l · xm · yn · zl · Q1(x)n−l .

The second triple sum can be decomposed into the terms such that n ̸= l, which cannot 692

contribute to the diagonal (which extracts terms in p = x y z and thus terms in the product 693

y z), and the n = l terms (such that the Q1(x)n−l factor in (109) disappear): 694

∑
m ̸= n

am,n,n · xm · yn · zn. (110)

This last sum (110), which excludes the power of x to be equal to the power of the product 695

y z, cannot contribute to the diagonal. We have thus proved that the diagonal of (103) and 696

(107) are equal. 697

Of course there is nothing particular with the variable x. We can also introduce other 698

birational transformations which single out respectively y and z: 699

By : (x, y, z) −→
(

x · Q2(y), y,
z

Q2(y)

)
, (111)

and 700

Bz : (x, y, z) −→
(

x · Q3(z),
y

Q3(z)
, z

)
, (112)
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for any rational functions Q2(x) and Q3(x) with a Taylor expansion and such that Q2(0) ̸= 701

0 and Q3(0) ̸= 0. We can compose these birational transformations (108), (111) and (112), 702

in any order and changing the various Q1(x), Q2(x) and Q3(x) at each step. We get that 703

way a quite large infinite set of birational transformations preserving the product p = x y z 704

and the neighbourhood of the point (x, y, z) = (0, 0, 0). Since the product p = x y z 705

is preserved, let us eliminate (for instance) the variable z = p/x/y. The three previous 706

birational transformations (108), (111) and (112), on the three variables x, y, z, become 707

birational transformations depending on a parameter p, of only two variables x, y: 708

B̃x : (x, y) −→
(

x, y · Q1(x)
)

, (113)

709

B̃y : (x, y) −→
(

x · Q2(y), y
)

, (114)

and 710

B̃z : (x, y) −→
(

x · Q3

( p
x y

)
, y/Q3

( p
x y

))
. (115)

Composing these birational transformations of two variables (113), (114) and (115), in any 711

order and changing the various Q1(x), Q2(x) and Q3(x) at each step, one gets that way a 712

quite large subset of the (huge set of) Cremona transformations [50,78]. 713

Remark 6.1: Of course there is nothing specific with the particularly simple example 714

(103) of rational function. The previous birational transformations (113), (114) and (115), 715

are symmetries of the diagonals of any rational function of three variables. Furthermore, 716

there is nothing specific with rational function of three variables. We can generalize such 717

birational transformations for diagonal of rational function of n variables, for any number 718

of variables n. 719

6.1. Non birational symmetries for diagonals 720

6.1.1. Monomial transformation 721

722

Let us consider the (non-birational) monomial transformation: 723

M : (x, y, z) −→
(

x, x2 y2, y z3
)

. (116)

Let us perform this monomial transformation (116) on the rational function (103), one gets 724

the new rational function: 725

RM(x, y, z) = R
(

x, x2 y2, y z3
)

=
1

1 − x − x2 y2 − y z3 . (117)

The calculation of the telescoper of (117) gives an order-two linear differentizal operator 726

which has the 2F1 hypergeometric series solution: 727

2F1

(
[
1
3

,
2
3
], [1], 27 x3

)
= 1 + 6 x3 + 90 x6 + 1680 x9 + 34650 x12

+756756 x15 + 17153136 x18 + · · · (118)

One verifies easily, on the multi-Taylor expansion of (117), that its diagonal is actually the 728

2F1 hypergeometric series (118). The fact that the diagonal is the diagonal of (103), where x 729

is changed into x3, is a consequence of the fact that the product p = x y z is changed into 730

p = x3 y3 z3 by the monomial transformation (116). 731

6.1.2. Non-birational transformation 732
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733

Let us now consider the non-birational “monomial-like” transformation 734

B : (x, y, z) −→
(

x, x2 y2 · (1 + 3 x),
y z3

1 + 3 x

)
. (119)

Let us perform this non-birational monomial transformation (119) on the rational function 735

(103), one gets the new rational function 736

RB(x, y, z) = R
(

x, x2 y2 · (1 + 3 x),
y z3

1 + 3 x

)
=

1
1 − x − x2 y2 · (1 + 3 x) − y z3/(1 + 3 x)

. (120)

The calculation of the telescoper of (120) gives an order-two linear differential operator 737

which has, again, the 2F1 hypergeometric series solution: 738

2F1

(
[
1
3

,
2
3
], [1] 27 x3

)
= 1 + 6 x3 + 90 x6 + 1680 x9

+34650 x12 + 756756 x15 + 17153136 x18 + · · · (121)

One verifies easily on the multi-Taylor expansion of (120) that its diagonal is the 2F1 739

hypergeometric series (121). This result can be understood from the results on (117) and 740

the diagonal-preservation results on the birational transformations (108), (111) and (112). 741

Consequently we have another infinite set of (non-birational) transformations such 742

that the diagonal of a rational function is changed into the diagonal of that rational function 743

where x is changed into xN . 744

6.2. Birational symmetries for telescopers 745

Recalling the creative telescoping equation (6) and (9), we have verified experimentally, 746

on thousands of examples, that the previous birational transformations generated by (108), 747

(111) and (112), are actually compatible with the creative telescoping equations (6) and (9). 748

Note however, in the birationally transformed creative telescoping equations, that if the 749

telescoper does remain invariant (even if we are not in a context where the rational function has 750

a multi-Taylor expansion), the two “certificates” U and V are transformed in a very involved 751

way (they become quite large rational functions). 752

6.2.1. Birational symmetries not preserving (x, y, z) = (0, 0, 0) 753

754

Let us consider the involutive birational transformation: 755

I : (x, y, z) −→
( 1

x
,

1
y

, x2 y2 z
)

. (122)

This involutive birational transformation transforms the rational function (103) into: 756

RI(x, y, z) = − x y
x2 y3 z − x y + x + y

. (123)

The calculation of the telescoper of (123) gives the same telescoper as the telescoper of (103), 757

whose diagonal is the hypergeometric series: 758

2F1

(
[
1
3

,
2
3
], [1], 27 x

)
= (1 − 24 x)−1/4 · 2F1

(
[

1
12

,
5

12
], [1],

1728 x3 · (1 − 327 x)
(1 − 24 x)3

)
(124)

= 1 + 6 x + 90 x2 + 1680 x3 + 34650 x4 + 756756 x5 + 17153136 x6 + · · ·
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The hypergeometric series (124) (which is equal to the diagonal of (103)), is, here, just an 759

analytical solution of the telescoper of (123), that is, a “Period” of (123) but corresponding 760

to a non-vanishing cycle, since (123) does not have a multi-Taylor expansion. 761

6.2.2. Birational symmetries from collineations 762

763

Let us recall Noether’s theorem [50,79,80] on the decomposition [81] of Cremona 764

transformations. Noether’s theorem shows that any Cremona transformation can be seen 765

as the composition [50,81] of collineation transformations and of the Hadamard inverse 766

transformation: 767

(x, y) −→
( 1

x
,

1
y

)
. (125)

Let us consider Cremona transformations preserving (x, y) = (0, 0): 768

(x, y) −→
( x

1 − x + 2 y
,

y
1 − x + 2 y

)
. (126)

With this theorem in mind, since we have already considered the involutive transformation 769

(122) corresponding to the Hadamard inverse (125), let us just introduce the following 770

birational transformation associated with the collineation (126): 771

(x, y, z) −→
( x

1 − x + 2 y
,

y
1 − x + 2 y

, z · (1 − x + 2 y)2
)

. (127)

Such a birational transformation (associated with collineations) is an (infinite order) trans- 772

formation. It preserves (x, y, z) = (0, 0, 0) and the product p = x y z. Let us perform this 773

birational transformation (127) on the rational function (103). One gets a new rational func- 774

tion whose telescoper is an order-four linear differential operator L4 which is the product 775

of two order-two linear differential operator M2 and N2: L4 = M2 · N2. The order-two 776

linear differential operator M2 is (non-trivially) homomorphic to the order-two telescoper 777

of the rational function (103). The second order-two linear differential operator N2 cor- 778

responds to algebraic functions. For such transformations, associated with collineations, 779

we see that the telescoper is not preserved: we just have a (non-trivial) homomorphism property. 780

The example (127) is revisited in detail in Appendix B.4. More examples of birational 781

symmetries for telescopers, associated with collineations, are given in Appendix B. These 782

examples illustrate the complexity of the homomorphism. 783

6.3. Algebraic geometry comments on these birational symmetries 784

The diagonal of the rational function (103) is the hypergeometric series: 785

2F1

(
[
1
3

,
2
3
], [1], 27 x

)
= (1 − 24 x)−1/4 · 2F1

(
[

1
12

,
5

12
], [1],

1728 x3 · (1 − 327 x)
(1 − 24 x)3

)
(128)

= 1 + 6 x + 90 x2 + 1680 x3 + 34650 x4 + 756756 x5 + 17153136 x6 + · · ·

The algebraic curve, associated with the denominator of the rational function (103), is 786

the genus-one algebraic curve (elliptic curve): 787

1 − x − y − p
x y

= 0 or: − x2 y − x y2 + x y − p = 0. (129)
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The calculation of its j-invariant gives the following Hauptmodul 788

H =
1728

j
=

1728 p3 · (1 − 27 p)
(1 − 24 p)3 , (130)

which is exactly the Hauptmodul pullback in (128). 789

Let us consider the rational function (107), the algebraic curve corresponding to 790

eliminate z = p/x/y in the denominator of (107) reads: 791

−49 x5 y2 − 42 x4 y2 − 7 x4 y − 23 x3 y2 + 4 x3 y − 6 x2 y2

+2 x2 y − x y2 + x y − p = 0. (131)

This algebraic curve is a genus-one algebraic curve (elliptic curve) and the calculation of 792

its j-invariant gives the same Hauptmodul pullback in (128) as the Hauptmodul (130) for 793

(129). This is in agreement with the fact that the diagonal of (103) and (107) are equal. 794

At first sight, the fact that (131) is an elliptic curve is not totally obvious, however it is a 795

consequence of the fact that (129) and (131) are birationally equivalent elliptic curves (since 796

one gets one from the other one from a birational transformation). Consequently they should 797

have the same j-invariant. 798

This kind of remark will be seen as obvious, or slightly tautological, for an algebraic 799

geometer, however, as far as down-to-earth computer algebra calculations of diagonals 800

of rational functions or telescopers of rational functions are concerned, it becomes more 801

and more spectacular for more complicated birational transformations generated by the 802

composition of birational transformations like (108), (111) and (112). 803

More generally, the previous birational transformations preserving the product p = 804

x y z, p = x y z u, ... occurring in the diagonals, will preserve the algebraic geometry 805

description of the diagonal of rational functions [41]. For instance the genus-two curves 806

associated with split Jacobians situation we have encountered in [41] (which corresponds 807

to products of elliptic curves), will be preserved by such birational transformations. 808

6.4. Diagonal of transcendental functions 809

Generalizing the rationals functions 810

RB(x, y, z) = R
(

x, y · Q1(x),
z

Q1(x)

)
=

1
1 − x − y · Q1(x) − z/Q1(x)

, (132)

deduced from (107), using birational transformations like (108), one can consider, beyond, 811

transcendental functions like 812

RT(x, y, z) = R
(

x, y · cos(x),
z

cos(x)

)
=

1
1 − x − y · cos(x) − z/ cos(x)

. (133)

One can easily verify, from the multi-Taylor expansion of the (simple) transcendental 813

function (133), that its diagonal is actually the same as the one of (103), namely (128). This 814

is not a surprise since the demonstration of the invariance of the diagonal by birational 815

transformation sketched in section 6 (see (109)), just requires that Q1(0) ̸= 0 with Q1(x) 816

behaving at the origin as a polynomial. 817

7. Conclusion 818

Diagonals of rational functions have been shown to emerge naturally for n-fold 819

integrals in physics, field theory, enumerative combinatorics, seen as “Periods” of algebraic 820

varieties (corresponding to the denominators of these rational functions). On the thousands 821

of examples we have analyzed, corresponding to n-fold integrals of theoretical physics (in 822

particular the χ(n)’s of the susceptibility of the Ising model, ...), or corresponding to rather 823

academical diagonal of rational functions, we have seen the emergence of many striking 824

properties, and we want to understand if these remarkable properties are inherited from 825
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the “physics”, and, more precisely, the rather “integrable” framework of these examples 826

(Yang-Baxter integrability, 2D Ising models, Calabi-Yau and other mirror symmetries, ...) 827

or, on the contrary, are a consequence of the remarkable nature of diagonals of rational 828

functions in the most general framework. 829

This paper is a plea for diagonals of rational, or algebraic, functions and more generally 830

telescopers of rational or algebraic functions. 831

• We show that “periods” corresponding to non-vanishing cycles, obtained as solutions 832

of telescopers of rational functions can sometimes be recovered from diagonals of rational 833

functions corresponding to vanishing cycles, introducing an extra parameter. These two 834

concepts are not that compartmentalized. 835

• When considering diagonals of rational functions we have shown that the number of 836

variables of a rational function must, from time to time, be replaced by a notion of “effective 837

number” of variables. 838

• We have shown that the “complexity” of the diagonals of a rational function, and 839

for instance the order of the (minimal order) linear differential operator annihilating this 840

diagonal, is not related to the number of variables, or “effective number” of variables of 841

the rational function. In a forthcoming publication [69] we will try to understand what is 842

the minimal number of variables necessary to represent a given D-finite globally bounded 843

series as a diagonal of a rational function. 844

• We have shown that the algebraic geometry approach of the diagonals of rational 845

functions, or of the telescopers of these rational functions, described in [41], can, probably, 846

be generalized to diagonals of algebraic functions, or telescoper of algebraic functions. 847

These are just preliminary studies and almost everything remains to be done. 848

• When studying diagonals of rational functions, our explicit examples enable to 849

understand why one can actually restrict to rational functions of the form 1/Q provided 850

the polynomial at the denominator is irreducible. The situation where the denominator Q 851

factorizes clearly needs further analysis that will be displayed in a forthcoming paper [69]. 852

The case of the calculations of telescopers is slightly different: one can (probably), again, 853

reduce to rational functions of the form 1/Q but with a finite set of polynomials Q. 854

• We have shown that diagonals of rational functions (and this is also the case with 855

diagonals of algebraic functions) are left invariant when one performs an infinite set of 856

birational transformations on the rational functions. This remarkable result can, in fact, be 857

generalized to infinite set of rational transformations, the diagonals of the transformed rational 858

functions becoming the diagonal of the original rational function where the variable x is 859

changed into xn. These invariance results generalize to telescopers. More general (infinite) 860

set of birational transformations are shown to correspond to more convoluted “covariance” 861

property of the telescopers (see Appendix B). 862

• We provide some examples of diagonals of transcendental functions which can also 863

yield simple 2F1 hypergeometric functions associated with elliptic curves. The analysis of 864

diagonal of transcendental functions is clearly an interesting new domain to study. 865

• Finally, when trying to understand the puzzling fact that telescopers of rational 866

functions are almost always homomorphic to their adjoint, and thus have selected symplec- 867

tic or orthogonal differential Galois groups, we understand a bit better the emergence of 868

curious examples of telescopers that are not homomorphic to their adjoint, this (up to ho- 869

momorphisms) self-duality-breaking ruling out a Poincaré duality interpretation of this quite 870

systematic emergence of operators homomorphic to their adjoint. A “desingularization” 871

of such puzzling cases, corresponding to the introduction of an extra parameter, shows 872

that such operators now occur in dual (adjoint) pairs, thus restoring the duality (homomor- 873
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phism to the adjoint). The limit when the extra parameter goes to zero, is the direct sum 874

of different telescopers corresponding to the first rational function terms of the expansion 875

of the extended rational function in term of this extra parameter. With section 5.2 we see 876

that the puzzling (non self-adjoint up to homomorphism) order-three linear differential 877

operator L3 with SL(3, C) differential Galois group, is better understood as a member of a 878

triplet of three “quarks” (90), (91), and (92), which restores the duality. This may suggest 879

that the quite strange 3F2 hypergeometric functions (91) or (92), could be related to (90) 880

which has a clear elliptic curve origin. After all, these functions are three periods of the 881

same algebraic variety. The existence of such a relation between hypergeometric functions 882

of totally and utterly different nature, is a challenging open question. 883

• In Appendix B the calculations of telescopers of rational functions, associated with 884

very simple collineations, yield quite massive linear differential operators which factor 885

into an order-two operator associated with an elliptic curve, and a “dressing” of products 886

of factors which turn out to be direct sums of operators with algebraic function solutions. 887

This occurrence of this “mix” between products and direct sums of a large number of 888

operators (occurring, for instance, for the linear differential operators annihilating the 889

χ(n) components of the susceptibility of the Ising model [1,27,28]) will be revisited in a 890

forthcoming paper [69]. 891

Instead of pursuing one specific mathematical problem this paper can be seen as a 892

journey into the amazing world of integer sequences, and differential equations. With all 893

the examples displayed in this paper we provide some answers, sometimes some plausible 894

scenarii, to many important questions naturally emerging when working on diagonals of 895

rational or algebraic functions, or on telescopers of rational or algebraic, functions, related, 896

or not related, to problems of physics or enumerative combinatorics. Like any fruitful 897

concept, every answered questions does not “close” the subject but, on the contrary, often 898

raises more new questions than the number of answered questions. 899

Diagonals of rational, or algebraic, functions, correspond to (globally bounded) se- 900

ries that can be recast into series with integer coefficients which are solutions of linear 901

differential operators. When studying the two dimensional Ising model and its related 902

Painlevé equations, one finds that the λ-extensions of the correlation functions [82,83] can 903

also produce series with integer coefficients which are differentially algebraic [84] solutions 904

of non-linear differential equations of the Painlevé type, these series being also such that 905

their reduction modulo primes give algebraic functions, just like diagonals of rational 906

or algebraic functions (for other examples of differentially algebraic series with integer 907

coefficients see for instance [85]). 908

This paper tries to show that the concept of diagonals of rational, or algebraic, functions 909

is a remarkably rich and fruitful concept providing tools for physics but also bridging, 910

in a quite fascinating way, different domains of mathematics. The case of diagonal of 911

transcendental functions, or of these λ-extensions seems to show that the “unreasonable 912

richness” of diagonals and telescopers, may just be the top of an even more fascinating 913

mathematical “iceberg” of mathematical physics. 914
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Appendix A. Other α-dependent example 929

Appendix A.1. A first very simple example 930

931

Another example, similar to the rational function (87) studied in section 5.2, is 932

1
1 − x2 − y2 − z2 − α · x y2 . (A.1)

Its telescoper is an order-four linear differential operator which becomes in the α → 0 933

limit the LCLM of two order two linear differential operators, one, L2, corresponding to 934

the hypergeometric solution (which is actually the α = 0 diagonal) 935

2F1

(
[
1
3

,
2
3
], [1], 27 x2

)
, (A.2)

and an order-two linear differential operator M2 having the solution 936

d
dx 2F1

(
[
1
6

,
5
6
], [1], 27 x2

)
, (A.3)

This order-two operator M2 is not homomorphic to the order-two operator L2. Let us 937

consider the α expansion of (A.1) 938

1
1 − x2 − y2 − z2 − α · x y2 =

1
1 − x2 − y2 − z2 +

x y2

(1 − x2 − y2 − z2)2 · α

+
x2 y4

(1 − x2 − y2 − z2)3 · α2 + · · · (A.4)

The diagonal of the term in α1 in (A.4) is trivial: it is equal to zero. In contrast, the telescoper 939

of the term in α1 in (A.4) is actually nothing but the order-two linear differential operator 940

M2. The telescoper of the term in α2 in (A.4) is an order-two linear differential operator 941

homomorphic to the previous order-two linear differential operator L2. Similarly to the 942

calculations displayed in (87), the telescopers for the terms in α2 n in the expansion (A.4) 943

yield order-two linear differential operators, homomorphic to L2, when the telescopers for 944

the terms in α2 n+1 yield order-two operators, homomorphic to M2. 945

Appendix A.2. Christol: breaking the duality symmetry 946

These results can be compared with ones for the diagonal of the rational function 947

1
1 − x4 − y4 − z4 − α · x

. (A.5)

The linear differential operator annihilating the diagonal of the rational function (A.5) is 948

an order-ten linear differential operator L10(α) depending on the parameter α, which is 949

homomorphic to its adjoint with an order-eight intertwiner. Consequently its differential 950

Galois group is included in Sp(10, C). This order-ten linear differential operator L10(α) is 951

irreducible except at α = 0. 952
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At α = 0 it is the direct sum LCLM(L2, M2, L3, M3), of two order-three linear differ- 953

ential operators and two order-two linear differential operators, namely L2 corresponding 954

to the solution 955

2F1

(
[
1
3

,
2
3
], [1], 27 x4

)
(A.6)

= 1 + 6 x4 + 90 x8 + 1680 x12 + 34650 x16 + 756756 x20 + · · ·

as it should (this is the diagonal of (A.5) at α = 0), and the other one, M2, corresponding 956

to the globally bounded series solution expressed in terms of HeunG functions (use Table 957

page 24 of [67]): 958

(1 − 24 x4)2

(1 − 27 x4)2 · HeunG
(9

8
,

97
32

,
7
6

,
5
6

, 1, −1; 27 · x4
)

. (A.7)

This linear differential operator M2 is homomorphic to the order-two linear differential 959

operator corresponding to the modular form (see Appendix B in [16]): 960

2F1

(
[
1
6

,
5
6
], [1], 27 x4

)
. (A.8)

Using the identity 961

HeunG
(9

8
,

97
32

,
7
6

,
5
6

, 1, −1; 27 · x
)

=

4 · (1 − 27 x) · (27 x + 2)
(1 − 24 x)2 · x · d

dx 2F1

(
[
1
6

,
5
6
], [1], 27 x

)
+

1 9 x − 486 x2

(1 − 24 x)2 · 2F1

(
[
1
6

,
5
6
], [1], 27 x

)
, (A.9)

we can rewrite (A.7) in terms of the modular form (A.8). One can thus write the solution of 962

M2 as: 963

2 + 27 x4

1 − 27 x4 · x · d
dx 2F1

(
[
1
6

,
5
6
], [1], 27 x4

)
+

1 + 18 x4

1 − 27 x4 · x4 · 2F1

(
[
1
6

,
5
6
], [1], 27 x4

)
= 1 +

315
4

x4 +
225225

64
x8 +

33948915
256

x12 +
75293843625

16384
x16

+
9927744261435

65536
x20 + · · · (A.10)

The order-three linear differential operator L3 has the hypergeometric solution 964

3F2

(
[

7
12

,
11
12

,
15
12

], [
3
4

, 1], 27 x4
)

, (A.11)

while the order-three linear differential operator M3 has the hypergeometric solution: 965

3F2

(
[
13
12

,
17
12

,
21
12

], [
1
4

, 1], 27 x4
)

. (A.12)

These two linear differential operators are such that L3 is actually homomorphic to the 966

adjoint of M3, and, of course, M3 is homomorphic to the adjoint of L3, but L3 is not 967

homomorphic to the adjoint of L3 (and M3 is not homomorphic to the adjoint of M3). We 968

have again, a pair of dual linear differential operators. 969
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Since these calculations are in the α → 0 limit, let us expand in α the rational function 970

(A.5): 971

1
1 − x4 − y4 − z4 − α · x

=
1

1 − x4 − y4 − z4 +
x

(1 − x4 − y4 − z4)2 · α

+
x2

(1 − x4 − y4 − z4)3 · α2 +
x3

(1 − x4 − y4 − z4)4 · α3

+
x4

(1 − x4 − y4 − z4)5 · α4 + · · · (A.13)

Since the telescoper of a sum of rational functions is the direct sum (LCLM) of the tele- 972

scopers of these rational functions, let us consider the telescopers of the first five terms 973

in the RHS of (A.13). The telescoper of the first term is of course the order-two linear 974

differential operator L2 annihilating the diagonal of this rational function. The telescoper 975

of the second term (in α1), is the order-three linear differential operator L3.The telescoper 976

of the third term (in α2), is the order-two linear differential operator M2. The telescoper of 977

the fourth term (in α3), is exactly M3. The telescoper of the sum of the first orders in α in 978

the expansion (A.13) 979

1
1 − x4 − y4 − z4 +

x
(1 − x4 − y4 − z4)2 · α

+
x2

(1 − x4 − y4 − z4)3 · α2 +
x3

(1 − x4 − y4 − z4)4 · α3, (A.14)

is actually the LCLM of the four telescopers L2, M2, L3 and M3 which is precisely the α → 0 980

limit of the order-ten linear differential operator ! 981

Let us now consider the telescopers of the next α orders in the expansion (A.13). The 982

telescoper of the last rational function in (A.13), namely x4/(1 − x4 − y4 − z4)5, is an 983

order-two linear differential operator N2. One can thus write the solution of N2 as: 984

D1 =
3
48

· 1 + 540 x4 + 4374 x8

(1 − 27 x4)3 · x · d
dx 2F1

(
[
1
3

,
2
3
], [1], 27 x4

)
+

3
2
· (19 + 216 x4)

(1 − 27 x4)3 · x4 · 2F1

(
[
1
3

,
2
3
], [1], 27 x4

)
(A.15)

= 30 x4 + 3780 x8 + 277200 x12 + 15765750 x16 + 771891120 x20 + · · ·

The telescoper of 985

x8

(1 − x4 − y4 − z4)9 , (A.16)

is an order-two linear differential operator whose analytic solution reads: 986

D2 = − 3
672

· p1

(1 − 27 x4)7 · x · d
dx 2F1

(
[
1
3

,
2
3
], [1], 27 x4

)
+

3
28

· p2

(1 − 27 x4)7 · x4 · 2F1

(
[
1
3

,
2
3
], [1], 27 x4

)
(A.17)

= 2970 x8 + 900900 x12 + 137837700 x16 + 14665931280 x20

+1236826871280 x24 + 88597190167200 x28 + · · ·

where: 987

p1 = 1 − 714 x4 − 924372 x8 − 54587520 x12 − 530141922 x16 − 554824404 x20,

p2 = 1 + 27030 x4 + 2062098 x8 + 23960772 x12 + 29170206 x16. (A.18)
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If we consider, instead of the telescoper, the diagonal of the rational function (A.13), 988

only the terms in α4 n n = 0, 1, 2, · · · will contribute, the other ones, corresponding to 989

non-vanishing cycles [57], give zero contributions. Consequently we get for the diagonal of 990

the rational function (A.13): 991

Diag
( 1

1 − x4 − y4 − z4 − α · x

)
= 2F1

(
[
1
3

,
2
3
], [1], 27 x4

)
+D1 · α4 +D2 · α8 + · · · (A.19)

992

= 1 + (30 α4 + 6) · x4 + (2970 α8 + 3780 α4 + 90) · x8

+(371280 α12 + 900900 α8 + 277200 α4 + 1680) · x12

+(51482970 α16 + 185175900 α12 + 137837700 α8 + 15765750 α4 + 34650) · x16

+(7571343780 α20 + 36141044940 α16 + 44975522592 α12

+14665931280 α8 + 771891120 α4 + 756756) · x20 + · · ·
= 1 + 6 x4 + 90 x8 + 1680 x12 + 34650 x16 + 756756 x20 + · · ·

+
(

30 x4 + 3780 x8 + 277200 x12 + 15765750 x16 + 771891120 x20 + · · ·
)
· α4

+
(

2970 x8 + 900900 x12 + 137837700 x16 + 14665931280 x20 + · · ·
)
· α8 + · · ·

Appendix B. Birational symmetries from collineations 993

Appendix B.1. Birational symmetries from collineations: a first example 994

995

Let us consider a collineation transformation not preserving (x, y) = (0, 0): 996

(x, y) −→
( 2 + x + 3 y

1 − x + 2 y
,

1 + 5 x + 7 y
1 − x + 2 y

)
, (B.1)

and let us now introduce the following birational transformation associated with the collineation 997

(B.1): 998

(x, y, z) −→( 2 + x + 3 y
1 − x + 2 y

,
1 + 5 x + 7 y
1 − x + 2 y

,
x y z · (1 − x + 2 y)2

(2 + x + 3 y) · (1 + 5 x + 7 y)

)
, (B.2)

which preserves the product p = x y z. 999

Let us transform the simple rational function (103) with the birational transformation 1000

(B.2). It becomes the rational function: 1001

R =
(1 − x + 2 y) · (2 + x + 3 y) · (1 + 5 x + 7 y)

D , (B.3)

where the denominator D reads: 1002

D = x4 y z − 6 x3 y2 z + 12 x2 y3 z − 8 x y4 z − 3 x3 y z + 12 x2 y2 z − 12 x y3 z

+3 x2 y z − 6 x y2 z − 35 x3 − 194 x2 y − 323 x y2 − x y z − 168 y3 − 87 x2

−251 x y − 178 y2 − 36 x − 50 y − 4. (B.4)
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The intersection of the algebraic surface D = 0 with the algebraic surface p = x y z, 1003

is an elliptic curve. One gets, almost instantaneously (using the j_invariant command in 1004

Maple with(algcurves)), the Hauptmodul of this elliptic curve: 1005

H =
1728 p3 · (1 − 27 p)

(1 − 24 p)3 . (B.5)

If one expects an algebraic geometry interpretation of the calculation of the diagonal of rational 1006

functions or telescopers [41], this Hauptmodul must be the same as the Hauptmodul (130) 1007

of the elliptic curve (129), since the two algebraic curves are birationaly equivalent, being re- 1008

lated by a birational transformation namely (B.1). The calculation of the telescoper of (B.3) is 1009

really massive: it gives, after one month of computation, an order-eleven linear differential 1010

operator (we thank C. Koutschan for performing these slightly “extreme” computations). 1011

The result being too massive, let us consider other examples of birational transformations 1012

associated with collineations simpler than (B.2). 1013

Remark B 1.1: The diagonal of the rational function (B.3) is a very simple series: 1014

Diag
(
R
)

= −1
2
· 1

1 + x/4

= −1
2
+

1
8
· x − 1

32
· x2 +

1
128

· x3 − 1
512

· x4 + · · · (B.6)

Remark B 1.2: If one considers, instead of (B.3) the rational function with the same 1015

denominator(B.4) but where the numerator is normalised to 1, 1016

R =
1
D . (B.7)

The diagonal of (B.7) is the same as (B.6) up to a factor two: 1017

Diag
(
R
)

= −1
4
· 1

1 + x/4
. (B.8)

The telescoper of (B.7) is an order-seven linear differential operator which factorises as 1018

follows: 1019

L7 = F2 · G2 · H2 · H1 with: H1 = Dx +
1

4 + x
, (B.9)

where the order-two linear differential operator F2 is quite large and is (non-trivially) 1020

homomorphic to the order-two linear differential operator L2 which is the telescoper of the 1021

rational function (103), and where the order-two linear differential operators G2 and H2 1022

have algebraic solutions. The diagonal (B.8) is solution of the order-one operator H1. The 1023

homomorphism between F2 and L2 gives 1024

F2 · X1 = Y1 · L2 where: X1 = A(x) · Dx + B(x), (B.10)

where A(x) and B(x) are rational functions. Consequently a solution S of the telescoper 1025

L7 (but not of the product G2 H2 H1 in (B.9)) will be related to the hypergeometric solution 1026

2F1([1/3, 2/3], [1], 27 x) of the order-two linear differential operator L2, as follows: 1027

X1

(
2F1

(
[
1
3

,
2
3
], [1], 27 x

))
= G2 · H2 · H1 · S . (B.11)

Remark B 1.3: Note that the diagonal of the rational function (B.3) is a very simple 1028

series (B.6). Therefore the solution S of the telescoper, associated with an elliptic curve 1029

of Hauptmodul (B.5) (see equation (B.11)) corresponds to a “period”, an integral over a 1030
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non-vanishing cycle, and is different from the integral over a vanishing cycle, namely the 1031

diagonal (B.6). 1032

Remark B 1.4: The factorisation (B.9) is far from being unique. The product of the last 1033

three factors can be seen to be a direct sum: 1034

G2 · H2 · H1 = G̃2 ⊕ H̃2 ⊕ H1, (B.12)

where the two new order-two operators G̃2 and H̃2 are simpler, with, again, algebraic 1035

function solutions. 1036

Appendix B.2. Birational symmetries from collineations. A simpler example 1037

1038

Let us consider the following birational transformation associated with a collineation: 1039

(x, y, z) −→( x + 3 y
1 − x + 2 y

,
1 + 5 x + y
1 − x + 2 y

,
x y z · (1 − x + 2 y)2

(x + 3 y) · (1 + 5 x + 7 y)

)
, (B.13)

which preserves the product p = x y z. Again, if one transforms the simple rational 1040

function (103) with the birational transformation (B.13), one gets the rational function of 1041

the form 1042

R =
(1 − x + 2 y) · (x + 3 y) · (1 + 5 x + y)

D , (B.14)

and, again, the intersection of the algebraic surface D = 0 with the algebraic surface 1043

p = x y z, is an elliptic curve, corresponding to eliminate z = p/x/y in D = 0. One 1044

gets immediatly the same Hauptmodul (B.5) for this new elliptic curve. 1045

The telescoper of the rational function (B.14) is an order-ten linear differential operator 1046

(we thank C. Koutschan for providing this order-ten linear differential operator). This 1047

telescoper is obtained using about nine days of computation time. It uses 286 evaluation 1048

points (in contrast with the 462 evaluation points required for (B.4)), and one uses in total 1049

38 primes (of size 9 · 22 · 1018) to reconstruct the solution with Chinese remaindering. The 1050

telescoper of the rational function (B.14) factors as follows: 1051

L10 = F2 · G2 · H1, · I1 · J2 · K2, (B.15)

The order-two linear differential operator F2 in (B.15) is homomorphic to the order-two 1052

linear differential operator L2 which is the telescoper of the rational function (103), and the 1053

order-two linear differential operators G2, J2 and K2 have algebraic solutions. 1054

Remark B 2.1: The factorisation of (B.15) is far from being unique. As usual we have a 1055

mix between product and direct-sum of factors. The order-ten operator being quite large it 1056

is difficult to get the direct-sum factorisation of L10 in (B.15). One finds, however, quite 1057

easily that L10 has two simple rational function solutions 1058

1
(x − 35) · (4 x + 3)

,
x

(x − 35) · (4 x + 3)
, (B.16)

corresponding to two order-one operators L1 = Dx + (8 x − 137)/(4 x + 3)/(x − 35) and 1059

M1 = Dx + (4 x + 3)/(x + 21)/(x − 35) − 1/x and, thus, can be rightdivided by the 1060

LCLM of L1 and M1. In fact the product of the last factors at the right of the factorization 1061

of L10 can be seen to be a direct sum: 1062

G2 · H1 · I1 · J2 · K2 = L1 ⊕ M1 ⊕ G̃2 ⊕ J̃2 ⊕ K2. (B.17)
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In contrast the product F2 · G2 is not a direct sum. The order-two operators G̃2 and J̃2 are 1063

(much) simpler than G2 and J2, again with algebraic function solutions. 1064

The result remaining still too large, let us consider another example of birational 1065

transformation associated with collineations, simpler than (B.2) or (B.13). 1066

Remark B 2.2: If one considers, instead of (B.14) the rational function with the same 1067

denominator D but where the numerator is normalised to 1, 1068

R =
1
D . (B.18)

The telescoper of the rational function (B.18) is an order-seven linear differential operator 1069

L7 = F2 · G1 · G2 · H2, (B.19)

where the order-two linear differential operator F2 is (non-trivially) homomorphic to the 1070

order-two linear differential operator L2 which is the telescoper of the rational function 1071

(103), and where the order-two linear differential operators G2 and H2 have simple alge- 1072

braic solutions. This factorisation (B.19) is not unique. Introducing the order-one operator 1073

G̃1 = Dx + 1/x, one can see that G̃1 rightdivides L7 and that the product of the three 1074

factors, at the right of the decomposition (B.19), can be written as a direct sum 1075

G1 · G2 · H2 = G̃1 ⊕ G̃2 ⊕ H2, (B.20)

where the solutions of G̃2 are algebraic. 1076

Remark B 2.3: In Appendix B we encounter many order-two linear differential opera- 1077

tors with algebraic solutions/ Even for large order-two linear differential operators one can 1078

see quite easily (using hypergeometricsols in DEtools of Maple) that the log-derivative of 1079

these solutions are algebraic functions, but finding that the algebraic expression (minimal 1080

polynomial) of the solutions is much harder. Just showing that the solutions are algebraic 1081

without having their exact expressions, can be achieved by showing that their p-curvatures 1082

are zero, recalling the André-Christol conjecture that one must have a basis of globally 1083

bounded solutions, or looking for rational solutions of symmetric powers of the operators. 1084

In principle these algebraic functions solutions of order-two linear differential operators can 1085

be written as pullbacked 2F1 hypergeometric functions, but again it is a difficult task [86]. 1086

Appendix B.3. Birational symmetries from collineations. An even simpler example 1087

1088

Let us consider the following birational transformation associated with a collineation: 1089

(x, y, z) −→( x + 3 y
1 − x + 2 y

,
5 x + 7 y

1 − x + 2 y
,

x y z · (1 − x + 2 y)2

(x + 3 y) · (5 x + 7 y)

)
, (B.21)

which preserves the product p = x y z, and also preserves the origin (x, y, z) = (0, 0, 0). 1090

Again, if one transform the simple rational function (103) with the birational transformation 1091

(B.21), one gets the rational function of the form: 1092

R =
(1 − x + 2 y) · (x + 3 y) · (5 x + 7 y)

D , (B.22)

and, again, the intersection of the algebraic surface D = 0 with the algebraic surface 1093

p = x y z, is an elliptic curve, corresponding to eliminate z = p/x/y in D = 0. One 1094
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gets immediatly the same Hauptmodul (B.5) for this new elliptic curve. The telescoper of 1095

the rational function (B.22) is an order-ten linear differential operator 1096

L10 = F2 · G2 · H1 · I1 · J2 · K2, (B.23)

where the order-two linear differential operator F2 is a quite “massive” operator (30391 1097

characters) which is (non-trivially) homomorphic to the order-two linear differential opera- 1098

tor L2 which is the telescoper of the rational function (103) and where the solutions of G2, 1099

J2 and K2 are two algebraic functions. The order-two linear differential operator F2 is of the 1100

form 1101

F2 = D2
x +

A1(x)
D1(x)

· Dx +
A0(x)
D0(x)

, (B.24)

where A1(x) and A0(x) are polynomials of degree 41 and 55 respectively, where D1(x) 1102

and D0(x) read 1103

D1(x) = λ(x) · P14(x) · P20(x), D0(x) = x · λ(x) · P14(x) · P20(x)2, (B.25)

with: 1104

λ(x) = (219024 − 6916931 x − 23604075 x2) · (7 − 225 x) · (5 − 243 x)

× (1 − 27 x) · (35 − x) · (21 + x) · x, (B.26)

where P14(x) and P20(x) are polynomials of degree 14 and 20 respectively. The order-two 1105

operator linear differential G2 yielding algebraic solutions is also a quite “large” linear 1106

differential operator. 1107

Remark B 3.1: The factorisation of (B.23) is far from being unique. As usual we have a 1108

mix between product and direct-sum of factors. The order-ten linear differential operator 1109

being quite large it is difficult to get the direct-sum factorisation of L10 in (B.23). One finds, 1110

however, quite easily that L10 has two simple rational function solutions 1111

1
(x − 35) · (x + 21)

,
x

(x − 35) · (x + 21)
, (B.27)

corresponding to two order-one operators L1 = Dx + 2 (x − 7)/(x + 21)/(x − 35) and 1112

M1 = Dx + 2 (x − 7)/(x + 21)/(x − 35) − 1/x and, thus, can be rightdivided by the 1113

LCLM of L1 and M1. More interestingly, the product H1 · I1 · J2 · K2 in the decomposition 1114

(B.23) of L10, can be seen as the direct sum of L1, M1, K2 and two new (and simpler !) 1115

order-two linear differential operators G̃2 and J̃2: 1116

G2 · H1 · I1 · J2 · K2 = L1 ⊕ M1 ⊕ G̃2 ⊕ J̃2 ⊕ K2. (B.28)

In contrast note that the product F2 · G2 in the decomposition (B.23) is not a direct-sum. It 1117

was easy to see that the log-derivative of the solutions of the order-two operator J2 were 1118

algebraic functions, but harder to see that these solutions were actually algebraic. One now 1119

finds immediately that the solutions of J̃2 are algebraic functions. 1120

Remark B 3.2: If one considers, instead of (B.22) the rational function with the same 1121

denominator D but where the numerator is normalised to 1, 1122

R =
1
D . (B.29)

Its telescoper is an order-seven linear differential operator 1123

L7 = F2 · G1 · G2 · H2, (B.30)
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where the order-two linear differential operator F2 is (non-trivially) homomorphic to the 1124

order-two linear differential operator L2 which is the telescoper of the rational function 1125

(103), and where the order-two linear differential operators G2 and H2 have simple alge- 1126

braic solutions. 1127

Appendix B.4. Birational symmetries from collineations. Another example 1128

1129

Let us consider the following birational transformation associated with a collineation: 1130

(x, y, z) −→( x
1 − x + 2 y

,
y

1 − x + 2 y
, z · (1 − x + 2 y)2

)
, (B.31)

which preserves the product p = x y z, and also preserves the origin (x, y, z) = (0, 0, 0). 1131

Again, if one transforms the simple rational function (103) with the birational transforma- 1132

tion (B.31), one gets the rational function of the form: 1133

R =
1 − x + 2 y

D , (B.32)

and again the intersection of the algebraic surface D = 0 with the algebraic surface 1134

p = x y z, is an elliptic curve, corresponding to eliminate z = p/x/y in D = 0. One 1135

gets immediatly the same Hauptmodul (B.5) for this new elliptic curve. The telescoper of 1136

the rational function (B.32) is an order-four linear differential operator 1137

L4 = F2 · G2, (B.33)

where the order-two linear differential operator F2 is (non-trivially) homomorphic to the 1138

order-two linear differential operator L2 which is the telescoper of the rational function 1139

(103) and where the solutions of G2 are two algebraic functions of series expansion: 1140

s0 = 1 +
105

4
· x +

12753
16

· x2 +
876225

32
· x3 +

251403765
256

· x4 + · · ·

s1 = x +
105

4
· x2 +

7385
8

· x3 +
2111725

64
· x4 +

155849463
128

· x5 + · · · (B.34)

The series s = s1 is, for instance, solution of the polynomial equation P(s, x) = 0, where 1141

P(s, x) reads: 1142

P(s, x) = 2847312 · p(x)3 · s6 + 158184 · p(x)2 · s4 + 5040 · p(x)2 · s3

+2197 · p(x) · s2 + 140 · p(x) · s + 4 x · (243 x + 35), (B.35)

with p(x) = 243 x2 + 35 x − 1. The series expansions of the algebraic solutions of 1143

P(s, x) = 0 read: 1144

S(u) = u +
448451640 u4 − 38438712 u3 − 20761650 u2 + 1377667 u + 221830

17710
· x

+3 · 448451640 u4 − 38438712 u3 − 20761650 u2 + 1450531 u + 221830
2024

· x2 + · · ·

where u = 0, −1/6, 1/6, 5/26, −4/39, −7/78. One finds that 1145

15 · S
(1

6

)
+ 8 · S

(
−1

6

)
+ 13 · S

(
− 7

78

)
= 0,

13 · S
(1

6

)
+ 8 · S

(
− 4

39

)
+ 15 · S

(
− 7

78

)
= 0,

15825411 · S
(1

6

)
− 1771 · S

(5
6

)
+ 29373604 · S

(
− 7

78

)
= 0, (B.36)
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and that the two solutions (B.34) of G2 read: 1146

s0 = S(0), s1 =
521
32

· S
(1

6

)
+

611
32

· S
(
− 7

78

)
. (B.37)

The homomorphism between F2 and L2 gives 1147

F2 · X1 = Y1 · L2, where:

X1 = α(x) ·
(
(3240 x2 + 6 x + 1) · Dx + 1080 x − 6

)
, with:

α(x) =
81

10 · (1 − 35 x − 243 x2) · (1 − 27 x)
. (B.38)

Consequently a solution S of the telescoper L4 (but not of G2 in (B.33)) will be related to 1148

the hypergeometric solution 2F1([1/3, 2/3], [1], 27 x) of the order-two linear differential 1149

operator L2, as follows: 1150

X1

(
2F1

(
[
1
3

,
2
3
], [1], 27 x

))
= G2 · S . (B.39)

The formal series solutions of the order-four linear differential operator (B.33) are (of course 1151

...) the two (algebraic) solutions (B.34) of G2, together with a solution with a ln(x)1, and a 1152

series s2, analytic at x = 0: 1153

s2 = x2 +
93
2

· x3 +
31185

16
· x4 +

2488035
32

· x5 +
1953542437

640
· x6 + · · · (B.40)

Relation (B.39) is actually satisfied with S = 5103 · s2. Note that the series for (B.39) is a 1154

series with integer coefficients: 1155

1
2
· 1

5103
· X1

(
2F1

(
[
1
3

,
2
3
], [1], 27 x

))
= 1 + 87 x + 5358 x2 + 282459 x3

+13662531 x4 + 626640714 x5 + 27758265651 x6 + 1200939383487 x7 + · · ·

Remark B 4.1: Note that the diagonal δ of the rational function (B.32) reads: 1156

δ = 1 + 4 x + 108 x2 + 1960 x3 + 43240 x4 + 965664 x5 + 22377600 x6

+528712272 x7 + 12698698320 x8 + 308814134200 x9 + · · · (B.41)

We expect this diagonal to be a solution of the order-four telescoper (B.33). This series is 1157

actually a linear combination of the three series s0, s1 and s2, analytic at x = 0: 1158

δ = s0 − 89
4

· s1 − 105 · s2. (B.42)

It is interesting to see how the three globally bounded series s0, s1 and s2, conspire to give 1159

a series with integer coefficients, the diagonal (B.42). 1160

Remark B 4.2: These results must be compared with the calculations for the rational 1161

function 1162

R =
1
D , (B.43)

where the denominator D is the same as the one in (B.32). In this case where the numerator 1163

has been normalised to 1, the diagonal is the same as the diagonal of 1/(1 − x − y − z), 1164

namely 2F1([1/3, 2/3], [1], 27 x), and the telescoper is the same telescoper as the one for 1165

1/(1 − x − y − z). 1166
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Appendix B.5. Birational symmetries from collineations. Another example 1167

1168

Let us consider the following birational transformation associated with a collineation: 1169

(x, y, z) −→( x + 3 y
1 − x + 2 y

,
y

1 − x + 2 y
,

x z · (1 − x + 2 y)2

x + 3 y

)
, (B.44)

which preserves the product p = x y z, and also preserves the origin (x, y, z) = (0, 0, 0). 1170

Again, if one transform the simple rational function (103) with the birational transformation 1171

(B.44), one gets the rational function of the form: 1172

R =
(1 − x + 2 y) · (x + 3 y)

D , (B.45)

and again the intersection of the algebraic surface D = 0 with the algebraic surface 1173

p = x y z, is an elliptic curve, corresponding to eliminate z = p/x/y in D = 0. One 1174

gets immediatly the same Hauptmodul (B.5) for this new elliptic curve. The telescoper of 1175

the rational function (B.45) is an order-seven linear differential operator 1176

L7 = F2 · G2 · H1 · H2, (B.46)

where the order-two linear differential operator F2 is (non-trivially) homomorphic to the 1177

order-two linear differential operator L2 which is the telescoper of the rational function 1178

(103), and where the order-two linear differential operators G2 and H2 have algebraic 1179

solutions (one finds easily that the log-derivative of these solutions are algebraic functions) 1180

and where H1 is an order-one linear differential operator. This homomorphism between 1181

F2 and L2 gives 1182

F2 · X1 = Y1 · L2 where: X1 = A(x) · Dx + B(x), (B.47)

where A(x) and B(x) are rational functions. Consequently a solution S of the telescoper 1183

L7 (but not of the product G2 · H1 · H2 in (B.46)) will be related to the hypergeometric 1184

solution 2F1([1/3, 2/3], [1], 27 x) of the order-two linear differential operator L2, as follows: 1185

X1

(
2F1

(
[
1
3

,
2
3
], [1], 27 x

))
= G2 · H1 · H2 · S . (B.48)

In that case the solution of S of the telescoper L7 reads 1186

S = x4 +
13316825310791

231428221515
· x5 +

30360140830595651
11108554632720

· x6 + · · · (B.49)

and the expansion of (B.48) reads: 1187

X1

(
2F1

(
[
1
3

,
2
3
], [1], 27 x

))
=

1
x

+
85390121841387522079
629841285410317908

+
906492811433323772155053002605

77136236451492696817854192
· x + · · · (B.50)

Remark B 5.1: The factorisation (B.46) is far from being unique. Introducing the order- 1188

one linear differential operator L1 = Dx + 4/(3 + 4 x), one has the following direct-sum 1189

decomposition: 1190

L7 = L1 ⊕ L6, (B.51)

G2 · H1 · H2 = L1 ⊕ G̃2 ⊕ H2, (B.52)
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where L6 is an order-six linear differential operator, and where the order-two linear differ- 1191

ential operator operator G̃2 is slightly simpler than G2. 1192

Remark B 5.2: If one considers, instead of (B.45), the rational function with the same 1193

denominator D but where the numerator is normalised to 1, 1194

R =
1
D . (B.53)

its telescoper is an order-four linear differential operator 1195

L4 = F2 · G2. (B.54)

The order-two linear differential operator F2 is (non-trivially) homomorphic to the order- 1196

two linear differential operator L2 which is the telescoper of the rational function (103), 1197

and the order-two linear differential operator G2 has simple algebraic solutions. 1198

Appendix B.6. Birational symmetries from collineations. Another simpler example 1199

1200

Let us consider the following birational transformation associated with a collineation: 1201

(x, y, z) −→( x + 3 y
1 − x + 2 y

,
1 + y

1 − x + 2 y
,

x y z · (1 − x + 2 y)2

(x + 3 y) · (1 + y)

)
, (B.55)

which preserves the product p = x y z. Again, if one transform the simple rational 1202

function (103) with the birational transformation (B.55), one gets the rational function of 1203

the form: 1204

R =
(1 − x + 2 y) · (x + 3 y) · (1 + y)

D , (B.56)

and again the intersection of the algebraic surface D = 0 with the algebraic surface 1205

p = x y z, is an elliptic curve, corresponding to eliminate z = p/x/y in D = 0. One 1206

gets immediatly the same Hauptmodul (B.5) for this new elliptic curve. 1207

The telescoper of the rational function (B.56) can now be calculated in only a few 1208

hours, and one gets an order-nine linear differential operator of the form 1209

L9 = F2 · G2 · H1 · H2 · I2, (B.57)

where the order-two linear differential operator F2 is (non-trivially) homomorphic to the 1210

order-two linear differential operator L2 which is the telescoper of the rational function 1211

(103), and where the order-two linear differential operators G2, H2 and I2 have algebraic 1212

solutions and where H1 is an order-one linear differential operator. This homomorphism 1213

between F2 and L2 gives 1214

F2 · X1 = Y1 · L2 where: X1 = A(x) · Dx + B(x), (B.58)

where A(x) and B(x) are quite large rational functions. Consequently a solution S of 1215

the telescoper L9 (but not of the product G2 · H1 · H2 · I2 in (B.57)) will be related to 1216

the hypergeometric solution 2F1([1/3, 2/3], [1], 27 x) of the order-two linear differential 1217

operator L2, as follows: 1218

X1

(
2F1

(
[
1
3

,
2
3
], [1], 27 x

))
= G2 · H1 · H2 · I2 · S . (B.59)

If finding the emergence of the hypergeometric function 2F1([1/3, 2/3], [1], 27 x) is easy to 1219

obtain from the (algebraic geometry) calculation of the Hauptmodul (B.5), (see (129)), the 1220
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telescoper of (B.56), or equivalently, the solution S of that telescoper, requires to find many 1221

linear differential operators, namely the intertwinner X1 and also the right factors G2, H1, 1222

H2 and I2. In contrast with the birational transformations described in section 6 (see (108), 1223

(111), (112)), which simply preserve the diagonals of the rational functions, we have here, 1224

with the birational transformation (B.55), again two birationally equivalent underlying elliptic 1225

curves, but a much more convoluted “covariance” requiring to find many linear differential 1226

operators. The “elliptic curve skeleton” (the j-invariant or the Hauptmodul) is preserved, 1227

but the right factors dressing G2, H1, H2 and I2 and the intertwiner X1 are quite involved. 1228

Remark B 6.1: In fact the order-nine operator (B.57) is a direct sum. It can be written 1229

in the form 1230

L9 = L8 ⊕ L1, (B.60)

G2 · H1 · H2 · I2 = L1 ⊕ G̃2 ⊕ H̃2 ⊕ I2, (B.61)

where the order-one operator reads: 1231

L1 = Dx +
4

3 + 4 x
, (B.62)

where L8 is an order-eight operator, and where the operators with a tilde are much simpler 1232

than the operators without a tilde. 1233

Remark B 6.2: Again if one considers, instead of (B.56), the rational function with the 1234

same denominator D, but where the numerator has been normalised to 1, 1235

R =
1
D , (B.63)

one finds an order-seven telescoper which factorises as follows: 1236

L7 = F2 · G1 · H2 · I2, (B.64)

where the order-two linear differential operator F2 is (non-trivially) homomorphic to the 1237

order-two linear differential operator L2 which is the telescoper of the rational function 1238

(103), and where the order-two linear differential operators H2 and I2 have algebraic 1239

solutions. 1240

Remark B 6.3: Again the factorisation (B.64) is far from being unique. Introducing 1241

the order-one linear differential operator L1 = Dx + 1/x, one has the two following 1242

direct-sum decompositions 1243

L7 = L6 ⊕ L1, (B.65)

G1 · H2 · I2 = L1 ⊕ H̃2 ⊕ I2, (B.66)

where the order-two linear differential operator H̃2 is slightly simpler than H2. 1244

Remark B 6.4: As far as an algebraic geometry approach of diagonals and telescopers is 1245

concerned (see [41]), we see that the concept of telescopers, which describes all the periods, 1246

can be more interesting than the concept of diagonals which often yields to diagonals that 1247

can be almost trivial functions (being simple rational functions, or being simply equal 1248

to zero). The examples of Appendix B show that the differential algebra approach of 1249

creative telescoping cannot be totally replaced by an algebraic geometry approach [41]. 1250

The algebraic geometry approach provides very quickly some precious information on the 1251

telescoper (the Hauptmodul), but not the telescoper itself. In fact one might consider the 1252

opposite point of view: creative telescoping could be seen as a tool to get effective algebraic 1253

geometry results. 1254
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Remark B 6.5: The examples displayed in this appendix can be seen as an illustration 1255

of the “dialogue of the deaf” between mathematicians and physicists. Some mathematicians 1256

will point out the fact that the calculation of the Hauptmodul (B.5) underlines the essence 1257

of the problem, namely the existence of an underlying elliptic curve, and will see the 1258

explicit calculation of the telescoper, and all its periods, as a laborious and slightly useless 1259

piece of work. In particular they will consider the “dressing” right-factors occurring in the 1260

decompositions (B.15), (B.23), ... as a totally and utterly spurious information, and they will 1261

also probably see the explicit expression of the large order-two operators F2 as superfluous, 1262

retaining only the order-two linear differential operator L2, prefering to ignore, or forget, 1263

the intertwiner X1 in (B.47) or (B.58). Along this line they may consider the other solutions 1264

of the telescoper, namely the “periods” (associated with non-vanishing cycles) that are not 1265

diagonals, as irrelevant. In contrast for a physicist, getting all the periods, and the explicit 1266

expression of the telescoper will be seen as essential Recalling the χ(n) components of the 1267

susceptibility of the Ising model, it is essential to get the explicit expression of the linear 1268

differential operators (telescopers) annihilating these χ(n)’s even if these (large) linear 1269

differential operators [27,28] are products (and direct sums) of a large set of factors. In 1270

the framework of integrable models, beyond diagonals, a physicist will always seek for a 1271

linear differential operator corresponding to an elliptic curve (resp. K3 surface, Calabi-Yau 1272

manifold, ...) even if it is “buried” as a left factor of a large telescoper, like the F2’s in (B.15) 1273

or (B.23). 1274
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