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It is shown that under rather mild conditions the triangle relation represents a necessary
condition for the existence of commuting transfer matrices of arbitrary size. The cases of spin

models and vertex models are treated separately.

I. INTRODUCTION

The problem of the parametrization of the models is one
of the most important in exactly solvable models. All the
solutions known in the literature are parametrized by ellip-
tic, trigonometric, or even rational functions, but solutions
involving curves of genus bigger than one or even surfaces
are still unknown. There is not proof (nor even good argu-
ments) that only genus one curves should occur in the solu-
tions of the Yang-Baxter equations; it is possible to argue
(see Appendix A) that one has to deal with algebraic varie-
ties, but it seems very difficult to prove that it is necessary to
deal with Abelian varieties. For that reason our approach s a
very general one: there are no assumptions like the existence
of a unique spectral parameter or the reduction of the Boltz-
mann weight to a simple transposition for a special value of
the parameters. Therefore the proof is completely algebraic.
The reader should be told that it is certainly possible to find
simpler but less general proofs of the previous equivalence.

H. THE MAIN RESULT
A. Statement of the theorem

Following many authors (see, e.g., Refs. 1-11), it is
quite simple to show that the star-triangle relation (for the
Boltzman weights W, W', W ") implies the commutation of
the transfer matrices with periodic boundary conditions
Ty (W)and Ty (W'), whatever their size N. The proof leads
to a distinction between the case of the vertex models (see
Fig. 1) and the case of the spin models (see Fig. 2). The
configurations of the spin 7, - iy, k, - ky in Figs. 1 and 2
are fixed and we sum all the configurations of the remaining
spins (j, - jn, @;, B;). These two figures represent the pro-
duct of the two transfer matrices T (W) and T (W') for
vertex and spin models, respectively. In the case of the Potts
model (with spins belonging to Z, ), the transfer matrices
are thus ¢¥X¢¥ matrices with coefficients
T1v( W)i,,..,, ins FrseesJin and TN( W’)]‘l’“_,jN; P The commu-
tation of the transfer matrices means that for any configura-
tion of the spins i, - iy, k, --- ky, the partition function of
the two graphs on both sides of the equality are equal. Let us
introduce the two matrices M (i,, k,) and
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M, ; (i, 15k,k, ) associated with the two follow-

ing graphs
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These two matrices (associated with the vertex and spin
models, respectively) are g*X¢” (resp. g Xg) matrices and
there are ¢ (resp. ¢%) of them [as many as the num-
ber of configurations for (,.k,) and (i,,i, . ;k,.k, k.1l
From now on these matrices will be denoted by M,
and M; ,  [I, =(i,.k,)]. We add a prime to denote the
same matrices with the two Boltzmann weights W and W’
permuted. With these notations the commutation of T, (W)
and T (W'} is equivalent to

Tr(M My, M )=Tr (M M; M) (1)
and
Tr (M, My, - 1N1,) =Tr(M;, M g M) (2)

for any configuration of the 7,,’s, that is to say for any config-
urations of the 7, ’s and k,,’s that index the coefficients of the
matrices Ty (W )Ty(W') and Ty (W') T (W).

We want to establish an equivalence between the exis-
tence of a star-triangle relation and the commutation of the
transfer matrices T (W) and Ty (W') for arbitrary size N; in
other words, we want to show that when relation (1)
[resp. (2)] is satisfied—for all Z,’s and N—there necessarily
exists a star-triangle relation. With the above notations it is
equivalent to saying that there exists a ¢°Xg¢? matrix
R (resp. ¢* ¢ X q matrices R,) such that

RM, =M} R )
(resp. R,M;; = M },R,). (4)

B. Proof in the case of the vertex models

The case of the vertex models is the simpler case to deal
with. Switching to a slightly more convenient notation
(I, — n), the question is easily seen to be reduced to the
following theorem.

Theorem 1: Let .# and .4 be two subalgebras of M, (C)
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(the n X n complex matrices) and ¢: .# — #, a surjective
algebra homomorphism satisfying the following property:

YM,..M e,
Tr (M, - - M,) = Tr [¢ (M- - - M,)].

Suppose further that there is no nontrivial invariant sub-
space of E~C" under the action of .#, then, there exists
R € GL,(C) so that

VMe.#, M'(=p(M))=RMR "

In Appendix A we discuss the problem of the existence of
nontrivial invariant subspaces.

Proof: For any M € .# , the corresponding spectral pro-
jection operators are elements of .# (being polynomials in
M).

We shall need the following lemma.

Lemma: There exists in .# a matrix with (n) distinct
eigenvalues.

Proof of the lemma: For any M in .#, we set

MM )=Z2 (dim. spectral subspace — 1)

and v=infv(M ), Me .#.

The lemma is then equivalent to v = 0. Suppose v#0
and take M € .# such that v(M ) = v; select further ¥ a spec-
tral subspace of M of dimension >2 and let 7 be the associat-
ed spectral projection operator. One has the following simple
proposition.

Proposition: VM, € #, wM, 7 has only one eigenvalue
when considered as an operator on V.

For if not, consider operators of the form

M=(1—mM(l —7)+xN—k)m,
where k € C and 7N has more than one eigenvalue on V.
Then, for suitable k, v(M ) < v(M ) = v, a contradiction.
Any M, in .# can thus be written as
ﬂMAﬂ'= kﬂ.]lv +N/1’
k, € G, N, nilpotent on ¥ (1, is the identity operator on V).
Adding (1 — k,)1,, we obtain a family of operators on ¥ of

the form 1, 4+ N,, stable under multiplication. The Engel
theorem'? provides us with a vector ve ¥V such that

M ke k3 kg kv K=k
w i W'j V'j ] w
h L L SR Mazh < idem WesW'
W w W w
W R B W Mz

FIG. 2. Pictorial representation of the commutation of two transfer matri-
ces of size N in the case of spin models.
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FIG. 1. Pictorial representation of the commu-
tation of the two transfer matrices of size N,
Ty(W), and T(W') in the case of vertex mod-
els.

= idem WeeW’

N,v =0 (VA). The subspace (Mv),,._. is then a nontrivial
invariant subspace for .#, contradicting the assumption.
This finishes the proof of the lemma.

Returning to the main proof, we let M € .# be a matrix
such that v(M) = Oand let (7;); = } be the corresponding one-
dimensional projection operators

ﬁi'ﬂj =ﬂ']"77"' =6u; zﬂ‘l =lE'

i=1

Let 7] =@ (m;) and choose ¢; € Ran 7, €] € Ran #].
Setting e;=Re; we shall prove that R is the intertwining
operator up to scaling, that is,

R =DR, D=diag(a,..a,),
for some nonzero ¢;’s.

To prove this, for M, in .#, we denote by (m’) and
(mj)) the matrices of M; and M , =¢ (M), with respect to
the bases (e;): =7 and (e]); = |, respectively. The existence of D
(which implies the theorem) is then equivalent to the exis-
tence of nonzero numbers (a;)!= 7 such that

i=1
") (A
m,j‘ = my; )a,./aj.

The existence of the @,’s is now proved in a sequence of
simple assertions.
Assertion 1:

ot A
By=m’/m{

is independent of 4.
Foral M, M, e .#, Vij,

m) m¥) = Tr (m, M, m;M,, ),
hence

m - m = m . i
or

mi /m) = mi /mi,
which demonstrates the validity of the assertion.

Assertion 2: Vi,j, B;#0,00, ie., Vi j, IM, € 4,
mi)#0.

In fact, if there existed a pair (i, j) such that m{}’ = 0 for
any M, in .#, then the subspace (Me; ). , would be a non-

trivial (it would not contain e;) invariant subspace for .#'.
Assertion 3: There exist n nonzero a;’s such that

B; =a,/a;.
Setting a;=p3,, , it only remains to show that
v i’j’k’ Bq * Bjk =B -

This can be written (dropping the superscript 4 ) as

’ ’ ’
m; My My My

mij mjk

my my;
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(the last equality comes from the proof of Assertion 1) or
My My -Mi =My - My - My,
This finishes the proof of the theorem.

The result has thus been established in the case of vertex
models.

C. Proof in the case of the spin models

The algebra is more intricate in this case; this is why, in
order to be able to obtain a neat mathematical statement we
shall restrict ourselves here to the case ¢ = 2. For general g,
however, the result must still be valid except for very parti-
cular values of the matrices (Boltzmann weight). So let us
consider the ¢ = 2 case. Here we can replace the cumber-
some indexation I, = (i,,k,) (i, = + 1, k,= +1)byan
index / running through the values 1,2,3,4.

We are thus given a set of sixteen 2X2 matrices
(i, 7 = 1,2,3,4) with positive coefficients, but we can only
form “chain products” of the form M,, M, M, ,, re-
turning to the same index i/;. We shall apply Theorem 1 to the
algebra generated by multiplying chains starting, and finish-
ing, with the same fixed index, but we first need to find a
condition that ensures that the hypothesis on the nonexis-
tence of invariant subspaces is satisfied. Since the matrices
are 2 X 2, this is equivalent to the nonexistence of a common
eigenspace; we shall also see below that the condition is inde-
pendent of the length of the chains we consider.

The only possibility we need to explore is the following:
Whatever i, (i; = 1,2,3,4), there exists a common eigenvector
V, for the matrices M;, - M, - M, , -M,; (with vari-
able i,,...,i,).

The M;’s induce homographic transformations on
P(C), which we still call M, ; When there is no risk of confu-
sion. The existence of the four vectors V; is then equivalent
to the existence of four points F, (i = 1,2,3,4) for P!(C) such
that

Mi,,i, (El )= Fi,
multiplying by M, , we get
M, My, M, . (M, (F)=M,F,).

i 700

iy

This shows that we can assume that the F,’s are permut-
ed under the action of M,;’s:

Vije {1,234}, M,F)=F,

Also, recalling that the M,’s have real positive coeffi-
cients, we find that each M;; has two real fixed points, one
negative and one positive (possibly oo ), and that the real posi-
tive axis (including oo) is stable under their action. This
shows that the F;’s are all positive or all negative real
numbers. In the latter case, we can replace all the M, ;s by
S'M;S [S=(} })] and this allows us to assume that the F,’s
are all real positive. In Appendix B we describe a pair of
families (M;) and (M ;) arising in this fashion, which do not
satisfy the intertwining property to be shown below; they are
seen to be essentially the only possible ones.

Let us now state our result in the case of spin models.

Theorem 2: Let (M;) and (M ;) be two families of sixteen
2 X 2 matrices such that the following hold.

(i) All M;’s and M ;’s have positive elements and are
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invertible matrices.
(ii) Vn, Vi,,....i, € {1,2,3,4},

Tr (Miliz - Min - linMinil) = Tr (M '{li2 - M;n— linM;nil )'

(iii) There do not exist four—all positive or all nega-
tive—real numbers F; (i = 1,2,3,4), some of the F,’s possi-
bly co sothat M, (F;) = M,, M, being viewed as a projective
transformation on P'(C). Then there exist four matrices
R; (i=1,2,3,4), R; € GL,(C) with the property

Vije{1,23,4}, RM;=MR,

[/

Remarks:

(1) Assumption (iii) can be made on any one of the two
families; if it holds for one, it will also be satisfied by the
other.

(2) The F,’s can be replaced by vectors V; = (1, F;) (or
V; =0,1)if F; = oo sothat M;V; = 4, V,.

(3) The validity of (iii}, intricate as it looks, is nonetheless
very easy to check. In fact, each F; is simply one of the two
fixed points of M;; compute these, and check (iii) for the two
disjoint sets of the positive fixed points and negative ones.

Proofof the theorem: Since (iii) is satisfied, we can apply
Theorem 1 to the algebra generated by the
M, _, M .M, (i fixed), and we choose » =2 (any
fixed n is allowed); we also set i, = 1, without loss of genera-
lity. Assumption (iii) means that the
(MMM, );x_,2:4 have no common eigenspace.
Theorem 1 then asserts the existence of R, such that

Vjak: RlMleljkMkl =M;ij'le'nR1 .

Now, define R, by R/M,;=M|R; .ie,
Ri=M;='"-R,-M,;. We need to check that
RM; =M R,V ije {1,2,3,4]. But we can write
RM; =M~ lRlMliMij =M ‘R M MM, '1‘{;1—1

=M ! ’MiiM;ij'lRlel_l
=M M R M;',
and thus we only need to prove that

RM; =M} R, Vje{l234].

By the very definition of R;, the left-hand side is equal to
M ;= 'R, MM, and the equality to be shown is therefore
equivalent to
M RM M, =M, R, or RM M, =M MR,
which in turn can be reduced to

RlMljJleMu =M;jM;lR1M11'

Using the definition of R,, the left-hand side is equal to
MM MR, and we only have to prove that
MR, =RM,. But, we already know that
M iR, = R,M3},. Since both matrices M,, and M ;, have
real positive coefficients, it is easy to show that the desired
equality follows, finishing the proof of the theorem.

We thus arrive at (4}, which is equivalent to the existence
of a star-triangle relation for spin models.

We should note that in both cases (spin and vertex mod-

els) the star-triangle relation is implied by the commutation
of the transfer matrices for only a finite number of sizes V.
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This is similar to the result of Parke'® according to which the
existence of only three conserved quantities in involution
implies the existence of an infinity of conserved quantities.

lil. PROSPECTS

In the previous sections we have tried to specify the
equivalence between the commutation of transfer matrices
and the star-triangle relations. This amounts to reducing the
complete integrability property to a simple local relation. On
the other hand, the commutation of transfer matrices of spe-
cific sizes leads to the determination of algebraic invariants
[cf. Appendix A(a)] that constitute constraining conditions.
This explains the results of the search for models satisfying a
star-triangle relation, namely, that there exist very few such
models. For instance in the case of vertex models with two
valued spins the general case is essentially given by the Bax-
ter model and the free fermions models of Fan and Wu.'
Such an analysis underlines the exceptional occurence of
solvable models.

This study also calls for a generalization in dimension 3.
In this respect we would like to establish a similar equiv-
alence between the commutation of transfer matrices of fin-
ite sizes and the so-called tetrahedron relation®'?; this looks
like a nontrivial extension. However these commutations of
the transfer matrices of finite sizes
([ Twpe (W), Tape(W')] =0 are still necessary conditions
for the validity of the tetrahedron relation; in particular this
includes the conditions that pertain to the two-dimensional
models ([Ty(W), Ty(W')] =0, M =1), and these have
been shown to imply the star-triangle relation. This imposes
severe restrictions on the possible solutions of the tetrahe-
dron relation that, in a way, appear as extensions of the—
sparse—solutions of the star-triangle relation.

The above discussion may give the impression that the
domain of validity of the star-triangle and tetrahedron rela-
tion is indeed very restricted.

However, if the commutation of transfer matrices al-
lows their simultaneous diagonalization (Bethe ansatz),
thereby leading to the calculation of the partition function,
we can imagine weaker condition that still make this calcula-
tion possible. In fact there already exist simple examples that
illustrate this idea; these are the so-called disorder (or crys-
tal-growth) solutions.’®"® These solutions lead unfortu-
nately to simple analytical expressions for the partition func-
tion; however, we should notice that one condition for the
existence of such disorder solutions is very similar to a con-
straintful relation occurring in the framework of exactly
solvable models [compare Eq. (2.10) of Ref. 19 and the so-
called Frobenius relation®*?!].

More precisely, if we look carefully at the construction
of the Bethe ansatz for the Baxter model,? we can see that
only relations similar to the so-called Frobenius relations are
used [Egs. (C.34a) and (C.34b) of Ref. 2] and not the full
Yang-Baxter structure. We could therefore imagine that a
model involving a higher-dimensional theta function would
not satisfy the Yang-Baxter equations,””?* but that it would
actually be possible to build a Bethe ansatz for that model

(because of the Frobenius relations) leading to a commuta-
tion of transfer matrices only in a subspace of the space on
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which the matrices act; the case of disorder solutions corre-
sponds to a one-dimensional subspace.

IV. CONCLUSION

We have thus shown the equivalence between the exis-
tence of a star-triangle relation and that of a family of com-
muting transfer matrices of arbitrary size; this has been es-
tablished under conditions mild enough to be almost always
satisfied in physical cases. Moreover we have proved that it
suffices to check the commutation of the transfer matrices
for a finite number of sizes. It may be interesting to look for
the three-dimensional generalization of the above results.

In two dimensions, the above equivalence fully legiti-
mizes the tentatively exhaustive studies that are currently
done on the star-triangle relation.”*** In this framework we
have also touched upon the problem of finding simple, alge-
braic, necessary conditions for the existence of the star-trian-
gle relation {see Appendix A). Such relations, which appear
very stringent, are directly related to one of the major prob-
lems concerning exactly solvable models: that of the parame-
trization of these models (rational or elliptic uniformization,
Abelian varieties).

Finally these studies on the star-triangle relation seem
to show that this is really a rarity; it is thus desirable to
extend the notion of integrability beyond it, and to introduce
new local criteria.
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APPENDIX A: ALGEBRAIC VARIETIES AND
COMMUTATION OF MATRICES

In this appendix, we briefly describe a solution to three
elementary but important questions. The approach is both
theoretical and practical, in that it readily provides effective
algorithms. However, being as the size of the different matri-
ces involved is a very important feature of the problem for
practical purposes, there may be more powerful methods of
solution in a given situation.

Let 4 and B in M, (C) be two complex n X n matrices,
which we also view as linear operators on E =~ C" with basis
{e;);=". The three questions are the following.

(a) Can we find a list of invariants that ensure commuta-
tion of 4 and B ? By this we mean expressions (@, ) = 7, alge-
braic in the coefficients of 4 and B, such that

{9 (4) = @ (B); k=1,..,m}{4B = B4}.

(b) Can we find an easy way to detect a nontrivial invar-
iant subspace under the action of 4 and B?

(c) This is the same question as (b} in the one-dimension-
al case, namely, when do 4 and B have a common (one-
dimensional) eigenspace? '

(a) We restrict ourselves to the case when 4 and B are
both diagonalizable with distinct eigenvalues [we denote this
subset of M, (C) by M, C), that is, we discard the codimension
one algebraic variety in M, (C) given by the vanishing of the
discriminant of the characteristic polynomial; the invariants
will have poles on this surface.
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Now, let Me M, (C) have eigenvectors (w,):= 7. There is
a natural map @, given by the composition

M,(C)— C™" — ("~ Y(C))"/a,,
M= (Wy...W,)— (W,,...W,)mod o,

where the bar denotes the natural fibration map C”
— P"~1(C).
Clearly we have the following proposition.
Proposition: ¥ A, Be M,(C), AB=BA ¢ (4) = ¢ (B).
It remains therefore to give an explicit description of the
map @. To this end we use the embedding

(P"~'(C))"/o, - P(S"E)

(Wl,...,-ﬁ’" )mOd g, — Wl DR Wn s
and consider the map iop: M, (C) — P(S"E ). This is easily
seen to be described by the following proposition.

Proposition: (iog )M ), Me M,,(C), represents the one-di-
mensional eigenspace of M °” (the nth symmetric power of
M) for the eigenvalue det(M ).

Proof f MW, = u, W;, we have

MW, e-oW,=MW,8--8 MW,

=Hyfp - Wl ®@® Wn

=detM)W,--0 W,.

The recipe is thus the following: Compute M ®" acting
on S"E [of dimension (*?,~') ] and find the eigenvector of
this matrix for the eigenvalue det(} ), which appears as a
polynomial in the variables (e;); =}, homogeneous of degree
n. The quotients of the coefficients of this polynomial by any
one of them represent the sought after invariants.

Example:n=2,M = (2}), det{M ) = ad — bc,
a®@ 2ab b?
M®*=|ac ad+bc bd];
& 2cd d?
the eigenvector of M ®? with eigenvalue det(M ) is given by

b =A(be;®e, + (d—ale,8e, —ce,R¢,).

This gives the (projective) invariants (b,d — a, — ¢} and we
may take

@(M)=b/c; @,M)=(d~a)ec.

The validity of this result of course can be readily
checked by direct computation.

Important remark: The @’s we have found are enor-
mously redundant for » > 2. In fact, there should be n{n — 1)
[ =dim(P"~!(C))*/0, ] of them, whereas our result gives
(*7 ') — 1. It would be interesting to know what is the
minimum possible number, a question equivalent to finding
“better” embeddings of (P ~(C))"/o, in projective varieties.
Can the optimum (n{n — 1)) be achieved?

{b) This question is reduced to the next by the following
obvious proposition.

Proposition: There is an equivalence between the follow-
ing statements: (i) M has an invariant subspace of dimension
J generated by (U,,...,U,); and (i) A’M [the jth exterior
power of M, dimension ( )] has U, AU,A--AU; as an
eigenvector.

(c) We make again the hypothesis that 4 and B are in
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M,(C)andlet U,,..,.U ; (resp. V4,...,V ;) be the eigenvectors—
unique up to scalar multiplication—of 4 (resp. B). Then
Uye-8U,and ¥V, ®-. @V, are viewed as two polynomials
inCle,,....e, ]. We have the following equivalence: (i) 4 and B
possess a common eigenvector; and (ii) U, e o U, and
V,®--® ¥, have a linear factor in common.

To check (i), simply use Cle,,....e,]=Cle,,...,
é;,...¢, | [e;] for some j (any j will do) and perform the
Euclidean algorithm. (This, of course, relies heavily on the
fact that we know a priori that the polynomials we are work-
ing on can be decomposed into a product of linear factors.)

APPENDIX B: DEGENERATE CASE FOR ISING SPIN
MODEL

Here we describe two families of 2 X 2 matrices

a;; by

M, = (cij dij)
(resp. M ;) with the following properties:
(i) The M, ;’s and M ;;’s have real positive elements.

(ii) The M;;’s (resp. M ;;’s) generate M,(C) as a vector
space.

(iil) Ya, ¥Yi,,....I, (1<, <4),

’1“1'(1"{:',1'z Mi,,_,i,,Mi i,) =TrM;; - M:,,_ ,i,,l‘lf ).

(iv) There do not exist matrices (R;);Z | such that R,M;;
= M ;R ;. The constructed families will be seen to be essen-
tially the only ones possessing these properties.

We first choose four points 0 < f, < F, <F; <F, e P} (C)
on the positive real axis (possibly with F, = «), corre-
sponding to four vectors V,,V,,V,, ¥, [for example, take V;
= (1,F;)and ¥V, = (0,1) if F, = « ] and we also select 16
strictly positive numbers 4,;. The M,,’s and M ;;’s will be
constructed in order to satisfy

(a) Mij . Vj =/{ij’/i; M- V; =/{’ij -V,

(b) det M,; =det M ;,.

Proposition: (a) and (b) imply condition (iii).

In fact, M,, -M, , M, and M; M| .

+ M, ; will have the same determinant and one eigenvalue in
common, namely 4, 4, . i)

Next, we prove the simple following lemma.

Lemma: YA, u; A >0, > 0, there exists a one parameter
family of 2 X 2 matrices with real positive elements such that
det M = A, A some fixed strictly positive number; and
M ($) =y(%), v fixed, positive, with > AL /u.

Proof: The corresponding homographic transformation
looks like

MZ)y=p+a(Z—-A)/(cZ+d), a>0, ¢>0, d>0.
Now
M=("":'“ dﬂ;M)detM=a(ic+d),
y=Ac+d.

We have therefore a=Aa and d arbitrary inside
(Al/uy,y) so that dy—ail>0 and C=(1/
A)(y—d)>0.

Repeat the above construction for all pairs F;, F;, keep-
ing thed, ’s as a set of variables. For the M,;’s and M |,’s, we
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shall take matrices of this form, with different values of the
d,;’s. Conditions (i) and (iii) are automatically satisfied.
Condition (ii) also is, except for very special values of the
d;;’s [and elementary calculations show that these can be
chosen so that (iv) also holds]. In fact R; (resp. R ;) inter-
twines M;; and M ; (resp. M;; and M ;) and we can choose
d,; such that R;M,; and M ;R , are different for any R, and
R satisfying the intertwining property.
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