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Abstract
Focusing on examples associated with holonomic functions, we try to bring
new ideas on how to look at phase transitions, for which the critical manifolds
are not points but curves depending on a spectral variable, or even fill
higher dimensional submanifolds. Lattice statistical mechanics often provides
a natural (holonomic) framework to perform singularity analysis with several
complex variables that would, in the most general mathematical framework, be
too complex, or simply could not be defined. In a learn-by-example approach,
considering several Picard–Fuchs systems of two-variables ‘above’ Calabi–Yau
ODEs, associated with double hypergeometric series, we show that D-finite
(holonomic) functions are actually a good framework for finding properly
the singular manifolds. The singular manifolds are found to be genus-zero
curves. We then analyze the singular algebraic varieties of quite important
holonomic functions of lattice statistical mechanics, the n-fold integrals χ(n),
corresponding to the n-particle decomposition of the magnetic susceptibility
of the anisotropic square Ising model. In this anisotropic case, we revisit a
set of so-called Nickelian singularities that turns out to be a two-parameter
family of elliptic curves. We then find the first set of non-Nickelian singularities
for χ(3) and χ(4), that also turns out to be rational or elliptic curves. We underline
the fact that these singular curves depend on the anisotropy of the Ising model,
or, equivalently, that they depend on the spectral parameter of the model. This
has important consequences on the physical nature of the anisotropic χ(n)s
which appear to be highly composite objects. We address, from a birational
viewpoint, the emergence of families of elliptic curves, and that of Calabi–
Yau manifolds on such problems. We also address the question of singularities
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of non-holonomic functions with a discussion on the accumulation of these
singular curves for the non-holonomic anisotropic full susceptibility χ .

This article is part of ‘Lattice models and integrability’, a special issue of
Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu’s
80th birthday.

PACS numbers: 05.50.+q, 05.10.−a, 02.30.Hq, 02.30.Gp, 02.40.Xx
Mathematics Subject Classification: 34M55, 47E05, 81Qxx, 32G34, 34Lxx,
34Mxx, 14Kxx

1. Introduction

Singularities are known to play a crucial role in physics (particle physics [1], Landau
singularities [2, 3], critical phenomenon theory, renormalization group, dynamical systems).
They are the ‘backbone’ of many physical phenomena; in the same way cohomology can be
introduced in mathematics as a ‘skeleton’ describing the most fundamental part of so many
mathematical problems4.

Seeking for the singular points and/or critical manifolds of models in lattice statistical
mechanics is a necessary preliminary step toward any serious study of the lattice models. If
the model is Yang–Baxter integrable, then there is a canonical parametrization of the model
in algebraic varieties [5], and the critical manifolds will also be algebraic varieties. If one
does not expect the model to be ‘integrable’ (or even that the integrability of the model
requires too much work to be performed), finding the singular manifolds of the model is an
attempt to obtain, at least, one exact result for the model. Recalling the standard-scalar Potts
model [6, 7], it is worth keeping in mind that its singular manifolds (corresponding to second-
order phase transitions or first-order phase transitions) are selected co-dimension-1 algebraic
varieties where the model is actually Yang–Baxter integrable. The crucial role played by the
(standard-scalar) Potts model in the theory of critical phenomena is probably at the origin
of some ‘conformal theory’ mainstream prejudice identifying criticality with integrability for
two-dimensional models.

A large number of papers [8–10] have tried (under the assumption of a unique phase
transition) to obtain critical, and more generally singular5, manifolds of lattice models as
algebraic varieties preserved by some (Kramers–Wannier-like) duality, thus providing, at least,
one exact (algebraic) result for the model, and, hopefully, algebraic subvarieties candidates for
Yang–Baxter integrability of the models. The relation between singular manifolds of lattice
statistical models and integrability is, in fact, much more complex. Along this line it is worth
recalling two examples.

The first example is the 16-vertex model which is, generically, not Yang–Baxter integrable,
but is such that the birational symmetries of the CP15 parameter space of the model are
actually integrable6, thus yielding a canonical parametrization7 of the model in terms of elliptic
curves [11]. This parametrization gives natural candidates for the singular manifolds of the
model, namely the vanishing condition of the corresponding j-invariant (which is actually the

4 And not surprisingly, cohomology is naturally introduced in the singularity theory [4].
5 If the wording ‘critical’ still corresponds to singular in mathematics, it tends to be associated with second-order
phase transitions exclusively. The singular condition for the standard-scalar q-state Potts model corresponds to
second-order phase transitions for q < 4 and first-order transitions for q > 4.
6 We have called such models ‘quasi-integrable’: they are not Yang–Baxter integrable but the birational symmetries
of their parameter space correspond to integrable mappings [11].
7 A foliation of CP15 in elliptic curves.
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vanishing condition of a homogeneous polynomial of degree 24 in 16 homogeneous parameters
of the model, with the polynomial being the sum of a very large8 number of monomials [11]).
This co-dimension-1 algebraic variety is, probably, not Yang–Baxter integrable.

The second example is the triangular q-state Potts model with 3-spin interactions on the
up-pointing triangles [16, 17] for which the critical manifold has been obtained as a simple
co-dimension-1 algebraic variety [18]. This co-dimension-1 algebraic variety is a remarkably
selected one: it is preserved by a ‘huge’ set of birational transformations [19, 20]. Recalling
the previous ‘conformal theory’ prejudice on standard-scalar q-state Potts models, it is worth
mentioning that, even restricted to this singular codimension-1 algebraic variety, the model is
not9 Yang–Baxter integrable.

People working on lattice statistical mechanics (or condensed matter theory) have some
(lex parsimoniae10) prejudice that there exists a concept of ‘singularities of a model’, with
the singularities of the partition function being, ‘of course’, the same as the singularities of
the full susceptibility. Furthermore, they also have another prejudice, namely that singularity
manifolds are simple sets, such as points (self-dual), straight lines, smooth co-dimension-1
manifolds, the maximum complexity being encountered with the phase diagram of the Ashkin–
Teller model [21], with the emergence of tricritical points [22, 23], forgetting less common
(and more sophisticated or involved) critical behavior like the Kosterlitz–Thouless transition
[24], the massless phase in the classical XY model or in ZN models (see for instance [25, 26]),
or the massless phase in the three-state superintegrable chiral Potts model [27] or in the
XXZ quantum chain [27–29], the Griffiths–McCoy singularities [30, 31] in random systems
and the much more complex phase diagrams of commensurate–incommensurate models
[32–35]. This Ockham’s razor simplicity prejudice is clearly not shared by people working on
singularity theory in algebraic geometry and discrete dynamical systems [4, 36, 37] (see also
Arnold’s viewpoint on singularity theory and catastrophe theory [38]).

In fact, singular manifolds in lattice statistical mechanics (or condensed matter theory)
have no reason to be simple co-dimension-1 sets (or even stratified spaces). For lattice
models of statistical mechanics, where the parameter space corresponds to several (complex)
variables, there is a gap between a physicist’s viewpoint that roughly amounts to seeing
singular manifolds as simple mutatis mutandis generalizations of singularities of one complex
variable, conjecturing singular manifolds as algebraic varieties [8–10], and the mathematician’s
viewpoint that is reluctant to introduce the concept of singular manifolds for functions of
several complex variables. (It is not clear that the functions one studies are even defined in a
Zariski space.)

Singular manifolds can be well defined in a framework that is, in fact, quite natural and
emerges quite often in theoretical physics, namely the holonomic functions [39] corresponding
to n-fold integrals of a holonomic integrand. (Most of the time, in theoretical physics, the
integrand is simply rational or algebraic.) In Sato’s D-module theory [40], a holonomic system
is a highly overdetermined system, such that the solutions locally form a vector space of finite
dimension (instead of the expected dependence on some arbitrary functions). Furthermore,

8 In [11], this polynomial of degree 24 in 16 unknowns is seen as the double discriminant of a biquadratic. It is
nothing but a hyperdeterminant [12–14] (Schäfli’s hyperdeterminant [15] of format 2 × 2 × 2 × 2). It has 2894 276
terms.
9 It is not Yang–Baxter integrable in the natural embedding of the model (namely a parameter space made up of
the three (anisotropic) nearest-neighbor edge interactions and the 3-spin interaction on the up-pointing triangle). Of
course, it is always conceivable that upon increasing the parameter space the selected critical algebraic subvariety
becomes embedded in a Yang–Baxter family. However, the hyperbolic character [16, 17, 19, 20] of the set of birational
automorphisms of this algebraic subvariety seems to exclude an Abelian variety for the larger (integrable) variety.
Furthermore, random matrix analysis also seemed to exclude an integrability of this subvariety.
10 Ockham’s razor.
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holonomic functions naturally correspond to systems with fixed regular singularities. It is
crucial to avoid movable singularities. For non-holonomic functions, only the ones that can
be decomposed as an infinite sum of holonomic functions (like χ , the full susceptibility of
the square11 Ising model [46]) give some hope for interesting and/or rigorous studies of their
singularities.

For one complex variable, the holonomic (or D-finite [42, 43]) functions are solutions of
linear ODEs with polynomial coefficients in the complex variable. The (regular) singularities
can be seen immediately as solutions of the head polynomial coefficient of the linear ODE, up to
apparent singularities [44]. If one takes a representation of the linear ODE as a linear differential
system, one gets rid of the apparent singularities, and one also sees, quite immediately, the
singularities in such systems. More generally, for holonomic functions of several complex
variables, one can define, and see, quite clearly, the singular manifolds of the corresponding
systems of PDEs. In a learn-by-example approach, we will show how one can find, and see,
these singular algebraic varieties.

The paper is organized as follows. After briefly recalling the framework of the isotropic
χ(n)s, we will first study various examples of Picard–Fuchs systems of two variables associated
with hypergeometric series, and generalizing some known Calabi–Yau ODEs [45]. We will
show how the singular manifolds can be obtained from the holonomic systems and from
simpler asymptotic calculations. We will then obtain singular manifolds for quite important
holonomic functions of lattice statistical mechanics, the n-fold integrals, χ(n)s (corresponding
to the decomposition of the magnetic susceptibility of the anisotropic square Ising model
[46]), describing a set of (so-called) Nickelian singularities, and then getting, from a ‘Landau
singularity [1, 2] approach’, the first set of other (non-Nickelian) singularities. We will
underline the dependence of the singularity manifolds in the anisotropy of the Ising model.
This has important consequences for understanding the mathematical, as well as the physical,
nature of the anisotropic χ(n)s. The question of the accumulation of these singular manifolds
for the anisotropic full susceptibility, χ , will be discussed. We will finally comment on the
emergence of families of elliptic curves for the singularity manifolds and the (birational)
reason for the occurrence of Calabi–Yau manifolds on such problems.

2. Holonomic functions of one complex variable: χ(n)s for the isotropic Ising model

Let us start with the simplest holonomic, or D-finite [42], functions, namely the holonomic
functions of one complex variable, by recalling important holonomic functions of lattice
statistical mechanics, the n-fold integrals, χ(n), of the isotropic square lattice Ising model
[44, 47, 48]. These n-fold integrals correspond to the decomposition of the full susceptibility
of the model as an infinite sum [46] of the n-particle contributions χ(n). The singularities of
these χ(n)s have been completely described and can be seen to be a very rich and complex
set of points [3, 49]. In particular, one finds, in some well-suited variable k, which is the
modulus of the elliptic function parametrizing the two-dimensional Ising model, that the unit
circle |k| = 1 is a natural boundary for the full susceptibility χ of the Ising model [49].
The singularities of χ(n)s accumulate on the unit circle. This is the reason why we have
this unit circle natural boundary [48–52] for the full magnetic susceptibility χ . Singularities
also accumulate inside the unit circle (see figures 1, 2, 3, 4 of [49]), probably becoming an
infinite set of points dense in the open disc |k| < 1. They also accumulate outside the unit
k-circle |k| > 1, probably becoming another infinite set of points also dense outside the
unit circle |k| > 1. This accumulation of singular points of the linear ODEs of χ(n)s is thus

11 We have similar decompositions as an infinite sum of n-fold integrals for the full susceptibility of the triangular or
honeycomb Ising models for which dramatic extensions of their series expansion have been obtained recently [41].
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(probably) dense in the whole k-complex plane. In other words, we do have an infinite set of
singularities dense in the whole k-complex plane. This seems to confirm the mathematician’s
reluctance to consider singular manifolds of functions of several complex variables that are
not holonomic: even in the very simple case of one complex variable, we already seem to
encounter serious trouble. The full susceptibility χ , which is an infinite sum [46] of these
χ(n)s, does not even seem to be defined in a Zariski space. Recalling these results [49], the
common wisdom identifying the singularities of the partition function and the singularities of
the full susceptibility is no longer obvious.

There is, however, an important subtlety here: these singularities are singularities of the
linear ODEs of χ(n)s, but not of the (series expansions of) χ(n)s given by holonomic n-fold
integrals. When one considers the k-series expansions of χ(n)s, one finds that singularities
inside the unit circle in the open disc, |k| < 1, are not singularities of these series [49].
This is quite a non-trivial result. This is also the case for the k-series expansion for the
full susceptibility χ which is the infinite sum of χ(n)s. For the full susceptibility χ , the
accumulation of χ(n)s singularities on the unit circle makes this unit circle a natural boundary
[49]. Switching from high-temperature series expansions to low-temperature series, we have a
similar result for |k| > 1. We thus have quite a drastic difference between the singularities of
the n-fold integrals χ(n), which are solutions of linear ODEs (they are D-finite or holonomic,
see below), and the full susceptibility χ , which is not the solution of a linear ODE (it is not
holonomic).

Before generalizing to several complex variables with the case of χ(n)s for the anisotropic
square Ising model with two complex variables, let us consider, in a learn-by-example
approach, simple Picard–Fuchs systems associated with hypergeometric series of two complex
variables.

3. The first simple Picard–Fuchs system with two variables

Let us consider the double hypergeometric series, symmetric in x and y

H0(x, y) =
∞∑

n=0

∞∑
m=0

(3m + 3n)!

n!3 m!3
· xn · ym (1)

=
∞∑

n=0

(3 n)!

n!3
· 3F2

([
n + 1, n + 1

3
, n + 2

3

]
, [1, 1]; 27 y

)
· xn

= 1 + 6 · (x + y) + (90 · (x2 + y2) + 720 · x y)

+ (1680 · (x3 + y3) + 45 360 · x y · (x + y)) + (34 650 · (x4 + y4)

+ 2217 600 · x y · (x2 + y2) + 7484 400 · x2 y2) + · · · . (2)

This series reduces, when y = x, to
∞∑

n=0

[
(3n)!

(n!)3

n∑
k=0

(
n

k

)3
]

· xn = 1 + 12 · x + 900 · x2 + 94 080 · x3

+11 988 900 · x4 + 1704 214 512 · x5 + 260 453 217 024 · x6 + · · · , (3)

which is the solution analytic at x = 0 of the Calabi–Yau operator � of order 4 introduced by
Batyrev and van Straten (section 7.1 of [45], see also the ODE number 15 in [53]):

� = θ4 − 3 x · (7 θ2 + 7 θ + 2) · (3 θ + 1) · (3 θ + 2)

−72 x2 · (3 θ + 5) · (3 θ + 4) · (3 θ + 2) · (3 θ + 1),

where θ = x · d

dx
. (4)
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The double hypergeometric series (1) is the unique analytical (in x and y) solution of the
Picard–Fuchs system corresponding to the two partial linear differential operators:

�x = θ3
x − x · (3 θx + 3 θy + 1) · (3 θx + 3 θy + 2) · (3 θx + 3 θy + 3),

�y = θ3
y − y · (3 θx + 3 θy + 1) · (3 θx + 3 θy + 2) · (3 θx + 3 θy + 3), (5)

where θx = x · ∂

∂x
, θy = y · ∂

∂y
.

The other formal series solutions of (5), around (x, y) = (0, 0), have the form

H0(x, y) · ln(x)n · ln(y)m + · · · , (6)

where the maximum value reached by n and m is 2. They read for instance

H0(x, y) · ln(x) + H1(x, y), H0(x, y) · ln(y) + H1(y, x),

H0(x, y) · ln(x) · ln(y) + H1(y, x) · ln(x) + H1(x, y) · ln(y) + H3(x, y) + · · · .
It is crucial to note that the dimension of the space spanned by these formal series is finite. In
the case of the Picard–Fuchs system (5), the number of solutions (i.e. dimension) is 9. These
nine formal solutions are given in appendix A. The double series analytic in x and y, Hj(x, y)

are either symmetric like H0(x, y), H3(x, y), or are not symmetric like H1(x, y).
Such holonomic systems are also called D-finite [42, 43] for the following reason:

remarkably, they have a finite number of independent solutions, in contrast with generic
systems of PDEs that have, generically, an infinite number of solutions. Systems of PDEs can
also have no solution at all. Generically, the compatibility of the two operators �x and �y,
requires some (slightly tedious) differential algebra calculations.

One can also see the system (5) as a (two-dimensional) recursion:

(n + 1)3 · cn+1, m = b(n, m) · cn, m,

(m + 1)3 · cn, m+1 = b(n, m) · cn, m, where

b(n, m) = (3 (n + m) + 1) · (3 (n + m) + 2) · (3 (n + m) + 3). (7)

Here, the compatibility between the two partial differential operators �x and �y is easier to
see at this (double) recursion level. Introducing

α1(n, m) = b(n, m)

(n + 1)3
= cn+1, m

cn, m
, α2(n, m) = b(n, m)

(m + 1)3
= cn, m+1

cn, m
,

we have the identity

α2(n, m) · α1(n, m + 1) = α1(n, m) · α2(n + 1, m), (8)

which, from a recursion viewpoint, actually corresponds to the compatibility between the two
partial linear differential operators �x and �y.

The discriminant of the two-parameter family of Calabi–Yau 3-folds reads12 (see
proposition 7.2.1 of [45])

(x + y)3 − 3 · (x2 − 7 x y + y2) + 3 · (x + y) − 1, (9)

or (without performing the (x, y) → ( x/27, y/27) rescaling mentioned in [45])

� = 19 683 (x + y)3 − 2187 · (y2 + x2 − 7 x y) + 81 · (x + y) − 1. (10)

This expression can easily be obtained as the resultant [12] in A (or equivalently in B) of the
two (very simple) homogeneous binary cubics [45]:

27 x · (A + B)3 − A3 = 0, 27 y · (A + B)3 − B3 = 0. (11)

12 Note a misprint in proposition 7.2.1 of [45]: (x + y) must be changed to 3 · (x + y).
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3.1. Singular manifolds

What are the singularities of the double hypergeometric series like (1), and how do they
compare with the singularities of the Picard–Fuchs system (5), assuming that the notion of
singularities of such PDEs systems is well defined?

From a mathematical viewpoint, when introducing some ‘canonical’ system, equivalent
to the Picard–Fuchs system, one should ‘in principle’ be able to see the singularities as simple
poles of this equivalent system. Unfortunately, to our knowledge, the implementation of such
a procedure, available as the formal calculation tools, is still underdeveloped13 (see also
[55, 56]).

A physicist’s down-to-earth approach amounts to reducing the double hypergeometric
series, like (1), to series in one (complex) variable imposing some relation between x and
y, compatible with the (x, y) = (0, 0) origin of the double series. Imposing, for example,
y = c x (c = 2, 3, . . .), or y = c x2, one gets a series in one (complex) variable x and,
then, in the second step, finds the corresponding linear ODE annihilating this series. The
head polynomial of the corresponding linear differential operator gives (after getting rid of the
apparent singularities) the singularities of these linear differential operators. An ‘accumulation’
of such results enables us to see that the singularities are always on the (genus-zero) algebraic
curve S(x, y) = 0, where

S(x, y) = 39 · (x + y)3 − 37 · (y2 + x2 − 7 x y) + 34 · (x + y) − 1, (12)

which is nothing but the discriminant (10) of the two-parameter family of Calabi–Yau
3-folds previously mentioned [45]. Remarkably, but not surprisingly, the singular variety
has an interpretation as a fundamental projective invariant [12].

The (genus-zero) singular curve (12) can be parametrized by

x = (
1
6 + u

)3
, y = (

1
6 − u

)3
. (13)

or

x(u) =
( 5 u + 7

6 · (1 − u)

)3
, y(u) =

( 7 u + 5

6 · (u − 1)

)3
= x

(1

u

)
, (14)

where the Atkin–Lehner-like involution u ↔ 1/u could suggest a modular curve
interpretation of (12).

The accumulation of calculations is quite tedious compared to the simplicity of the final
result (12). It is far from obvious that (12) is the singularity manifold of the double series
(1) or the singularity manifold of the Picard–Fuchs system (5). Let us find a Picard–Fuchs
system for which it will become crystal clear that (12) is actually the singularity manifold of
the system.

3.2. Other representations as PDE systems

In fact, the Picard–Fuchs partial differential system (5) can be recast into a system of two
differential equations, each one being a linear ODE on only one variable. We consider14 a
linear combination of �x and �y and their derivatives and cancel the coefficients in front of

13 See the Maple package [54] (in development) for computing closed form solutions of integrable connections for
handling a D-finite partial differential system which is not written as a connection. Note that one must download the
OreModules package and use its procedure called ‘Connection’.
14 For our purpose, we did not use the Groebner basis approach (use the pdsolve command on the system of equations
obtained from the Rosenfeld–Groebner command in Maple).
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the undesired derivatives. We obtain the following form:

�̃x =
9∑

n=0

Pn(x, y) · Dn
x, �̃y =

9∑
n=0

Qn(x, y) · Dn
y,

where Dx = ∂

∂x
, Dy = ∂

∂y
, (15)

where Pn(x, y) and Qn(x, y) are the polynomials of the two variables x and y. The partial
differential operator �̃x can be seen as a linear differential operator in x depending on a
parameter y (and similarly �̃y as a linear differential operator in y depending on a parameter
x). The polynomials Pn(x, y) appearing in �̃x will not be given here. For P9(x, y), the
monomial of highest degree in x and y is x15 y9 (see (16) and (B.2) in appendix B), and
for P8(x, y), . . . , P0(x, y), it reads, respectively, x14 y9, x13 y9, x12 y9, x11 y9, x10 y9, x9 y9,
x8 y8, x7 y7, x6 y6.

There is a ‘price to pay’ to recast the Picard–Fuchs partial linear differential system (5)
into a system like (15). The partial linear differential operators �̃x and �̃y are much more
involved than the operators �x and �y in (5), and of higher order in Dx or Dy. The operator
�̃x (resp. �̃y) is of order 9 with respect to Dx (resp. Dy), in agreement with the previously
mentioned finite set (A.2) of nine formal series solutions of the Picard–Fuchs D-finite system
(5). We have checked that these nine formal solutions (A.2) are indeed the solutions of �̃x

(resp. �̃y).
As a consequence of the exact symmetry interchange x ↔ y of (1), the partial differential

operator �̃y is nothing but operator �̃x, where x and y are permuted. Not surprisingly, the head
polynomials in (15) have the form

P9(x, y) = x6 · P9(x, y) · S(x, y), Q9(x, y) = y6 · P9(y, x) · S(x, y), (16)

where P9(x, y) is a polynomial of x and y, corresponding to the apparent singularities of
the (y-dependent) linear differential operator �̃x. The expression of P9(x, y) is given in
appendix B.

3.3. Operator factorizations

One can actually go further in the analysis of these order-9 operators. The order-9 partial
linear differential operator �̃x, in fact, factorizes into three order-1 operators and an order-6
operator:

�̃x =
(

Dx − ∂ ln(r̃1(x, y))

∂x

)
·

(
Dx − ∂ ln(r̃2(x, y))

∂x

)(
Dx − ∂ ln(r̃3(x, y))

∂x

)
· L6(x, y),

(17)

where the order-6 operator L6(x, y) reads

L6(x, y) = 1

p6(x, y)
·

6∑
n=0

pn(x, y) · Dn
x, (18)

and where r̃1(x, y), r̃2(x, y) and r̃3(x, y) are the rational functions of x and y, while p6(x, y)

has simple factorizations:

r̃1(x, y) = P9(x, y)

x6 · S(x, y) · q1
, r̃2(x, y) = q1

x5 · S(x, y) · q2
,

r̃3(x, y) = q2

x4 · S(x, y) · P6(x, y)
, p6(x, y) = x4 · S(x, y) · P6(x, y), (19)

where P9(x, y), P6(x, y), q1, q2, are the polynomials of x and y given in appendix B. Not
surprisingly the (x, y)-asymmetric polynomialsP6(x, y) andP9(x, y) correspond respectively

8
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to apparent singularities of the order-6 and order-9 operators L6(x, y) and �̃x. The polynomials
pn(x, y) appearing in L6(x, y) will not be given here. For p6(x, y), the monomial of highest
degree in x and y is x13 y9 (see (19) and (B.3) in appendix B) and for p5(x, y), . . . , p0(x, y), it
reads, respectively, x13 y9, x12 y9, x11 y9, x10 y9, x9 y9, x8 y8, x7 y7.

Do note that the critical exponents of this order-6 operator L6(x, y) are independent of y.
For instance at x = 0 the indicial polynomial reads P(r) = r3 · (r − 1)3. More remarkably,
on the singular variety S(x, y) = 0, the critical exponents of L6(x, y) are also independent of
y. The indicial polynomial, at S(x, y) = 0, reads P(r) = r · (r−1)2 · (r−2) · (r−3) · (r−4).
The singular behavior at S(x, y) = 0 is thus logarithmic. The Wronskians of this order-6
linear differential operator L6(x, y) and of the order-9 operator �̃x are the rational functions
of x and y, which read, respectively,

W (L6(x, y)) = P6(x, y)

x12 · S(x, y)4
, W (�̃x) = P9(x, y)

x27 · S(x, y)7
. (20)

In fact, the operator L6(x, y) is not only Fuchsian with rational exponents and rational
Wronskian, it is actually globally nilpotent for any rational values of y. The p-curvature of
this globally nilpotent order-6 operator is a nilpotent 6 × 6 matrix, which can be put into the
following Jordan form15, not only for any rational value of y, but, actually, for any y being an
algebraic number:

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, where C4 = 0. (21)

Furthermore, the exterior square of L6(x, y) is of order 14, instead of the order-15 one
should expect generically for an order-six irreducible operator. This remarkable property
is related to the fact that L6(x, y) is homomorphic to its (formal) adjoint, with an order-2
intertwinner differential operator I2(x, y):

L6(x, y) · I2(x, y) = adjoint(I2(x, y)) · adjoint(L6(x, y)),

where I2(x, y) = 36 · 27 x + 27 y + 2

S(x, y)
· D2

x + R1(x, y) · Dx + R0(x, y), (22)

where R1(x, y) and R2(x, y) are the rational functions of x and y.
One can check that the double (x, y)-symmetric series (1), solution of the order-9 operator

�̃x, is, in fact, annihilated by the order-6 linear differential operator L6(x, y) and, thus (by
x ↔ y symmetry) by the other order-6 operator

L6(y, x) = 1

p6(y, x)
·

6∑
n=0

pn(y, x) · Dn
y . (23)

At this step, we should recall that our purpose is to obtain the singularities of the system (5)
and not to obtain an equivalent system for (5). Generically, systems of linear PDEs cannot be
strictly recast16 into a form like (15), even for D-finite systems17. The two order-6 operators

15 Of characteristic polynomial P(λ) = λ6 and of minimal polynomial Pm(λ) = λ4.
16 Non-holonomic systems cannot be recast into a form like (15). This is the case, for instance, of the system of linear
operators (�x, �y) = (D2

x , Dx Dy), which has an infinite number of solutions, namely c · x + f (y), where f (y) is
an arbitrary function of y.
17 For instance, the solutions of the D-finite system (�x, �y) = (D2

x − y D2
y , Dx Dy) are the solutions of the D-finite

system (�̃x, �̃y) = (D3
x , y D3

y + D2
y ), but this last D-finite system has more solutions. One needs additional operators

to have system equivalence.

9
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L6(x, y) and L6(y, x) form a PDE system that is not equivalent (in the sense of equivalence
of systems) to the Picard–Fuchs system (5). However, as far as the double series H0(x, y) is
concerned, the three systems (�x, �y), (�̃x, �̃y) and (L6(x, y), L6(y, x)) can alternatively
be considered.

Remark. Recovering the Calabi–Yau order-4 ODE (4) from the y = x limit of the Picard–
Fuchs system (5), or (15), is not straightforward (as one could naively imagine). Within the
(down-to-earth) approach, which amounts, for instance, to restricting to the straight lines
y = c · x, where c is a constant, and finding the linear differential operator in x, one obtains
an order-6 linear differential operator with coefficients that are polynomials in x, as well as
in the constant c. One can then take the c → 1 limit and actually recover the Calabi–Yau
order-4 ODE (4). These calculations are displayed in appendix C. The (genus-zero) singular
curve (12)

(1 − 108 · (x + y)) · (2 + 27 · (x + y))2 + 39 · (x − y)2 = 0, (24)

reduces, in the y = x limit, to (1 − 216 x) · (1 − 27 x)2 = 0, namely the singularities
corresponding to the order-4 Calabi–Yau ODE (4).

4. More Picard–Fuchs systems with two variables

Similar calculations can be performed with double hypergeometric series generalizing the
analytic solution of another Calabi–Yau order-4 ODE (see appendix D below). One can
perform exactly the same calculations mutatis mutandis.

4.1. More Picard–Fuchs system with two variables

Let us first consider a two-variable Picard–Fuchs system ‘above’ another Calabi–Yau ODE
[45] (see the ODE number 16 in appendix A of [53]), corresponding to the following (x, y)-
symmetric series with binomial coefficients:

∞∑
n= 0

∞∑
m= 0

(
2 n + 2 m

n + m

) (
n + m

n

)2 (
2 n

n

) (
2 m

m

)
· xn ym

=
∞∑

m= 0

(
2 m

m

)2

· 3F2

([
1

2
,

1

2
+ m,

1

2
+ m

]
, [1, 1]; 16 y

)
· xm

= 1 + 4 (x + y) + (36 (x2 + y2) + 96 x y)

+ [2160 (x2 y + x y2) + 400 (x3 + y3)] + [4900 (x4 + y4)

+ 44 800 (x y3 + x3 y) + 90 720 x2 y2] + · · · . (25)

This hypergeometric double series is the solution of the Picard–Fuchs system of PDEs:

�x = θ3
x − 4 x · (2θx + 1) (θx + θy + 1) (2θx + 2θy + 1),

�y = θ3
y − 4 y · (2θy + 1) (θx + θy + 1) (2θx + 2θy + 1). (26)

In the y = x limit, this series reduces to
∞∑

n=0

[(
2n

n

) n∑
k=0

(
n

k

)2(2k

k

)(
2n − 2k

n − k

)]
· xn

=
∞∑

n=0

(
2n

n

)2

· 4F3

([
1

2
, −n, −n, −n

]
,

[
1, 1, − 2 n − 1

2

]
; 1

)
· xn

10
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= 1 + 8 x + 168 x2 + 5120 x3 + 190 120 x4 + 7939 008 x5

+ 357 713 664 x6 + 16 993 726 464 x7 + 839 358 285 480 x8 + · · · (27)

annihilated by the order-4 Calabi–Yau operator:

θ4 − 4 x · (5 θ2 + 5 θ + 2) · (2 θ + 1)2 + 64 x2 · (2 θ + 3) · (2 θ + 1) · (2 θ + 2)2. (28)

The recast of the PDE system for the double series (25) into the form (15) gives two (x, y)-
symmetric linear differential operators of order 9. The singularities of the two order-9 linear
differential operators are respectively x · (1 − 16 x) = 0 and y · (1 − 16 y) = 0 together
with the quadratic condition:

S2(x, y) = 28 · (x − y)2 − 25 · (y + x) + 1 = 0, (29)

which has the simple rational parametrization

(x, y) = ((
1
8 − u

)2
,
(

1
8 + u

)2)
.

The singularities S2(x, y) = 0 are, here also, logarithmic, the local exponents being
0, 1, 1, 2, 3, . . . , 7.

These two (x, y)-symmetric order-9 operators also factorize in exactly the same way
as (17), in three order-1 operators and an order-6 operator like (18). The exterior square of
this order-6 operator is also of order 14 (instead of order 15 as one expects for a generic
irreducible order-6 operator), and, again, this order-6 operator is homomorphic to its adjoint
with a relation similar to (22), with the head coefficient in the order-2 intertwinner being
replaced by 28 (16 x − 16 y + 3)/S2(x, y)/(16 x − 1)/x2. We also have relations similar to
(20) for the various Wronskians.

4.2. Another Picard–Fuchs system above the Calabi–Yau operator (28)

Note that the Picard–Fuchs system of two variables ‘above’ the Calabi–Yau operator (28) is
not unique. Other (x, y)-symmetric series reduce to the series (27) annihilated by (28), for
instance, the double series expansion:

∞∑
n= 0

∞∑
m= 0

64n+m · (1/2)3
n · (1/2)3

m · (1/2)m+n

(1)3
n+m · n! m!

· xn ym (30)

=
∞∑

m= 0

( ( 1
2 )m

m!

)4

×4F3

([
1

2
,

1

2
,

1

2
,

1

2
+ m

]
, [m + 1, m + 1, m + 1]; 64 x

)
· (64 y)m

= 1 + 4 · (y + x) + 3 · [27 · (x2 + y2) + 2 · x · y]

+ 20 · (y + x) · [125 · (x2 + y2) − 122 · x · y]

+ 35/16 · [42 875 · (x4 + y4) + 162 · x2 · y2 + 500 · x y · (x2 + y2)]

+ 63/4 · (y + x) · [250 047 · (x4 + y4) − 248 332 · x y · (x2 + y2)

+ 248 602 · x2 y2] + · · · , (31)

where (a)n is the usual Pochhammer symbol. This series can be found in Guttmann and Glasser
[57] as a lattice Green function. It can also be seen as the expansion of a Kampé de Fériet
function [58–61] (see appendix D):

F (1,3,3)

(3,0,0)

([
1

2

]
,

[
1

2
,

1

2
,

1

2

]
,

[
1

2
,

1

2
,

1

2

]
; [1, 1, 1],−,−; 64 x, 64 y

)
. (32)
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The double series (30) is not a series with integer coefficients but it can be recast18 into a
series with integer coefficients if one performs the simple rescaling (x, y) → (4 x, 4 y). One
obtains

1 + 16 · (x + y) + [1296 · (x2 + y2) + 96 · x · y] + 1280 · (y + x) · [125 · (x2 + y2)

− 122 · x · y] + [24 010 000 · (x4 + y4) + 280 000 · x y · (x2 + y2)

+ 90 720 · x2 · y2] + 16 128 · (y + x) · [250 047 · (x4 + y4)

− 248 332 · x y · (x2 + y2) + 248 602 · x2 · y2] + · · · . (33)

The recast of the PDE system for the double series (30) into the form (15) gives two (x, y)-
symmetric linear differential operators, now of order 13.

The singular varieties of the two order-13 operators �̃x and �̃y are respectively19

x · (x−y)· (1 − 64 x) = 0 and y · (x−y)· (1 − 64 y) = 0, together with an (x, y)-symmetric
genus-zero biquadratic which reads

S̃2(x, y) = 212 · x2 y2 − 27 · x y · (y + x) + (x − y)2 = 0. (34)

The local exponents at the singularities of the order-13 partial linear differential operators are
independent of y (respectively x).

This genus-zero curve (34) has the rational parametrization (well suited for series
expansions near (x, y) = (0, 0)),

x(t) = u2, y(t) =
( u

1 + 8 u

)2
, (35)

or the rational parametrization

x(u) =
(u + 1

8

)2
, y(u) =

(u + 1

8 u

)2
= x

(1

u

)
, (36)

the Atkin–Lehner-like involution u ↔ 1/u suggesting a modular curve interpretation
of (34).

Note that the two singular varieties S̃2(x, y) and S2(x, y) (see (29)), are related by a
simple involution:

S̃2(x, y) = 212 · x2 y2 · S2

( 1

210 x
,

1

210 y

)
. (37)

We thus see that the various Picard–Fuchs systems ‘above’ a given Calabi–Yau ODE (i.e.
reducing, when one takes the ‘diagonal’ y = x, to the same Calabi–Yau ODE), do not
necessarily have the same singular manifolds, even if these various singular manifolds must
reduce to the same singular points in the y = x limit. Since the singular variety (34) contains
the origin (x, y) = (0, 0), it is easy to find, using the parametrization (35), a linear differential
ODE satisfied by (30) when restricted20 to the singular variety (34) (see (D.13) in appendix D).
This cannot be done for (29), which does not contain the origin (x, y) = (0, 0).

Breaking the (x, y)-symmetry in (30), by resumming the series as (31), corresponds to
the viewpoint of seeing Kampé de Feriet functions of several complex variables as straight
generalization21 of hypergeometric functions [58–61]. The x-singularities in each of the
(transcendental) 4F3 coefficients of the y-expansion (31) are only the well-known x = 0,
x = 1, x = ∞ singularities of hypergeometric functions (here x = 1 becomes x = 1/64), and
are, of course, drastically different from the singular variety (34) for the double series (30).

18 Such series are called globally bounded [62].
19 Note that the limit y = x of the Picard–Fuchs systems associated with (30) is actually a singular limit.
20 See also the notion of the Fuchsian system of linear partial differential equations along a submanifold (see [63], in
particular paragraph 6).
21 The parameters of the hypergeometric functions become linear differential operators [60, 61].
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The results for (30) can be generalized to more general (Kampé de Fériet) double series
depending on several parameters:

K(x, y) =
∞∑

n= 0

∞∑
m= 0

(α)M
n · (β)M

m · (β ′)m+n

(γ )M
m+n n! m!

· xn · ym, (38)

where (α)n is the usual Pochhammer symbol. The same calculations as before show that their
singular curves do not depend on the parameters. These calculations for (38) are displayed in
appendix D.

4.3. Picard–Fuchs systems with more than two variables ‘above’ the Calabi–Yau
operator (28).

For heuristic reasons, we restricted ourselves to two variables, but one can find many Picard–
Fuchs systems, with more than two complex variables, ‘above’ a given Calabi–Yau ODE like
(28). For instance, the series (27) of the Calabi–Yau operator (28) can also be written as the
x = y = z = t subcase of the (hypergeometric) series of four complex variables [45]:∑

j,k,l,m

[(
2( j + k + l + m)

j + k + l + m

)
·

( ( j + k + l + m)!

j! k! l! m!

)2
]

· x j yk zl tm. (39)

With the general term being hypergeometric, one obtains directly a system of four PDEs, from
which we build a linear ODE in the variable x, with y, z and t being ‘parameters’. Once one
has series with four variables, and systems of PDEs with four variables, one can take many
limits in order to reduce to two variables.

For instance, if one restricts the previous series to y = z = t, one gets a series of two
variables (which will of course reduce, for y = x, to the series (27) of the Calabi–Yau operator
(28)), but is no longer symmetric in x and y. The series can be written as
∞∑

N=0

(
2N

N

)
· 3F2([−N,−N, 1/2], [1, 1]; 4) · 2F1([N + 1, N + 1/2], [1]; 4 x) · yN

=
∞∑

N=0

(
2N

N

)2

· 3F2([−N,−N,−N], [1, 1/2 − N]; 1/4)

× 2F1([N + 1, N + 1/2], [1]; 4 x) · yN

=
∞∑

n=0

∞∑
m=0

(2n + 2m)!

(n! m!)2
· 3F2([−m,−m, 1/2], [1, 1], 4) · xn ym. (40)

The corresponding system of PDEs reads

�x = θ2
x − 2 x · (θx + θy + 1) (2θx + 2θy + 1),

�y = θ4
y − 2 y · (10θ2

y + 10θy + 3) (θx + θy + 1)(2θx + 2θy + 1)

+ 36 y2 · (2θx + 2θy + 3) (2θx + 2θy + 1) (θx + θy + 2)(θx + θy + 1). (41)

Again, one can recast this system into a form like (15), i.e. two linear differential operators
�̃x and �̃y in the variable x (resp. y), both of order 8, each one with the same singular variety
which is the union of the two genus-zero algebraic curves:

16 x2 − 8 · (4 y + 1) · x + (4 y − 1)2 = 0, and

16 x2 − 8 · (36 y + 1) · x + (36 y − 1)2 = 0. (42)

These two order-8 operators both factorize in a similar way as (17) but, this time, in the product
of two order- and one order-6 operators. These two order-6 operators right dividing respectively
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�̃x and �̃y are not related by an (x, y)-symmetry, because the Picard–Fuchs system (41) is not
(x, y)-symmetric. Again the exterior squares of these two order-6 operators are of order 14,
instead of the order 15 one can expect for the exterior square of a generic irreducible order-6
operator. Furthermore one has, again, that these order-6 operators are homomorphic to their
adjoints, with the intertwinner being of order 2 (see (22)).

More examples of the Picard–Fuchs system with two variables ‘above’ Calabi–Yau ODEs
are sketched in appendix E, with their corresponding (simple) singular varieties being also
given.

5. Singular manifolds for hypergeometric series of several complex variables

All these singular varieties (12), (24), (34) (as well as similar ones, (E.3), (E.7), given in
appendix E) can, in fact, be easily obtained from very simple calculations when one remarks
that the previous double series are the hypergeometric series of several complex variables. The
calculations, corresponding to the Horn convergence theorem, are similar to the ones for Horn
functions and Horn systems [64–67]. A very important property is the fact that the region of
convergence for the hypergeometric series does not depend on the parameters [68].

Let us denote the coefficients of (1) by cn, m:

cn, m = (3m + 3n)!

n!3 m!3
. (43)

The successive ratio of cn, m in the two ‘directions’ reads respectively

cn, m

cn+1, m
= (n + 1)3

b(n, m)
,

cn, m

cn, m+1
= (m + 1)3

b(n, m)
, (44)

where the product b(n, m) is given by (7). In the n and m large limits these two ratios behave
respectively like

X (n, m) = n3

27 (m + n)3
and Y (n, m) = m3

27 (m + n)3
, (45)

where one remarks that X (n, m) and Y (n, m) depend only on the ratio n/m. The curve
rationally parametrized by (x, y) = (X (n, m), Y (n, m)) can easily be obtained performing
a resultant (elimination of m or n or the ratio n/m), and one recovers in a very simple way
the singular manifold (12). One notes that (45) is nothing but the previous binary cubics (11)
yielding (10), the discriminant of a two-parameter family of Calabi–Yau threefolds.

We can perform similar calculations for the hypergeometric series (25); the ratio of cn, ms
also reads (44), with the product b(n, m) being now given by

b(n, m) = 2 · (2 n + 2 m + 1) (2 n + 2 m + 2) (2 n + 1). (46)

In the n and m large limits, this gives the rational parametrization of the singular variety (29),
namely (x, y) = (X (n, m), Y (n, m)), with

X (n, m) = n2

16 (m + n)2
and Y (n, m) = m2

16 (m + n)2
. (47)

For the hypergeometric series (30), the ratio of the cn, m reads respectively

(n + m + 1)3 (n + 1)

4 · (2 n + 1)3 (2 n + 2 m + 1)
and

(n + m + 1)3 (m + 1)

4 · (2 m + 1)3 (2 n + 2 m + 1)
.

In the n and m large limits, this gives the rational parametrization of the singular variety (34),
namely (x, y) = (X (n, m), Y (n, m)), with

X (n, m) = (m + n)2

64 n2
and Y (n, m) = (m + n)2

64 m2
. (48)
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Finally, for other hypergeometric series (E.2) and (E.6), given in appendix E, similar
calculations also give rational parametrizations of the corresponding genus-zero singular
curves (E.3) and (E.7).

For instance, the successive ratio of cn, m for (E.6) reads respectively

(n + 1)4

b(n, m)
,

(m + 1)4

b(n, m)
, where

b(n, m) = (2 n + m + 1) (2 n + m + 2) (2 m + n + 1) (n + m + 1). (49)

In the n and m large limits, this gives the rational parametrization of the singular variety (E.7),
namely (x, y) = (X (n, m), Y (n, m)), with

X (n, m) = n4

(2 n + m)2 (2 m + n) (n + m)
, Y (n, m) = X (m, n).

Of course, all these calculations can be performed with a series of any finite number of complex
variables. These (simple) calculations are only valid for the series of several complex variables,
such that the ratios of the various consecutive coefficients (see (44)) are rational expressions
(typically the hypergeometric series).

6. Toward singular manifolds of the Ising model D-finite system of PDEs

One thus sees, from the previous calculations, that one can actually define, and find without
ambiguity, the singular manifolds of D-finite systems of PDEs. The singular manifolds are fixed
and can (in principle) be obtained from (possibly tedious but well-defined) calculations from
the D-finite system of PDEs. This is quite different from the case of generic (non-holonomic)
systems of PDEs where singularities depend on initial boundary conditions. With the previous
calculations, one can see that the singular manifolds can even be obtained from very simple
calculations in the (selected) case of the hypergeometric series, with the singular varieties with
rational parametrization being underlined.

For functions of several complex variables which are not known to be the solutions of
D-finite systems of partial linear differential operators (or even partial nonlinear differential
operators but with fixed critical points), the question of defining and finding the singular
manifolds seems hopeless. There is, however, one category of functions of several complex
variables that emerges quite naturally in physics, where some hope remains, thus partially
justifying the ‘guessing’ approach often performed in lattice statistical mechanics [8–10,
18, 23, 69–71]. These functions of several complex variables are the ones which can be
decomposed as infinite sums of D-finite functions (in a typical Feynman diagram approach).
The best example is the full susceptibility of the anisotropic square Ising model which has
such a decomposition [46]. Let us try to find the singularity manifolds of the anisotropic
χ(n)s, trying in the second step, to understand the singularity manifolds of the anisotropic full
susceptibility χ .

6.1. Landau approach for the singular manifolds of the anisotropic χ(n)

Finding the Fuchsian (and in fact globally nilpotent [72]) linear ODEs for the n-fold integrals
χ(n)s of the decomposition of the full magnetic susceptibility of the square lattice Ising model
is already a ‘tour-de-force’ in the isotropic case [44, 47, 73–75].

The anisotropic χ(2) has a surprisingly nice factorized form (see equation (3.22) in [50]).
It is the product of the isotropic χ(2) and of a simple square-root algebraic function:

χ(2)(k, r) = ((1 + k r) · (k + r))1/2

1 + k
· χ(2)(k, 1), (50)
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where k = s1 s2 is the modulus of elliptic functions in the parametrization of the model, where
the ratio r = s1/s2 is the anisotropy variable, with s1 = sinh 2K1 and s2 = sinh 2K2 (with
notations K1 = Ev/kBT and K2 = Eh/kBT , see (3.22) of [50]), and where χ(2)(k, 1) is the
isotropic χ(2):

χ(2)(k, 1) = 1

3 π
· (1 + k2) · E(k2) − (1 − k2) · K(k2)

(1 − k) (1 − k2)

= k2

4 (1 + k)4
· 2F1

([
3

2
,

5

2

]
, [3]; 4 k

(1 + k)4

)
. (51)

Beyond this surprisingly simple χ(2) case, obtaining a D-finite (Picard–Fuchs) system for
χ(3), for the anisotropic square Ising model, would require too massive and extreme computer
calculations. Furthermore, the simple ‘Horn calculations’ detailed in section (5) require some
closed asymptotic formula (or some asymptotic formula of exact linear recursions) for the
coefficients of the double series of the anisotropic χ(n), and would require some assumption
that χ(n)s are the hypergeometric series or, at least, that their singular part is dominated by the
hypergeometric series.

However, if one is only interested in the singularities of such D-finite n-fold integrals,
then the Landau singularity approach, which we have already used in the isotropic case
to find [3, 49] these singularities, can again be worked out. We are not going to recall the
details of this approach, which correspond in the anisotropic case to sometimes quite tedious
(algebraic) calculations. The idea, which is specific to n-fold integrals of some algebraic
integrands, amounts to saying that the singularities should, in principle, be deduced only from
the algebraic integrands of these integrals from elementary algebraic calculations [1–3, 49,
48].

We will display in subsection 6.3 the results for the first χ(n)s after recalling in the
following subsection the first set of fundamental singularities.

6.2. Nickelian singular manifolds for the anisotropic χ(n)s and zeros of the partition function

In contrast to the form factors [76, 77] C(n)(M, N), whose only singular points are k = 0,
k = 1 and k = ∞, χ(n)(k)s have many further singularities. The first set of these singularities
was found, by Nickel [51, 52], to be, for the isotropic case (K1 = K2 = K), located at

cosh2 2K − sinh 2K · (cos(2π j/n) + cos(2π l/n)) = 0, (52)

with ([x] being the integer part of x): 0 � j, l � [n/2], j = l = 0 excluded (for n even,
j + l = n/2 is also excluded). Equivalently (52) reads

sinh 2Kj,l = s j,l = 1/2 · (cos(2π j/n) + cos(2π l/n))

± i/2 · [(4 − (cos(2π j/n) + cos(2π l/n))2]1/2. (53)

These Nickel’s singularities are clearly on the unit circle |s| = 1 or |k| = 1. Do note that this
is no longer the case for the anisotropic model where Nickel’s singularities for the anisotropic
χ(n)s become

cosh 2K1 · cosh 2K2 − (sinh 2K1 · cos(2π j/n) + sinh 2K2 · cos(2π l/n)) = 0, (54)

with j, l = 1, 2, . . . , n. These (complex) algebraic curves (54), in the two complex variables
s1 = sinh 2K1, s2 = sinh 2K2, have to be singular loci (as will be suggested in the following
section) for the D-finite system of PDEs satisfied by the anisotropic (holonomic) χ(n)s.

One can rewrite these algebraic curves in k = s1 · s2 and r = s1/s2 as

(r + k) · (k r + 1) − k · (r U ± V )2 = 0, (55)
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where U = cos(2π j/n) and V = cos(2π l/n). Do remark that these algebraic curves depend
on the anisotropy variable r = s1/s2. We will underline this important fact in subsection 6.4.
Remarkably, these curves are generically of genus 1 22, not only when U = cos(2π j/n) and
V = cos(2π l/n), but for any fixed value of U and V . Their j-invariant [49, 78] reads23

j = 256 · (U4 + V 4 − V 2U2 − U2 − V 2 + 1)3

(V 2 − 1)2 (U2 − 1)2 (U2 − V 2)2
. (56)

We thus see that we have a two-parameter family of elliptic curves.
These elliptic (or rational) curves (54) accumulate with increasing values of n, in the

same way Nickel’s singularities (52) accumulate on the unit circle |s| = 1, in a certain
(real) submanifold S of the two complex variables s1, s2 (four real variables). However, this
‘singularity manifold’ S is not a co-dimension-1 (real) submanifold (like the unit circle |s| = 1
in the s-complex plane), but actually a co-dimension zero submanifold, as can also be seen in
various analyses of complex temperature zeroes (see24 for instance [81–88] and more recently
[89–91]). Note that this ‘singularity manifold’ becomes very ‘slim’ near the (critical) algebraic
curve k = s1 s2 = 1. (See for instance the region near the real axis of figures 1–3 in [89].)

In the isotropic case, we actually obtained [44, 47, 48, 74, 75, 92] the linear ODEs satisfied
by the first χ(n)s, for n = 3, 4, 5, 6 and, thus, of course, the corresponding ODE singularities.
Furthermore, we also performed a Landau singularity approach that enabled us to obtain, and
describe, the singularities for all [3, 49] χ(n)s. These exact results show, very clearly, that there
are (non-Nickelian) singularities inside the unit circle and outside the unit circle (see figures
1–4 of [49]). From the figures of [49], it is easy to get convinced that the accumulation of
these non-Nickelian singularities will probably be a dense set of points inside the unit circle
and (by Kramers–Wannier duality) outside the unit circle. These non-Nickelian singularities
are given in terms of Chebyshev polynomials of the first and second kinds (see equations (28)
and (29) in [49]). Upgrading these slightly involved exact (Chebyshev) non-Nickelian results
[49] for the isotropic model to the anisotropic model is, at the present moment, probably too
ambitious.

Let us simply try, using the previous Landau singularity approach, to provide maybe not
an exhaustive description of all the singularities for the anisotropic case, but at least the exact
expression of all the singular manifolds (Nickelian or non-Nickelian) for the first anisotropic
χ(n)s.

6.3. Singular manifolds for the first anisotropic χ(n)

The Landau singularity approach detailed in [3, 49] for the isotropic χ(n)s of the square Ising
model can easily be generalized to the anisotropic χ(n)s. We are not going to explain here
the details of these (slightly tedious) calculations, which are basically the same as in [3, 49]
mutatis mutandis. With the calculations being slightly involved, we just give the results for
the first χ(n)s.

22 For U = V (as well as U = −V , U = ±1, V = ±1) the curves are of genus zero. For instance, for U = V , they
read (r ± 1)2 k · U − (r + k) · (k r + 1) = 0.
23 This rational expression (56) of U and V is nothing but relation (36) in [78] with Jx/Jz = U , Jy/Jz = V .
This rational expression remarkably factorizes for many Heegner numbers [79, 80] (complex multiplication cases):
j = 123, 203, (−15)3, 2 × 303, 663 and selected quadratic values of j-invariant, like j2 + 191 025 j − 4953 = 0
or j2 − 1264 000 j − 8803 = 0. This (partially) explains the occurrence in (54) of several complex multiplication
cases (for instance U = cos(2π2/8), V = cos(2π/8), which give j = 1728).
24 The first reference corresponds to the fact that zeroes can fill areas in the complex temperature plane. Some later
papers contain results on the density of zeroes in the thermodynamic limit.
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The singularities of χ(3) and χ(4) read respectively in k and r:

Sing(χ (3)) = (k2 − 1) · (3 kr + r + 4 k2) · (k2r + 3 kr + 4) · (k2r + r + k)

×(3 r2k − r − k − k2r) · (4 + 3 kr + 4 k + 4 k2) (r + k) (kr + 1), (57)

Sing(χ (4)) = (k2 − 1) · (kr + 1 + k2) · (3 r2k − r − k − k2r). (58)

In order to compare these results with our previous exact results for the isotropic model, which
were given [44, 48, 74] in the (quite natural for such n-fold integrals) variable [47, 74] w, let
us rewrite these results in r and w = s/(1 + s2)/2, where, now, s = (s1 s2)

1/2:

Sing(χ (3)) = (w2 − 1) · w2 · (r2 − 4 r + 4 + 3 w2r2 − 4 w2r + 16 w4r)2

× (1 + 4 w2r − 2 r)2 (3 r2 − 1 − 4 w2r + 2 r)2

×(3 r − 4 + 16 w2)2 · (1 + 4 w2r − 2 r + r2)2, (59)

Sing(χ (4)) = w2 · (w2 − 1) · (4 w2 − 2 + r)2 · (3 r2 − 1 − 4 w2r + 2 r)2. (60)

Note that the complex multiplication points of the isotropic case [49], namely the roots of
1 + 3 k + 4 k2 = 0 and k2 + 3 k + 4 = 0, come from the Sing(χ (3)) factor

r2 − 4 r + 4 + 3 w2r2 − 4 w2r + 16 w4 r, (61)

in (59), or equivalently with (k, r), the two factors in (57):

(3 kr + r + 4 k2) · (k2r + 3 kr + 4), (62)

The vanishing condition of (61) corresponds to a genus-zero curve, with its rational
parametrization being

w = u2 + 1

2 u
, r = −4

u2 · (u2 + 3)
. (63)

Note that Sing(χ (3)) and Sing(χ (4)) have a non-trivial gcd (respectively in k, then w):

gcd(Sing(χ (3)), Sing(χ (4))) = (k2 − 1) · (3 r2k − r − k − k2r),

gcd(Sing(χ (3)), Sing(χ (4))) = w2 · (1 − w) (1 + w) · (3 r2 − 1 − 4 w2r + 2 r)2,

the last algebraic curve, 3 r2k − r − k − k2r = 0, is a genus-one curve. A way to understand,
in the anisotropic case, the emergence of singular algebraic curves shared by several χ(n)s (n
even and n odd) amounts to noting that these curves actually reduce, in the isotropic limit, to
k = 1, the singular variety of the partition function of the anisotropic model.

The fact that the singular curve 3 r2k − r − k − k2r = 0, together with the Nickelian
algebraic curves (54), (55), are not of genus-zero (as all the genus-zero curves of section 4,
like (29), (34), as well as the ones displayed in appendix E, see (E.3), (E.7), show that the
series for the anisotropic χ(n)s cannot be the hypergeometric series in the variables k and r
(see section (5))).

It would be interesting, before trying to generalize the Chebyshev polynomial formula
[49] for the non-Nickelian singularities of the isotropic model to the anisotropic one, to
accumulate, with this Landau singularity approach, more non-Nickelian algebraic curves in
the anisotropic case. Recalling the systematic emergence of elliptic curves (see (55)) for the
Nickelian algebraic curves, it would be interesting to systematically look at the genus of these
singular curves to see if higher genus curves are also discarded for the non-Nickelian algebraic
curves.

It would also be interesting to confirm these Landau singularity calculations with
differential algebra calculations. Even with the last progress performed by Koutschan on
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the creative telescopic method [93, 94], getting the (Picard–Fuchs) system of PDEs satisfied
by the several complex variables series of the anisotropic χ(n)s corresponds, at the present
moment, to too large calculations (even for the anisotropic χ(3)). However, if one considers
particular anisotropic subcases (s2 = 3 s1, s2 = 5 s2

1, ...), obtaining the corresponding ODEs
for the anisotropic χ(3), in the unique complex variable, could be imagined using the creative
telescopic method [93, 94], or even from series expansion as we did in the isotropic case [44].

6.4. Singular manifolds and the anisotropy variable

For experts of Yang–Baxter integrability, the fact that the singularity varieties, namely the
Nickelian elliptic curves (55), or the non-Nickelian rational curves (62), do depend on the
anisotropy of the model may come as a surprise. Indeed, within the Yang–Baxter integrable
framework, and as a consequence of the existence of families of commuting transfer matrices
(row-to-row, diagonal or corner transfer matrices), one used to have many quantities like
the order parameter, the eigenvectors of row-to-row or corner transfer matrices, ..., which
are independent of the so-called spectral parameter (the parameter that enables us to move
along each elliptic curve). The selected quantities depend only on the modulus k of the
elliptic functions. Along this line, one certainly expects the singular manifolds, which are
highly symmetric, ‘invariant’ and ‘universal’ manifolds [11, 16, 17], to be also independent
of the spectral variables. With the previous variables k and r, the singular manifolds should
just depend on the modulus k, and not on the anisotropy variable r (related to the spectral
parameter). The surprise is that the singular manifolds do depend also on the anisotropy
variable r, and thus on the spectral variable.

χ(n)s are known [76] to be an infinite sum of form factors C(n)(N, M):

χ(n) =
∑

M

∑
N

C(n)(N, M), (64)

with this relation being inherited from the fact that the full susceptibility is the sum of all the
two-point correlation functions [76].

Recalling the simplest (nearest-neighbor) correlation function C(0, 1), it reads [95] in the
anisotropic case25:

C(0, 1) = 2

π r
·

(k + r

k

)1/2
· ((1 + k r) · �(− k r, k) − K(k)),

where, again, k = s1 s2 is the modulus of the elliptic functions parametrizing the model and r
is the ratio r = s1/s2, and where �(x, y) is the complete elliptic integral of the third kind.

The singular manifolds correspond to the singular points of the complete elliptic integrals
of the first and third kinds, namely k = 0, k = 1 and k = ∞. Therefore, they depend only on
the modulus k in the elliptic parametrization of the model.

The form factors have been seen to be solutions of linear differential equations associated
with elliptic functions [76, 77]. Consequently, their singular points correspond to the singular
points of the complete elliptic integrals of the first or second kind E or K, namely k = 0,
k = 1 and k = ∞. The generalization to the anisotropic case has been sketched in [95].
One expects the results to be polynomial expressions of the complete elliptic integrals of the
first (or second) and third kinds, yielding again singular manifolds which depend only on the
modulus k, and are actually k = 0, k = 1 or k = ∞.

Finite sums of correlation functions or form factors certainly have k = 0, k = 1 or
k = ∞ as singularities, even for the anisotropic model. However, the anisotropic χ(n)s are
sums of an infinite number of form factors. One cannot try to deduce the singular points of

25 We use the Maple notations for � and K.
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these infinite sums χ(n)s from the singular points of the form factors. χ(n)s are, in fact, quite
involved ‘composite’ quantities with no simple combinatorics interpretation (like being the
sum over graphs of a certain type). It is worth noting that exploring all the algebraic singular
curves for all χ(n)s, condition k = 1 always occurs for all χ(n)s.

The previous results provide quite an interesting insight into the ‘true mathematical and
physical’ nature of χ(n)s: they are quite involved ‘composite’ quantities, with their singularities
being drastically different from the ones of the C(n)(N, M) form factors [76, 77].

In the isotropic case, strong evidence has been given [48–52] that the full susceptibility χ

has a natural boundary corresponding to the accumulation of singular points on the |k| = 1
unit circle, thus discarding common wisdom that ‘of course’ the singularities of the partition
function are the same as the singularities of the full susceptibility.

By analogy with the situation encountered in the isotropic case, we are going to have an
accumulation of singular curves densifying the whole parameter space (two complex variables
s1 and s2, i.e. four real variables). The equivalent of the unit circle is now a co-dimension-zero
manifold in the four real variables parameter space, which disentangles two co-dimension-zero
domains in the parameter space. Is it the singular locus for the full anisotropic susceptibility
χ? Do we have here a generalization of the concept of natural boundary for several complex
variables ? If the answer to the question of the location of the singularities of non-holonomic
functions seems to be dependent on the decomposition of the non-holonomic function in infinite
sums of holonomic functions, is it simply well defined?

All we can reasonably say is that, probably, and in the same way as in the isotropic case,
the double series for χ(n)s are not singular in one domain (the equivalent of the inside of the
unit circle), and one probably has the same result for the full anisotropic susceptibility χ .

6.5. Anisotropic models: n-fold integrals of several complex variables

In the anisotropic case, χ(n)s are n-fold integrals of several complex variables. After [39],
we do know that these ‘functions’ of several complex variables are holonomic. Let us restrict
ourselves to the case we often encounter in physics, where the integrand is an algebraic
function of these several complex variables (and of the integration variables). In contrast with
the one complex variable case, the holonomic character here corresponds to an extremely
rich structure: the solutions of the overdetermined system of linear PDEs correspond to a
finite set of solutions (for one complex variable this is obvious), and the singularities, which
are no longer points but manifolds, are fixed algebraic varieties (for one complex variable
this is obvious). Furthermore, these operators are globally nilpotent (the holonomic functions
can, in this ‘derived from geometry’ framework [96, 97], be interpreted as ‘periods’ of an
algebraic variety closely related to the integrand). We have many other remarkable properties.
For instance, the operators are often (always?) homomorphic to their formal adjoint. (This is
related to the occurrence of selected differential Galois groups.) All these remarkable properties
correspond to a differential algebra description of these structures. Finally, we have also other
properties of more arithmetic and algebraic geometry nature. The series expansions of these
holonomic functions are often globally bounded [62], which means that they can be recast (after
rescaling) into series expansions of several variables with integer coefficients. This raises the
question of the ‘modularity’ in these problems [98, 99]. Along this ‘modularity’ line, beyond
the occurrence of many modular forms [96, 100], we also see the emergence of Calabi–Yau
ODEs. From a differential algebra perspective, the emergence of Calabi–Yau structures [101]
is not clear. In some integrability framework, the argument that Calabi–Yau manifolds are,
after K3 surfaces, the ‘next’ generalization of elliptic curves, remains an insufficient and much
too general argument.
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Let us inject, beyond the differential algebra description of these structures, some
birational algebraic geometry ideas. In lattice statistical mechanics, the models defined by local
Boltzmann weights depending on several complex variables are known to have, generically,
an infinite set of birational symmetries generated by the combination of the so-called inversion
relations [102, 103].

It has been shown that n-fold integrals like χ(n)s of the Ising model present some
nice inversion relation functional equations in the anisotropic case [104] (several complex
variables):

χ(n)(K1, K2) = χ(n)
(

K1, K2 + i
π

2

)
, (65)

inherited from the same inversion relation functional equation on the full anisotropic
susceptibility.

Since the previous ideas underline the crucial role of the integrand of the n-fold integrals
as the algebraic variety from which ‘everything’, in principle, can be deduced [49, 96, 97],
it is interesting to see if this integrand, itself, is not going to be invariant (resp. covariant)
by these birational involutions (and, thus, by the composition of these birational involutions)
when we keep the integration variables fixed. One can verify that this is actually the case for
the integrand of the anisotropic χ(n)s of the Ising model.

Unfortunately, the group of birational transformations of the Ising model is a finite set
of transformations. However, for generic models, one can easily imagine being in a situation
where the integrand of the n-fold integrals of several complex variables emerging in these
models will be invariant (resp. covariant) by an infinite set of birational transformations [5].

We will thus have a natural emergence (in lattice statistical mechanics) of algebraic
varieties with an infinite set of birational symmetries [5]. These algebraic varieties have zero
canonical class, Kodaira dimension zero. We, now, understand the emergence of Calabi–Yau
manifolds in these problems: Abelian varieties and Calabi–Yau manifolds (in dimension 1,
elliptic curves; in dimension 2, complex tori and K3 surfaces) have Kodaira dimension zero26.

One can expect that the singular varieties (like (9) or (12)) will have to be invariant by
the (generically infinite) set of birational transformations generated by the inversion relations.
When the singular manifolds are algebraic curves, the existence of a (generically infinite) set
of birational automorphisms for the algebraic curves implies that the curves are, necessarily,
genus 0 or 1 [5]. This enables us to understand27 the emergence of remarkable structures like the
two-parameter family of elliptic curves (55). Actually, this is the way many singular varieties
have been discovered on many lattice statistical mechanics models (see [16, 17, 19, 20]).
This birational invariance fits quite well with the interpretation of the singular variety (12), as
the discriminant of a two-parameter family of Calabi–Yau threefolds.

7. Conclusion

In the theory of critical phenomena (renormalization group, etc), singularities are often seen as
fixed points of a ‘dynamical system’ called renormalization [105], and one takes for granted,
with a (lex parsimoniae) simplicity prejudice, that these singularities are isolated points or
smooth manifolds (hopefully algebraic varieties [8–10, 106–108] if one has an integrability
prejudice as well). In the theory of discrete dynamical systems, a totally opposite prejudice

26 Zero canonical class, corresponding to admitting flat metrics and Ricci flat metrics, respectively.
27 Cum grano salis: in the (free-fermion) Ising case the birational transformations generated by the two inversion
relations form a finite set [109, 110], which allows, in principle, higher genus curves. One must imagine the Ising
model as a subcase of a larger model with n-fold integrals, where one would recover a (generic) infinite set of birational
transformations.
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exists like the belief in a frequent occurrence of strange attractors for the set of fixed points
of many ‘dynamical systems’. Singularity theory in mathematics, and in particular Arnolds’s
viewpoint [38], is a perfect illustration that the set of singular points should actually correspond
to much more involved manifolds than what is expected in the mainstream doxa of critical
phenomena.

We have performed some kind of ‘deconstruction’28 of the concept of singularities in
lattice statistical mechanics. The sets of singularities are much more complex sets of points
than physicists tend to believe (see figures 1–4 of [49]).

The mathematician’s viewpoint that singularities are much more complex than what
physicists believe with their (lex parsimoniae) simplicity optimism is the correct viewpoint.
On the other side, the mathematician’s viewpoint that nothing serious and/or rigorous can be
done with several complex variables is too pessimistic: within that viewpoint, singularities are
seen as too involved to analyze, impossible to localize (of course outside the hypergeometric
series framework), or simply, not a well-defined concept. Even in the case of several complex
variables, many singular manifolds conjectured by physicists, in particular Wu [8–10], turned
out to be true singular varieties of lattice models, because physicists are (sometimes without
being fully conscious) often working with holonomic (D-finite) functions of several complex
variables.

Focusing on the full susceptibility χ of the (anisotropic) Ising model and on the holonomic
χ(n)s, we have obtained singular manifolds of the linear partial differential systems of χ(n)s.
The fact that these singular manifolds depend on the spectral parameter of this Yang–Baxter
integrable model is a strong indication that these χ(n)s are highly composite objects (even
if the exact expression of these singular varieties remains simple enough for the first χ(n)s).
Furthermore, the fact that most of these singular manifolds are not genus-zero curves shows
that the series of the anisotropic χ(n)s, despite all their remarkable properties, cannot be
reduced to the hypergeometric series.

In the case of the full susceptibility χ of the (anisotropic) Ising model, we seem to have
the following situation: among the quite large, and rich, set of singular varieties of the linear
ODEs of χ(n)s, there is a restricted set (see (54), (55)) of singular varieties which actually
correspond to zeros of the (anisotropic) partition function, and, at the same time, correspond
to singularities of the linear PDEs of χ(n)s. This set could correspond (by analogy with the
isotropic case) to singularities of the series expansions of χ(n)s. A fundamental idea to keep in
mind is that it is crucial to make a difference between the singularities of the (series expansions
of the) D-finite functions and the singularities29 of the linear partial differential systems for
these functions.

It would be interesting to see if, inside some reasonable theoretical physics framework,
similar results30 can also be obtained for other non-holonomic functions of several complex
variables that decompose into an infinite set of holonomic (D-finite) functions.
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Appendix A. The nine formal solutions of the Picard–Fuchs system ‘above’ the
Calabi–Yau ODE (4)

Let us find the ‘formal solutions’ around (x, y) = (0, 0) of the PDE system (5) ‘above’ the
Calabi–Yau ODE (4). One plugs, in (5), the series

∑
j=0

j∑
k=0

H j,k(x, y) · ln(x)k ln(y) j−k, (A.1)

where H j,k(x, y) are the series in x and y, and solves the system term by term. Collecting on
the non-fixed coefficients, one finds S0 = H0(x, y) and

S1 = H0(x, y) · ln(x) + H1(x, y), S2 = H0(x, y) · ln(y) + H1(y, x),

S3 = H0(x, y) · ln(x)2 + 2 H1(x, y) · ln(x) + H2(x, y),

S4 = H0(x, y) · ln(y)2 + 2 H1(y, x) · ln(y) + H2(y, x),

S5 = H0(x, y) · ln(x) · ln(y) + H1(y, x) · ln(x) + H1(x, y) · ln(y) + H3(x, y),

S6 = H0(x, y) · ln(x)2 · ln(y) + 2H1(x, y) · ln(x) · ln(y) + H1(y, x) · ln(x)2

+ 2H3(x, y) · ln(x) + H2(x, y) · ln(y) + H4(x, y),

S7 = H0(x, y) · ln(x) · ln(y)2 + 2H1(y, x) · ln(x) · ln(y) + H1(x, y) · ln(y)2

+ 2H3(x, y) · ln(y) + H2(y, x) · ln(x) + H4(y, x),

S8 = H0(x, y) · ln(x)2 · ln(y)2 + 2H1(y, x) · ln(x)2 · ln(y) + 2H1(x, y) · ln(x) · ln(y)2

+ 4H3(x, y) · ln(x) · ln(y) + H2(y, x) · ln(x)2 + H2(x, y) · ln(y)2

+ 2H4(y, x) · ln(x) + 2H4(x, y) · ln(y) + H5(x, y), (A.2)

where (only the first terms of the series are given)

H0(x, y) = 1 + 6 (x + y) + (90 (x2 + y2) + 720 xy) + · · · ,
H1(x, y) = (15 x + 33 y) +

(
513

2
x2 + 3132 xy + 1323

2
y2

)
+ · · · ,

H2(x, y) = (108 y − 18 x) −
(

279

2
x2 − 6120xy − 3654y2

)
+ · · · ,

H3(x, y) = 9 · (x + y) +
(

2709

4
x2 + 3960 xy + 2709

4
y2

)
+ · · · ,

H4(x, y) = −(90 x + 162 y) −
(

8505

4
x2 + 11 178xy + 6237

4
y2

)
+ · · · ,

H5(x, y) = 324 · (x + y) −
(

14 931

4
(x2 + y2) − 6912xy

)
+ · · · .

There are nine solutions for the system (5). One notes that H0, H3 and H5 are symmetric in x,
y, while H1, H2 and H4 are not symmetric in x, y. For the formal solutions, S0, S5 and S8 are
symmetric in x, y, and the six others are pairwise symmetric. These nine independent formal
solutions are the solutions of the PDE system (5), and thus of the order-9 differential operator
�̃x and its (x, y)-symmetric �̃y.
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Note however that the linear differential operator �̃x has been constructed from the PDE
system (5) and factorizes as written in (17); it then might be that H0(x, y) is a solution of only
the right factor operator L6(x, y). Indeed, plugging a series∑

n,m

cn,m · xn ym, cn,m = cm,n, (A.3)

into L6(x, y) and solving term by term, one obtains (up to the overall c0,0) the double
hypergeometric series H0(x, y). The solutions of L6(x, y) can be expressed in terms of the
previous formal solutions (A.2):

S0, S1, S2, S3 − S4, S5 + S4

2
, S6 + S7. (A.4)

Appendix B. Factorization (17) of the order-9 operator �̃x

The order-9 operator �̃x of subsection 3.2 factorizes (see (17)) into three order-1 operators
and the order-6 operator L6(x, y):

L6(x, y) = 1

p6(x, y)
·

6∑
n=0

pn(x, y) · Dn
x . (B.1)

The three order-1 operators are encoded by three rational functions of x and y, namely r̃1(x, y),
r̃2(x, y) and r̃3(x, y). These polynomials factorize (see (19)) and thus r̃i(x, y)s reduce to the
expressions of four polynomials with integer coefficients P9(x, y), P6(x, y), q1 and q2, where
P9(x, y) is the polynomial of the apparent singularities of the order-9 operator �̃x and where
P6(x, y) is the polynomial of the apparent singularities of the order-6 operator L6(x, y).

These polynomials read

P9(x, y) = 24 × 318 × x6 − 2 × 316 × (31 951 + 1602 072 y) × x5

+ 313 × (14 397 329 + 913 784 868 y + 17 712 588 816 y2) × x4

+ 39 × (2986 814 425 + 60 616 383 939 y − 1350 750 590 172 y2

− 24 695 209 500 192 y3) × x3 + 37 × (5310 925 151

− 333 452 529 387 y − 14 254 789 072 275 y2

+ 241 096 254 564 492 y3 + 7702 353 325 801 296 y4) × x2

− 81 × (27 y − 1) × (39 319 888 296 092 688 y4 + 122 020 942 792 986 y3

− 111 685 613 173 821 y2 + 22 118 310 900 y + 86 524 357 339) × x

+ 24 × 53 × (10 827 y + 364)3 × (27 y − 1)3, (B.2)

P6(x, y) = 387 420 489 × (x2 − 142 xy + 343 y2) × (x + y)4 − 43 046 721

× (x + y) × (89 x4 − 196 y4 − 823 xy3 + 13 287 x2y2 − 3493 x3y)

+ 1594 323 × (3482 x4 + 662 xy3 + 2972 x3y − 427 y4 + 25 365 x2y2)

+ 19 683 × (33 307 x3 − 1784 y3 − 14 487 xy2 + 44 904 x2y) − 2187

× (27 394 x2 − 88 xy − 671 y2) + 162 × (1325 x + 242 y) − 1331, (B.3)

q1 = 4 × 318 × (x6 + 113 061 462 xy5 + 4560 x5y − 8876 482 x3y3 + 284 847 x4y2

− 52 726 107 x2y4 + 28 140 175 y6)

+ 316 × (4108 x5 − 11 112 875 x3y2 + 587 276 x4y − 105 291 883 xy4

+ 14 516 200 y5 − 4491 914 x2y3)

+ 313 × (198 311 x4 − 370 624 786 xy3 + 6765 614 x3y
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− 130 714 000 y4 + 116 112 144 x2y2)

+ 39 × (18 879 841 x3 − 64 727 000 y3 + 773 936 148 xy2 + 17 519 934 x2y)

− 37 × (45 403 057 x2 − 221 205 178 xy − 141 045 500 y2)

− 567 × (22 002 263 x − 1112 800 y) − 145 745 600,

q2 = 774 840 978 × (x6 − 841 926 xy5 − 462 x5y − 341 728 x3y3 + 32 721 x4y2

+ 810 681 x2y4 + 98 245 y6)

− 43 046 721 × (223 x5 + 54 121 x3y2 − 47 245 x4y − 613 336 xy4

− 68 810 y5 + 20 707 x2y3)

+ 1594 323 × (22 489 x4 + 1358 236 xy3 + 304 861 x3y

− 250 820 y4 − 1645 923 x2y2)

+ 19 683 (415 049 x3 − 505 660 y3 − 4725 138 xy2 + 65 103 x2y)

+ 10 935 × (229 157 x2 − 163 880 xy + 68 006 y2)

+ 162 × (492 079 x + 45 925 y) − 440 440.

Appendix C. Alternative linear differential operator for the double hypergeometric
series

Recalling the double hypergeometric series (1), H0(x, c x) is a solution of an order-6
c-dependent linear differential operator

W6 = (1 + 162 · (c + 1) · x) (1 − 81 · (c + 1) · x

+ 2187 · (c2 − 7 c + 1) · x2 − 19 683 · (c + 1)3 · x3 ) · x4 · D6
x + · · · . (C.1)

In the c = 1 limit, this order-6 operator becomes the direct sum of the order-2 linear differential
operator

θ2 − 3 x · (3 θ + 1) · (3 θ + 2),

with the hypergeometric function solution

2F1

([
1

3
,

2

3

]
, [1]; −27 x

)
, (C.2)

and of the order-4 Calabi–Yau ODE (4), with the analytic solution (3), which can be written
as the Hadamard product [111]:

2F1

([
1

3
,

2

3

]
, [1]; −27 x

)



(
1

1 − 4 x
· 2F1

([
1

3
,

2

3

]
, [1]; − 27 · x

(1 − 4 x)3

))
.

In the (less natural) c = 0 limit, this order-6 linear differential operator is the product of
homomorphic operators:

W6(c = 0) = N2 · M2 · L2, (C.3)

where L2 has the hypergeometric function solution

2F1

([
1

3
,

2

3

]
, [1]; 27 x

)
. (C.4)

In the c → ∞ limit, this order-6 operator degenerates into the direct sum:

(3 · θ + 1) ⊕ (3 · θ + 2) ⊕ (3 · θ + 4) ⊕ (3 · θ + 5) ⊕ (3 · θ + 7) ⊕ (3 · θ + 8).
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Appendix D. Another series of two complex variables

D.1. Double hypergeometric series

Without the factor 64, the results for (30) in subsection (4.2) correspond to the double
hypergeometric series

K(x, y) =
∞∑

n= 0

∞∑
m= 0

(α)3
n · (β)3

m · (β ′)m+n

(γ )3
m+n n! m!

· xn · ym,

where (α)n is the usual Pochhammer symbol. The double hypergeometric series K(x, y) is a
Kampé de Fériet function [58–61]

F1,3,3
3,0,0 ([β ′], [α, α, α], [β, β, β]; [γ , γ , γ ],−,−; x, y). (D.1)

The singularity varieties of (D.1) are independent of the parameters α, β, β ′, γ , and are
x · (1 − x) · (1 − y) · (y − x) = 0, together with

y2 x2 − 2 x y · (y + x) + (x − y)2 = 0, (D.2)

in agreement, in the α = β = β ′ = 1/2, γ = 1 limit, with (34), taking into account the
rescaling (x, y) → (64 x, 64 y).

D.2. Other double hypergeometric series

Introducing the other double hypergeometric series

K2(x, y) =
∞∑

n= 0

∞∑
m= 0

(α)M
n · (β)M

m · (β ′)m+n

(γ )M
m+n n! m!

· xn · ym. (D.3)

It is also a Kampé de Fériet function [58–61]

F1,M,M
M,0,0 ([β ′], [α, . . . , α], [β, . . . , β]; [γ , . . . , γ ],−,−; x, y). (D.4)

Let us restrict, in the following, to α = β = β ′ = 1/2 and γ = 1.
The singularity varieties of the PDE system are actually different from (D.2) and depend

on M. For M = 2 and M = 4, they read respectively

(x + y)2 − x2 y2 = 0, (x + y − x y)3 + 27 x2 y2 = 0. (D.5)

More generally, for M an even integer, besides the conditions x · (1 − x) · (1 − y) = 0, the
singular manifold reads an algebraic curve of parametrization

x = tM−1, y =
( − t

1 − t

)M−1
, (D.6)

or equivalently

x =
(1

2
+ v

)1−M
, y =

(1

2
− v

)1−M
, (D.7)

that can be thought of as a ‘Fermat-like’ curve:

x
1

1−M + y
1

1−M = 1. (D.8)

For M = 3, we have (D.2) and for M = 5, we have (besides the conditions
x · (1 − x) · (1 − y) · (y − x) = 0) the singular variety

(x + y + x y)4 − 136 x2 y2 · (x + y + x y) − 8 x y · (x + 1 + y) (x2 + y2)

− 8 x2 y2 · (x + y) (x y − 1) = 0. (D.9)
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More generally, for M an odd integer, besides the conditions x · (1−x) · (1−y) · (y−x) = 0,
the singular manifold reads as an algebraic curve of parametrization

x = tM−1, y =
( − t

1 − t

)M−1
, (D.10)

or equivalently

x =
(
−1

2
+ v

)1−M
, y =

(
−1

2
− v

)1−M
, (D.11)

that can be thought of as a ‘Fermat-like’ curve:

x
1

1−M + y
1

1−M + 1 = 0. (D.12)

D.3. Differential operators restricted to singular varieties

Let us restrict ourselves to the singular variety (D.2) for M = 3, using the rational
parametrization (D.10), that is (x, y) = (t2, (t/(1 − t))2). The double series expansion
(D.3) becomes a series expansion in the t variable which is a solution of the order-4 linear
differential operator (Dt = d/dt):

C4 = t3 · (t − 1) (2 t + 1) (t + 2) (t2 + t + 1)2 (t + 1)4 · D4
t

+ 2 t2 · (t2 + t + 1) · (t + 1)3 · c3(t) · D3
t + t · (t + 1)2 · c2(t) · D2

t

+ 2 (t + 1) · c1(t) · Dt + 2 t · (t + 2) (t2 + t + 1)4, (D.13)

where

c3(t) = 10 t6 + 32 t5 + 39 t4 + 20 t3 − 17 t2 − 24 t − 6,

c2(t) = 50 t9 + 243 t8 + 588 t7 + 903 t6 + 885 t5 + 501 t4 + 33 t3 − 174 t2 − 99 t − 14,

c1(t)= 15 t10+82 t9 + 228 t8 + 411 t7 + 531 t6 + 513 t5 + 333 t4 + 99 t3 − 12 t2 − 12 t − 1.

This ‘critical’ order-4 operator C4 is such that its exterior square is a linear differential operator
of order 5 (and not 6 as it should be for a generic order-4 operator). This condition that the
exterior square is of order 5 is called the ‘Calabi–Yau condition’: it is one of the conditions
defining Calabi–Yau ODEs [53, 112–114]. Related to this exterior square condition one also
has the property that this order-4 operator C4 is homomorphic to its adjoint, up to a conjugation
by the polynomial (x + 1)3 (x2 + x + 1)3.

Note that the limit y = x, yielding to the Calabi–Yau operator (28) (also such that its
exterior square is a linear differential operator of order five), is actually a singular limit of the
Picard–Fuchs system.

Similarly, let us restrict ourselves to the singular variety (D.5) for M = 2, using the
rational parametrization (D.6), namely (x, y) = (t, −t/(1− t)). The double series expansion
(D.3) becomes a series expansion in the t variable which is the solution of the order-3 linear
differential operator (Dt = d/dt):

C3 = D3
t + 3

2
· (3 t − 2)

t (t − 1)
· D2

t + 1

4
· 13 t2 − 16 t + 4

(t − 1)2 · t2
· Dt + 1

8
· t − 2

t · (t − 1)3
.

This ‘critical’ order-3 operator C3 is such that its symmetric square is a linear differential
operator of order 5 (and not 6 as it should be for a generic order-3 operator). Related to this
last property, one also has the property that this order-3 operator C3 is homomorphic to its
adjoint, up to a conjugation by the rational function 1/x2/(x − 1).

This order-3 operator C3 is, in fact, exactly the symmetric square of

16 t · (t − 1)2 · D2
t + 8 · (3 t − 2) · (t − 1) · Dt + t, (D.14)
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which has (1− t)1/4 · K(t1/2) as a solution (K is the complete elliptic integral of the first kind).
Let us now restrict ourselves to the singular variety (D.5) for M = 4, using the (alternative)

rational parametrization

x = 8 t, y = − 8 t

1 − 8 t
. (D.15)

With this parametrization the double series expansion (D.3) becomes a series expansion in the
t variable with integer coefficients. It is a solution of an order-8 operator, its symmetric square
is of order 35 (and not 36 as it should be generically31).

For M = 4, the double series can also be resummed in one variable and rewritten as
∞∑

m= 0

(2m)!5

45 m · m!10
· 5F4

([
1

2
,

1

2
,

1

2
,

1

2
, m + 1

2

]
, [m + 1, m + 1, m + 1, m + 1]; x

)
· ym,

corresponding to the identity

(2m)!5

45 m · m!10
·

( (1/2)4
n · (m + 1/2)n

n! · (m + 1)4
n

)
= (1/2)4

n · (1/2)4
m · (1/2)m+n

n! · m! · (1)4
m+n

.

More generally, one has the identities

(2m)!M

4M m · m!2 M
= (1/2)M

m

m!M
, (D.16)

and

(2m)!M+1

4(M+1) m · m!2 (M+1)
·

( (1/2)M
n · (m + 1/2)n

n! · (m + 1)M
n

)
= (1/2)M

n · (1/2)M
m · (1/2)m+n

n! · m! · (1)M
m+n

,

and the alternative writing of the double series (D.3), for α = β = β ′ = 1/2 and γ = 1, as
∞∑

m= 0

(2m)!M+1

4(M+1) m · m!2 (M+1)
×M+1 FM

([
1

2
, · · · , 1

2
, m + 1

2

]
, [m + 1, · · · , m + 1]; x

)
· ym,

(D.17)

Let us now restrict ourselves to the singular variety y = x. For M = 4 and M = 5, the
double series expansion (D.3) becomes a series expansion in x that is the solution of an order-6
linear differential operator. For M = 4, this order-6 operator is such that its symmetric square
is of order 20 (instead of the order 21 one could expect generically). For M = 5, this order-6
operator is such that its exterior square is of order 14 (instead of the order 15 one could expect
generically).

Appendix E. More Picard–Fuchs systems above Calabi–Yau ODEs

E.1. More Picard–Fuchs system with two variables

Another example is the two-variable Picard–Fuchs system ‘above’ the order-4 Calabi–Yau
operator (see ODE number 18 in [53]))

θ4 − 4 x · (3 θ2 + 3 θ + 1) · (2 θ + 1)2

− 4 x2 · (4 θ + 5) · (4 θ + 6) · (4 θ + 2) · (4 θ + 3)

= (1 − 64 x) · (1 + 16 x) · x4 · D4
x + · · · . (E.1)

31 Its exterior square is of order 28 as it should be for a generic order-8 operator.
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The Picard–Fuchs system corresponds to the double series [45]
∞∑

n=0

∞∑
m=0

(n + m)!2 (2 m + 2 n)!

n!4 m!4
· xn ym

=
∞∑

m=0

(2 m)!

m!2
· 4F3

([
m + 1, m + 1, m + 1, m + 1

2

]
, [1, 1, 1]; 4 y

)
· xn

= 1 + 2 · (x + y) + 6 · (x2 + y2 + 16 x y) + 20 (y + x) (x2 + y2 + 80 x y)

+ 70 · (x4 + y4 + 256 x3y + 256 xy3 + 1296 x2y2 + x4) + · · · . (E.2)

Note that all the coefficients of odd orders in x and y factor (x + y).
The singular variety is the union of x y · (x − y) = 0 together with the (x, y)-symmetric

genus-zero algebraic curve which reads

28 · (x − y)4 − 28 · (x + y) · (x2 + y2 + 30 x y)

+ 25 · (3 x2 + 3 y2 − 62 x y) − 24 · (x + y) + 1 = 0. (E.3)

This genus-zero curve has the following polynomial parametrization:

x = (t − 1)4

64
, y = (t + 1)4

64
. (E.4)

In the y = x limit, the singular variety (E.3) gives (1 − 64 x) · (1 + 16 x)2 = 0, in agreement
with the singularities of the order-4 Calabi–Yau operator (E.1).

E.2. Last Picard–Fuchs system with two variables

The last example is the two-variables Picard–Fuchs system ‘above’ the order-4 Calabi–Yau
operator (see ODE number 19 in [53])):

529 θ4 − 23 x · (921 θ4 + 2046 θ3 + 1644 θ2 + 621 θ + 92)

− x2 · (380 851 θ4 + 1328 584 θ3 + 1772 673 θ2 + 1033 528 θ + 221 168)

− 2 x3 · (475 861 θ4 + 1310 172 θ3 + 1028 791 θ2 + 208 932 θ − 27 232)

− 68 x4 · (8873 θ4 + 14 020 θ3 + 5139 θ2 − 1664 θ − 976)

+ 6936 x5 · (3 θ + 4) · (3 θ + 2) · (θ + 1)2. (E.5)

The Picard–Fuchs system corresponds to the double series [45]
∞∑

n=0

∞∑
m=0

(n + m)! (2 n + m)! (2 m + n)!

n!4 m!4
· xn ym

=
∞∑

m=0

(2 m)!

m!2
· 4F3

([
m + 1, m + 1

2
, 2 m + 1,

m + 1

2

]
, [1, 1, 1]; 4 y

)
· xn

= 1 + 2 · (x + y) + (6 x2 + 6 y2 + 72 x y) + 20 · (x + y) · (x2 + y2 + 53 xy)

+ 10 · (1120 xy3 + 1120 x3y + 7 x4 + 7 y4 + 4860 x2y2) + · · · . (E.6)

Note that all the coefficients of odd orders in x and y factor (x + y).
The singular variety is the union of x y · (x + y) = 0 together with the (x, y)-symmetric

genus-zero algebraic curve which reads

27 · x2 y2 · (y + x) − [256 (x4 + y4) + 304 x y · (x2 + y2) + 69 x2 y2]

+ 8 · (y + x) · [32 (x2 + y2) + 339 x y]

− [96 (x2 + y2) − 1261 x y] + 16 · (y + x) − 1 = 0, (E.7)
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with the simple rational parametrization (see section (5)):

(x, y) =
( t4

(t + 1) (t + 2) (2 t + 1)2
,

1

(t + 1) (t + 2)2 (2 t + 1)

)
. (E.8)

In the y = x limit, this singular variety reduces to (1 − 54 x) · (1 + 11 x − x2)2 = 0 in
agreement with the singular points of (E.5).
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