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Abstract
We study the Ising model two-point diagonal correlation function C(N,N)

by presenting an exponential and form factor expansion in an integral
representation which differs from the known expansion of Wu, McCoy, Tracy
and Barouch. We extend this expansion, weighting, by powers of a variable λ,
the j -particle contributions, f

(j)

N,N , in the form factor expansion. The
corresponding λ-extension of the two-point diagonal correlation function,
C(N,N; λ), is shown, for arbitrary λ, to be a solution of the sigma form of the
Painlevé VI equation introduced by Jimbo and Miwa in their isomonodromic
approach to the Ising model. Fuchsian linear differential equations for the form
factors f

(j)

N,N are obtained for j � 9 and shown to have both a ‘Russian-doll’
nesting and a decomposition of the corresponding linear differential operators
as a direct sum of operators equivalent to symmetric powers of the second-order
linear differential operator associated with the elliptic integral E. From this, we
show that each f

(j)

N,N is unexpectedly simple, being expressed polynomially in
terms of the elliptic integrals E and K. In contrast, we exhibit some mathematical
objects, built from these form factors f

(j)

N,N , which break the direct sum of
symmetric powers decomposition, with its associated polynomial expressions.
First we show that the scaling limit of these differential operators, and form
factors, breaks the direct sum structure but not the ‘Russian-doll’ structure.
Secondly, we show that the previous λ-extension of two-point diagonal
correlation functions, C(N,N; λ), is, for singled-out values λ = cos(πm/n),
(m, n integers), also solutions of Fuchsian linear differential equations. These
solutions of Painlevé VI are not polynomial in E and K but are actually algebraic
functions, being associated with modular curves.
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1. Introduction

The two-dimensional Ising model in zero magnetic field is, historically, the most important
solvable model in all of theoretical physics. The free energy [1], the partition function on the
finite lattice [2] and the spontaneous magnetization [3, 4] were computed long ago by Onsager,
Kaufman and Yang. These computations, and subsequent studies of the correlation functions
[5–9], form the basis of scaling theory and of the renormalization group approach to critical
phenomena.

The next most important macroscopic property of the Ising model, which one would like
to compute, is the magnetic susceptibility at zero magnetic field, which is expressed in terms
of the two-point correlation functions C(M,N) with a spin at the origin and the other spin in
row M and column N as

kBT · χ =
∞∑

M,N=−∞
(C(M,N) − M2(0)) (1)

whereM(0) is the spontaneous magnetization (which is only non-zero for T < Tc). Unlike the
free energy, and spontaneous magnetization, this has no known closed form expression, and
the study of the magnetic susceptibility has been the most challenging outstanding problem in
the field for over 50 years.

The first serious analytic study of the susceptibility was made in 1976 by Wu, McCoy,
Tracy and Barouch [9] who used their expansions of the correlation functions to write the
susceptibility as an infinite series in multiparticle contributions as

χ±(T ) =
∞∑
j

χ(j) (2)

where the subscript ± refers to T above (resp. below) Tc and the sum is over odd (resp. even)
values of j for T above (below) Tc. In [9], the contributions χ(1) and χ(2) were explicitly
calculated.

No further analysis of the susceptibility χ , or of the χ(j), was attempted until 1999 when
Nickel, in two remarkable papers [10, 11], showed for j � 3 that χ(j)’s have singularities in
the complex temperature plane whose number increases with j and become dense on a circle as
j → ∞. Unless a remarkable cancellation takes place this discovery implies that the magnetic
susceptibility will have a natural boundary in the complex temperature plane which extends
to Tc. This natural boundary is a new phenomenon which is not incorporated into scaling, or
renormalization theory, and, thus, it raises significant questions about our understanding of
critical phenomena. Consequently, it is most important to deeply understand the properties of
the Ising susceptibility, and this challenging question certainly requires some serious progress
on the two-point correlation functions of the Ising model. Note that some resummed high-
temperature series [12, 13] in the anisotropic case has, already, enabled Guttmann and Enting
[13] to conjecture, for the anisotropic χ , a natural boundary in one variable when the second
variable is fixed.



Holonomy of the Ising model form factors 77

In 2001, the work of Orrick et al [14] provided a polynomial time algorithm for obtaining
the coefficients of the susceptibility series of the two-dimensional Ising model: from a
combinatorial enumerative viewpoint this can be viewed as a ‘solution’ of the problem. The
existence of such a polynomial time algorithm for a lattice problem, instead of the exponential
growth of the calculations one expects at first sight, can be seen as some ‘combinatorial
integrability’ of the model [13]. However, a (very) efficient way of getting very large series
expansions for a physical quantity of a model of lattice statistical mechanics is far from
providing the closed formula and exact results one might desire: for instance, there is still a lot
of work to be done in order to extract singular points, singular behaviours, from the knowledge
of very large series.

In 2004 several of the present authors [15–18] initiated the study of the Ising susceptibility,
beyond the singularity analysis of Nickel [10, 11], by determining the Fuchsian linear
differential equations for χ(3) and χ(4) as a function of the temperature. These equations
have many remarkable properties such as a ‘Russian-doll’ nesting structure: the function χ(1)

satisfies the equation for χ(3) and χ(2) satisfies the equation for χ(4). If this nesting can be
proven to extend to all of χ(j)’s there must be remarkable structures in the Fuchsian equations
and the hope is thus raised that it may be possible to characterize6 the full susceptibility.

In a more recent paper [19] several of the present authors provided new results on the exact
expressions of the two-point correlation functions of the Ising model, especially the diagonal
correlation C(N,N), underlining the key role played by the second-order linear differential
operator corresponding to the complete elliptic integral of the first or second kind K or E.

In this paper, we study the diagonal correlation functions C(N,N) as a form factor
expansion. Our starting point will be the expansions of the diagonal correlations in an
exponential form [9], both for T < Tc

C−(N,N) = (1 − t)1/4 · exp

( ∞∑
n=1

F
(2n)
N,N

)
(3)

with

t = (sinh(2Ev/kBT ) sinh(2Eh/kBT ))−2 (4)

and for T > Tc

C+(N,N) = (1 − t)1/4 ·
∞∑

n=0

G
(2n+1)
N,N · exp

( ∞∑
n=1

F
(2n)
N+1,N+1

)
(5)

with

t = ((sinh(2Ev/kBT ) sinh(2Eh/kBT ))2 (6)

where Eh and Ev are the horizontal and vertical interaction energies of the Ising model. When
the exponentials in (3) and (5) are expanded, the correlations can also be written in what is
called a ‘form factor’ expansion:

C−(N,N) = (1 − t)1/4 ·
(

1 +
∞∑

n=1

f
(2n)
N,N

)
(7)

C+(N,N) = (1 − t)1/4 ·
∞∑

n=0

f
(2n+1)
N,N . (8)

6 The full susceptibility could be the solution of a nonlinear equation or the solution of a system of PDEs or solution
of a nonlinear functional equation or, . . . .
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The form factor f
(j)

N,N is interpreted as the ‘j -particle’ contribution to the two-point correlation
function. It is natural to consider λ-extensions [9, 21] of the previous functions

C−(N,N; λ) = (1 − t)1/4 ·
(

1 +
∞∑

n=1

λ2n · f
(2n)
N,N

)
(9)

C+(N,N; λ) = (1 − t)1/4 ·
∞∑

n=0

λ2n · f
(2n+1)
N,N (10)

which weight each f
(j)

N,N by some power of λ and to interpret λ as being analogous to a
coupling constant in a quantum field theory expansion. Such λ-extensions naturally emerge
from the Fredholm determinant framework in [9]. We will present new integral representations
for F

(2n)
N,N ,G

(2n+1)
N,N and f

(j)

N,N in section 2. We will see that they are much simpler, and more
transparent, than the forms obtained from C(M,N) of [9] by specializing to M = N . The
proof of these results is obtained by extending the expansion solution for the leading term
given in 1966 by Wu [7], to all orders. It will be published elsewhere.

The diagonal correlations C(N,N) have the property, discovered by Jimbo and Miwa
[20] in 1980, that their log-derivatives are solutions of the ‘sigma’ form7 of a Painlevé VI
function(

t (t − 1)
d2σ

dt2

)2

= N2

(
(t − 1)

dσ

dt
− σ

)2

− 4
dσ

dt

(
(t − 1)

dσ

dt
− σ − 1

4

)(
t
dσ

dt
− σ

)
(11)

where σ is defined for T < Tc as

σN(t) = t (t − 1) · d ln C−(N,N)

dt
− t

4
(12)

with the normalization condition

C−(N,N) = 1 + O(t) for t → 0 (13)

and, for T > Tc, as

σN(t) = t (t − 1) · d ln C+(N,N)

dt
− 1

4
(14)

with the normalization condition

C+(N,N) = (1/2)N

N !
· tN/2 · (1 + O(t)) for t → 0 (15)

where (a)N = �(a + N)/�(a) denotes the Pochhammer symbol.
One can easily verify that (11), the N-dependent sigma form of Painlevé VI, is actually

covariant by the Kramers–Wannier duality:

(t, σ, σ ′, σ ′′) →
(

1

t
,
σ

t
, σ − t · σ ′, t3 · σ ′′

)
. (16)

On the other hand, Jimbo and Miwa introduced in [20] an isomonodromic λ-extension
of C(N,N) and showed that this more general function C(N,N; λ) also satisfies (11). The
motivation of introducing an isomonodromic parameter λ, in the framework of isomonodromy
deformations, is, at first sight, quite different from the ‘coupling constant’ motivation at the
origin of the form factor λ-extensions (9) and (10). In section 3, we show that these two
λ-extensions are actually the same by demonstrating that the recursive solutions of (11),

7 We use a variable t which is the inverse of the one of Jimbo and Miwa [20].
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analytic8 in t1/2, agree with (9) and (10) where f
(j)

N,N ’s are obtained from C±(N,N; λ),
the λ expansion of C±(N,N) of section 2. The normalization condition (13) fixes one
integration constant in the solution to (11). We find that the second integration constant
is a free parameter, and, denoting that parameter by λ, that our one-parameter family of
solutions for C−(N,N) can be written in a form structurally similar to the right-hand side of
(9). Furthermore, we have confirmed, by comparison with series expansions of the multiple
integral formulae for f

(j)

N,N derived in section 2, that this family of solutions is, in fact, identical
to C−(N,N; λ) as defined in (9). Similarly, condition (15) gives rise to a one-parameter family
of solutions for C+(N,N) that is identical to (10). After all, the fact that these two distinct
λ-extensions of C±(N,N) identify is not altogether surprising, since Jimbo and Miwa’s
derivation of (11) also starts from a multiple-particle expansion of the correlation functions
in terms of free fermion operators. It does not, however, appear to have been observed
previously.

In section 4, we use formal computer algebra to study the functions f
(j)

N,N . We obtain the

Fuchsian linear differential equations satisfied by f
(j)

N,N for fixed j � 9 and arbitrary N. We also

find the truly remarkable result that the families f
(2j+1)

N,N and f
(2j)

N,N are each annihilated by linear
differential operators which have a nested ‘Russian-doll’ structure. Beyond this ‘Russian-doll’
structure, each linear differential operator is the direct sum of linear differential operators
equivalent9 to symmetric powers of the second-order differential operator corresponding to
f

(1)
N,N (or equivalently to the second-order differential operator LE , corresponding to the

complete elliptic integral E). A direct consequence is that the form factors f
(2j+1)

N,N and f
(2j)

N,N

are polynomials in the complete elliptic integrals of the first and second kinds, K and E:

K = 2F1(1/2, 1/2; 1; t), E = 2F1(1/2,−1/2; 1; t). (17)

A simple example is f
(2)
0,0 = K · (K − E)/2.

The closed formula we obtain for the differential operators in these nested ‘Russian-doll’
structures enables us to take the scaling limit of these operators. We study this scaling limit in
section 5 and show that the ‘Russian-doll’ structure remains valid. The differential operators
in that ‘scaled’ nested Russian-doll structure remain equivalent to the symmetric power of a
singled-out second-order differential operator (corresponding to the modified Bessel function).
In contrast, in the scaling limit, the direct sum of operators decomposition structure is lost,
and we explain why.

The unexpectedly simple expressions for the form factors f
(j)

N,N of sections 2–5, and
the corresponding remarkable differential structures, may be used to obtain many further
results. We display some of these results in section 6. Recalling that, when λ = 1, the Ising
correlation functions C(N,N; 1) satisfy Fuchsian differential equations [19] with an order
that grows with N, it is quite natural to enquire whether there are any other values of λ for
which C(N,N; λ) will satisfy a Fuchsian linear differential equation. One such family of λ

is motivated by the work of Cecotti and Vafa [25] on N = 2 supersymmetric field theories
where they encountered λ-extensions of the Ising correlations in the scaling limit [21] with
(m and n are integers)

λ = cos(πm/n). (18)

Indeed, we have found that for n = 3, . . . , 20, the functions C(N,N; λ) satisfy Fuchsian
linear differential equations whose orders, in contrast with those of the λ = 1 equations [19],

8 The λ-extensions (9) and (10) are analytic at t ∼ 0 in t for T < Tc and, when T > Tc , analytic in t for N even, and
in t1/2 for N odd.
9 For the equivalence of linear differential operators, see [22–24].
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do not depend on N. More importantly, we find that these solutions are actually algebraic
functions of t, associated with modular curves.

We conclude, in section 7, with a discussion about the significance of our results on the
factorization of multiple dimensional integrals.

2. New integral representations for f (n)
N ,N ’s

The form factor expressions for C(M,N) of [9–11, 14, 26, 27] are obtained by expanding the
exponentials in (3), and (5), in the form given in [9] as multiple integrals and integrating over
half the variables. The form of the result depends on whether the even, or odd, variables of
[9] are integrated out. For the general anisotropic lattice, one form of this result is given, for
arbitrary M and N, in [14]. When specialized to the isotropic case the result is

f
(2j)

M,N = Ĉ2j (M,N), f
(2j+1)

M,N = Ĉ2j+1(M,N)

s
(19)

where s denotes sinh(2K) and where

Ĉj (M,N) = 1

j !

∫ π

−π

dφ1

2π
· · ·

∫ π

−π

dφj

2π

(
j∏

n=1

1

sinh γn

)

×
( ∏

1�i�k�j

hik

)2( j∏
n=1

xn

)M

cos

(
N

j∑
n=1

φn

)
(20)

with

xn = s +
1

s
− cos φn −

((
s +

1

s
− cos φn

)2

− 1

)1/2

, (21)

sinh γn =
((

s +
1

s
− cos φn

)2

− 1

)1/2

, (22)

hik = 2(xixk)
1/2 sin((φi − φk)/2)

1 − xixk

. (23)

In this work, we obtain the expressions of f
(j)

N,N not by setting M = N in the results of [9],
but, rather, from the representations of C(M,N) as an N-dimensional Toeplitz determinant
with elements

am,n = am−n = 1

2π
·
∫ 2π

0
dθ e−i(m−n)θ

(
(1 − α1 eiθ )(1 − α2 e−iθ )

(1 − α1 e−iθ )(1 − α2 eiθ )

)1/2

(24)

with

α1 = 0 and α2 = s−2 (25)

for the diagonal correlation C(N,N), and

α1 = ((1 + s2)1/2 − s) ·
(

(1 + s2)1/2 − 1

s

)
and

α2 = ((1 + s2)1/2 − s) ·
(

(1 + s2)1/2 + 1

s

) (26)
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for the row correlation10 C(0, N). Our method is to follow Wu’s paper [7] in the framework
of the general theory of Toeplitz determinants.

For T < Tc, let us first recall (3.15) of Wu’s paper [7], which reduces, for the diagonal
correlations C(N,N), to11:

(1 − t)−1/4 · C(N,N) ∼ 1 +
1

(2π)2

∫
dξ · ξN · ((1 − α2ξ)(1 − α2/ξ))−1/2

×
∫

dξ ′ · ξ ′−N · ((1 − α2ξ
′)(1 − α2/ξ

′))1/2 1

(ξ ′ − ξ)2
. (27)

Comparing with (7) we see that the second term in (27) is f
(2)
N,N = F

(2)
N,N .

Performing the change of variables ξ = z1 and ξ ′ = 1/z2, deforming the contour of
integration for both z1 and z2 (one has to consider only the discontinuity across the branch
cut12 running from 0 to α2), and rescaling z1 and z2, in, respectively, x1 = z1/α2 and
x2 = z2/α2, we obtain

f
(2)
N,N (t) = F

(2)
N,N (t) = t (N+1)

π2

∫ 1

0
xN

1 dx1

∫ 1

0
xN

2 dx2

×
(

x1(1 − x2)(1 − tx2)

x2(1 − x1)(1 − tx1)

)1/2

(1 − tx1x2)
−2. (28)

Similarly, when T > Tc, the leading term for G
(1)
N,N is given by equation (2.29) of [7]:

f
(1)
N,N = G

(1)
N,N = −1

2π i

∫
C

dz
zN−1

((1 − t1/2z)(1 − t1/2z−1))1/2
(29)

which, after deforming the contour of integration to the branch cut, and scaling z = t1/2x,
becomes

f
(1)
N,N (t) = G

(1)
N,N (t)

= tN/2

π
·
∫ 1

0
xN−1/2(1 − x)−1/2(1 − xt)−1/2 dx

= tN/2 · (1/2)N

N !
· 2F1

(
1

2
, N +

1

2
;N + 1; t

)
(30)

where 2F1(a, b; c; z) is the hypergeometric function [30].
The full expressions for F

(2n)
N,N for T < Tc, and F

(2n)
N+1,N+1 and G

(2n+1)
N,N for T > Tc, can be

obtained by following the iterative procedure based on (2.9)–(2.16) of [9] to all orders, just as
the full expressions for F

(2n)
M,N and G

(2n+1)
M,N with M �= 0 of (2.9)–(2.16) of [9] are obtained, in

sections 3 and 4 of [9], by following the procedure of Cheng and Wu [8] to all orders13. The
details of the ‘iterative procedure’ will be presented elsewhere14. These are certainly implicit

10 Although in this paper we take the particular values of α1 and α2 corresponding to C(N, N), our results are also,
mutatis mutandis, applicable to the correlations C(0, N) and to the triangular lattice with α1 and α2 given by [28].
11 To be precise, note that Wu considered in his paper the C(0, N) correlations. From the definition (24) of the entries
in the Toeplitz determinant one can consider the diagonal correlations C(N, N) with the replacement (25) instead
of (26).
12 For T < Tc, α2 = t1/2 < 1.
13 The full expressions for F

(2n)
0,N and G

(2n−1)
0,N can also be obtained by performing the procedure based on (2.9)–(2.16)

of [9] to all orders just as the full expressions for F
(2n)
M,N and G

(2n−1)
M,N with M �= 0 of (2.9)–(2.16) of [9] are obtained

in sections 3 and 4 of [9], by ‘cycling’ the procedure of Cheng and Wu [8] to all orders.
14 The first step in that calculation is to consider the ratio C+(N, N, t)/C−(N, N, t). This will be detailed elsewhere.
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in the paper of Jimbo and Miwa [20]; however, we have not been able to find a reference where
they are explicitly written out.

When the low-temperature expansion of section 3 of Wu [7] is performed to all orders,
we find that (94) holds with

F
(2n)
N,N = (−1)n+1

n

1

(2π)n

∫ 2n∏
j=1

zN
j dzj

1 − zj zj+1

n∏
j=1

(
(1 − α2z2j )(1 − α2/z2j )

(1 − α2z2j−1)(1 − α2/z2j−1)

)1/2

(31)

from which, after deformation of integration contours and rescaling, one obtains, for T < Tc,
the following new integral representation of F

(2n)
N,N (t):

F
(2n)
N,N (t) = (−1)n+1tn(N+1)

nπ2n

×
∫ 1

0

2n∏
j=1

xN
j dxj

1 − txjxj+1
·

n∏
j=1

(
x2j−1(1 − x2j )(1 − tx2j )

x2j (1 − x2j−1)(1 − tx2j−1)

)1/2

. (32)

Similarly for T > Tc the expansion of section 2 of Wu [7] is performed to all orders and
we find that (5) holds with F

(2n)
N,N given by (32) and

G
(2n+1)
N,N = (−1)n

1

(2π)2n+1

∫ n+1∏
j=1

(
zN+1
j dzj

) 1

z1z2n+1

2n∏
j=1

1

1 − zj zj+1

×
n+1∏
j=1

((
1 − α−1

2 z2j−1
)(

1 − α−1
2

/
z2j−1

))−1/2

×
n∏

j=1

((
1 − α−1

2 z2j

)(
1 − α−1

2

/
z2j

))1/2
. (33)

Changing variables and deforming contours, we obtain

G
(2n+1)
N,N (t) = (−1)n

tN(2n+1)/2+2n

π2n+1

∫ 1

0

2n+1∏
j=1

(
xN+1

j dxj

) 1

x1x2n+1

2n∏
j=1

1

1 − txj xj+1

×
n+1∏
j=1

(
x2j−1

(1 − x2j−1)(1 − tx2j−1)

)1/2 n∏
j=1

((1 − x2j )(1 − tx2j )/x2j )
1/2. (34)

The form factor expressions are then obtained by expanding the exponentials. Thus we
find, for T < Tc, that the form factors in (9) read

f
(2n)
N,N (t) = tn(N+n)

(n!)2

1

π2n
·
∫ 1

0

2n∏
k=1

xN
k dxk

n∏
j=1

(
x2j−1(1 − x2j )(1 − tx2j )

x2j (1 − x2j−1)(1 − tx2j−1)

)1/2

×
∏

1�j�n

∏
1�k�n

(1 − tx2j−1x2k)
−2

∏
1�j<k�n

(x2j−1 − x2k−1)
2(x2j − x2k)

2 (35)

and, for T > Tc, the odd form factors in (10) read

f
(2n+1)
N,N (t) = t ((2n+1)N/2+n(n+1)) · 1

π2n+1
· 1

n!(n + 1)!

×
∫ 1

0

2n+1∏
k=1

xN
k dxk

n+1∏
j=1

((1 − x2j )(1 − tx2j )x2j )
1/2
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×
n+1∏
j=1

((1 − x2j−1)(1 − tx2j−1)x2j−1)
−1/2

∏
1�j�n+1

∏
1�k�n

(1 − tx2j−1x2k)
−2

×
∏

1�j<k�n+1

(x2j−1 − x2k−1)
2

∏
1�j<k�n

(x2j − x2k)
2 (36)

where the last product in (36) has to be taken to be equal to unity for n = 0, 1. We note
that the factors 1/(n!)2 and 1/(n!(n + 1)!) in (35), and (36), arise because the integrands are
symmetric functions of the variables x2j and x2j−1, separately. This is to be contrasted with
(20) where there is no separation in the odd and even integrals.

In the simplest case, the previous integral representation (36) gives f
(1)
N,N (t) defined by

(30) where one recognizes the Euler representation of a hypergeometric function.
Do note that the

(
G

(2n+1)
N,N , F

(2n)
N+1,N+1

)
decomposition in (5) is not unique. In contrast, the

form factor expressions (35), (36) are unique and well defined.
It is tempting to try to ‘bridge’ such new integral representations (35), (36) with integral

formulae like (20), or other integral formulae one can find in [7–11, 29], getting (35), (36)
from these other integral formulae after some changes of variables, or from partial integrations
on a subset of variables in order to reduce (4n) integral formulae into (2n) integrals. We have
not been able to do this. Basically we have two kinds of drastically different formulae: the
ones emerging from Fredholm determinant expansions that naturally yield integral formulae
with integrands that are algebraic functions of the self-dual variable w = s/(1 + s2)/2 and
the ones emerging from ‘isomonodromic’ calculations15 that naturally yield integral formulae
with integrands that are algebraic functions of the modulus k of the elliptic function (or the
variables s or t; for T > Tc, k = s2, t = s4) and break the duality s → 1/s. Do note that,
in the case of the isotropic lattice, the formulae in [9, 29] are naturally integral formulae with
integrands that are algebraic functions of the self-dual variable w = s/(1 + s2)/2. It is only in
the scaling limit that these integral formulae look like integral formulae with integrands that
are algebraic functions of s or k or t. The ‘t-integral formulae’ of the second kind (35), (36)
naturally produce series expansions in the hypergeometric functions 2F1, while the ‘w-integral
formulae’ of the first kind naturally generate series expansions in the hypergeometric functions
4F3: see, for instance, all the series calculations we obtained in [15–18] in the holonomic
analysis of χ(3) and χ(4). 4F3 we consider are particular and, consequently, can be written, for
fixed parameters, in terms of 2F1 for which quadratic transformations16 take place [30]:

2F1(a, b; 2b; 16w2) = (1 + t1/2)2a · 2F1(a, a − b + 1/2; b + 1/2; t). (37)

We have not been able to prove equality of the two kinds of formulae, so, instead, we have
resorted to comparison of their series expansions. We have performed series expansions of
our new integral representations in the variable t (see section 4) and found that they agree with
the expansion of (20). In the next section, we will see that they also agree with the coefficients
of powers of λ, h2j (N,N)(t) and h2j+1(N,N)(t), in the series solutions of (11)–(15).

Our new integral representations provide a ‘closed enough’ representation of the λ

coefficients of the various λ extensions C(N,N; λ), the form factors. We will use the
simplicity of these new integral representations in the next sections.

3. Series solution of the sigma form of Painlevé VI

In this section, we study the series expansions of the diagonal correlations C(N,N) starting
from (11), the sigma form of Painlevé VI. From order by order series analysis of the solutions

15 For instance formulae similar to formulae (13) and (14) of [20].
16 For a = b = 1/2 this is the Landen transformation [30] on the complete elliptic integral K.
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of equation (11), we show, when N is integer, the existence of a one-parameter λ-extension of
C(N,N), that actually identifies with the previous λ-extension of a Toeplitz origin in [7], or
of a Fredholm origin in [9].

We begin by considering some remarkably simple solutions of (11), which exist for all N
(not necessarily integer). In particular, consider the N-dependent second-order hypergeometric
differential operator [19]:

Lh = D2
t +

(
1

t
+

1

2(t − 1)

)
· Dt − 1

4

N2

t2
+

1

16(t − 1)2
. (38)

It has regular singularities at t = 0, t = 1 and t = ∞ with respectively the critical exponents
(±N/2), (1/4, 1/4) and (1/4 ± N/2). Denote by h any solution of (38), and consider the
T > Tc expression (14) for σ(t):

σ(t) = t (t − 1) · d ln h

dt
− 1

4
. (39)

The hypergeometric differential equation (38), when written in σ(t) given by (39), takes a
‘Riccati’ form17:

16t (t − 1) · σ ′ + 16 · σ 2 − 8(t − 1) · σ − (2N − 1)(2N + 1)(t − 1)2 = 0. (40)

For generic N, it can be verified that σ(t), given by (39), is actually a solution of the sigma
form of Painlevé (11), where h is any linear combination of the two solutions of (38) which,
for generic N, read

f± = t±N/2 · (1 − t)1/4 · 2F1(1/2, 1/2 ± N; 1 ± N; t) (41)

and, for integer N, are f+ and

tN/2 · (1 − t)1/4 · 2F1([1/2, N + 1/2], [1], 1 − t). (42)

We recognize from (30) that

f+ = (1 − t)1/4 · N !

(1/2)N
· f

(1)
N,N . (43)

When t ∼ 0 the leading behaviour of f+ is f+ ∼ tN/2 which, if we make the normalization

hN = (1/2)N

N !
· f+ = (1 − t)1/4 · f

(1)
N,N , (44)

has the required behaviour (15) for the high-temperature two-point correlation function
C+(N,N) as t ∼ 0. When the series expansion of hN is compared with the series expansion
of C+(N,N) [19], we find that

C+(N,N) = (1 − t)1/4 · f
(1)
N,N +

(1/2)N · ((3/2)N)2

16 · �(N + 2) · �(N + 3)2
· t3N/2+2 + · · · . (45)

Thus, the first N + 1 terms of C+(N,N), and (1 − t)1/4f
(1)
N,N , coincide. The coefficient of

t3N/2+2 can be considered as an ‘initial condition’ needed to complete the characterization
of the high-temperature two-point correlation function C+(N,N) seen as a solution of the
Painlevé VI equation (11).

For T < Tc, one notes that

σ = t (t − 1) · d ln((1 − t)1/4)

dt
− t

4
(46)

17 Note that, (40), the Riccati form of (38), is also covariant by the Kramers–Wannier duality (16). This is a quite
surprising result for a differential equation associated with f (1)(N, N), a form factor one could think to be specific
of the T > Tc regime.
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is a trivial solution of (11) and that

C−(N,N) = (1 − t)1/4 +
(1/2)N · (3/2)N

4 · ((N + 1)!)2
· tN+1 + · · · (47)

where the coefficient in front of tN+1 is the initial condition defining the two-point correlation
function C−(N,N) in the low-temperature regime [19, 31].

Relations (45) and (47) strongly suggest that, in order to analyse solutions of (11), we
should introduce the following form for the low-temperature expansions

C−(N,N) = (1 − t)1/4 ·
(

1 +
∞∑

k=1

ck · t k

)
(48)

and, similarly, for the high-temperature expansions:

C+(N,N) = (1 − t)1/4 · f
(1)
N,N + (1 − t)1/4 · tN/2 ·

∞∑
k=1

dk · t k. (49)

These expansions are not the most general solutions of (11) because we have required that the
solutions have the correct behaviour (13) and (15) at t = 0. These forms yield a one-parameter
family of solutions.

We first consider the low-temperature regime and use the form (48) in (11) to determine
the ck coefficients recursively, order by order. When N is not an integer this recursive procedure
gives the unique solution ck = 0 for all k. Thus, the solution (1 − t)1/4 is the only solution of
the form (48).

However, when N is an integer, we find that, while ck = 0 for k � N , the equation
which generically would determine cN+1 is automatically satisfied for all values of cN+1. The
coefficient cN+1 can be specified arbitrarily and provides the second ‘initial’ condition needed
to specify a unique solution of (11).

For all k � N + 2, the order by order procedure uniquely determines ck as a polynomial
in terms of the free parameter cN+1. More specifically, the term (cN+1)

n first appears in the
coefficient cn(N+n). Recalling (47) we see that if one writes the free parameter cN+1 as

cN+1 = λ2 · (1/2)N · (3/2)N

4 · ((N + 1)!)2
, (50)

the order by order solution to (11) reads

C−(N,N; λ) = (1 − t)1/4 ·
(

1 +
∞∑

n=1

λ2n · h2n(N)

)
(51)

where h2n(N) ∼ tn(N+n) for t ∼ 0. This λ-extension C−(N,N; λ) reduces to the low-
temperature two-point correlation function C−(N,N) when λ = 1 and to (1− t)1/4 for λ = 0.

Using (51) in (11) we have obtained the low-temperature series expansions of h2n(N) for a
large set of values of the integer N and found that these series expansions actually agree with
the series expansions of (2n)-multiple integrals f

(2n)
N,N defined in section 2.

A similar order by order expansion can be carried out for the high-temperature case. The
corresponding coefficients dk can be deduced recursively, order by order. When N is not an
integer the recursive procedure gives the unique solution dk = 0 for all k. For non-integer N
we see that hN = (1 − t)1/4 · f

(1)
N,N is the unique solution of (11) of the form (49).

However, similar to the case for T < Tc, we find that, when N is an integer, the coefficients
dk are equal to zero for k � N +1 and that the coefficient dN+2 is a free undetermined constant.
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The coefficients dk , for k � N + 3, are polynomials in dN+2. The term (dN+2)
n first appears in

the coefficient dn(N+n+1). Thus, recalling (45), we see that if we set

dN+2 = λ2 · (1/2)N · ((3/2)N)2

16 · �(N + 2) · �(N + 3)2
(52)

the iterative solution to (11) may be written, in the high-temperature regime, in the form

C+(N,N; λ) = (1 − t)1/4 ·
∞∑

n=0

λ2n · h2n+1(N) (53)

where

h1(N) = f
(1)
N,N (54)

and where h2n+1(N) ∼ tn(N+n+1) for t ∼ 0. This reduces to the high-temperature two-point
correlation function C+(N,N) when λ = 1 and to the hypergeometric function (1−t)1/4 ·f (1)

N,N

for λ = 0. Using (53) in (11) we have obtained the high-temperature series expansions of
h2j+1(N)’s for a large set of values of the integer N and found that these series expansions

agree with (2j + 1)-multiple integrals f
(2j+1)

N,N defined in section 2.
We have also performed low, and high, series expansions for Ĉj (N,N) defined by

equations (4.2) in [14] (see also (20)) and we also found that these series identify with the one
of h2j (N) and h2j+1(N) with the normalization

h2j (N) = Ĉ2j (N,N), h2j+1(N) = Ĉ2j+1(N,N)

s
. (55)

It would be most satisfying if these identities could be demonstrated analytically.
All the previous results confirm that these various λ-extensions identify and actually

verify (11). The (log-derivative) of the λ-extensions C(N,N; λ) satisfy the same (sigma form
of) Painlevé VI equation (11) as the original diagonal spin–spin correlation, the boundary
condition dependence coming from the original diagonal spin–spin correlation boundary
condition. Even if some might consider that this result is not mathematically proved, it
is clearly an exact result of experimental mathematics, based on an accumulation of large
computer formal calculations.

4. Fuchsian linear differential equations for f
(j)
N ,N (t)

In previous studies on the Ising susceptibility [15–18], efficient programs were developed
which, starting from large series expansions of a holonomic function, produce the linear
ordinary differential equation (in this case Fuchsian) satisfied by the function. In order for
these programs to be used to study f

(j)

N,N ’s we need to efficiently produce large (up to several

thousand terms) series expansions in t of f
(j)

N,N ’s. We have done this by use of both the integral

representations (35), (36) and the representations of f
(j)

N,N in terms of theta functions of the
nome of elliptic functions, presented in [14].
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We obtain the Fuchsian linear differential equations satisfied by the (diagonal) form
factors f

(j)

N,N for j � 9. The analysis of these linear differential operators shows a remarkable
Russian-doll structure similar to the nesting of (the differential operators of) χ̃ (j)’s found
in [15–18]. Specifically, we find that the expressions f

(1)
N,N , f

(3)
N,N , f

(5)
N,N , f

(7)
N,N are actually

solutions of the linear ODE for f
(9)
N,N and that f

(0)
N,N , f

(2)
N,N , f

(4)
N,N , f

(6)
N,N are actually solutions of

the ODE for f
(8)
N,N . In addition, we find that all the linear differential operators for f

(j)

N,N ’s have
a direct sum decomposition in operators equivalent to symmetric powers of the differential
operator corresponding to f

(1)
N,N . Consequently, all f

(j)

N,N ’s can also be written as polynomials
in terms of the complete elliptic integrals E and K. The remainder of this section is devoted to
the presentation of these results.

4.1. Fuchsian linear differential equations for f
(2n+1)
N,N

The order thirty linear differential operator F9(N) which annihilates f
(9)
N,N has the following

factorized form:

F9(N) = L10(N) · L8(N) · L6(N) · L4(N) · L2(N) (56)

where the differential operators Lr(N) are of order r. The first two read

L2(N) = Dt2 +
2t − 1

(t − 1)t
· Dt − 1

4t
+

1

4(t − 1)
− N2

4t2
(57)

L4(N) = L4,0 − N2 · L4,2 +
9

16

N4

t4
(58)

with

L4,0 = Dt4 + 10
(2t − 1)

(t − 1)t
· Dt3 +

(241t2 − 241t + 46)

2(t − 1)2t2
· Dt2

+
(2t − 1)(122t2 − 122t + 9)

(t − 1)3t3
· Dt +

81

16

(5t − 1)(5t − 4)

t3(t − 1)3
(59)

L4,2 = 5

2

Dt2

t2
− (23 − 32t)

2(t − 1)t3
· Dt − 9

8

8 − 17t

(t − 1)t4
. (60)

The expressions (or forms) of L6(N), L8(N) and L10(N) are given in appendix A. The linear
differential operators F2n+1(N), which annihilate f

(2n+1)
N,N for n = 0, . . . , 3, are such that

F7(N) = L8(N) · L6(N) · L4(N) · L2(N)

F5(N) = L6(N) · L4(N) · L2(N)

F3(N) = L4(N) · L2(N)

F1(N) = L2(N).

(61)

Thus, we see that the differential operator for f
(2n−1)
N,N rightdivides the differential operator for

f
(2n+1)
N,N for n � 3. We conjecture that this property holds for all values of n. We thus have a

‘Russian-doll’ (telescopic) structure of these successive differential operators.
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4.2. Fuchsian linear differential equations for f
(2n)
N ,N

The order twenty linear differential operator F8(N) (corresponding to f
(8)
N,N ) has the following

factorized form:

F8(N) = L9(N) · L7(N) · L5(N) · L3(N) · L1(N) (62)

where the linear differential operators Lr(N) are of order r. The first two read

L1(N) = Dt, (63)

L3(N) = Dt3 + 4
(2t − 1)

t (t − 1)
· Dt2 +

(2 − 15t + 14t2)

(t − 1)2t2
· Dt

+
8t2 − 15t + 5

2(t − 1)3t2
−

(
Dt

t2
+

1

t3

)
· N2. (64)

The expressions (or forms) of the linear differential operators L5(N), L7(N) and L9(N) are
given in appendix A.

Similarly to (61) there is a Russian-doll (telescopic) structure of these successive linear
differential operators:

F6(N) = L7(N) · L5(N) · L3(N) · L1(N)

F4(N) = L5(N) · L3(N) · L1(N)

F2(N) = L3(N) · L1(N)

F0(N) = L1(N).

(65)

Again, we see that the linear differential operator for f
(2n−2)
N,N rightdivides the linear differential

operator for f
(2n)
N,N for n � 4. We conjecture that this property holds for all values of n.

4.3. Direct sum structure

Not only do the linear differential operators Lj(N) have a factorized Russian-doll structure,
but we have found that they also have a direct sum decomposition when the integer N is fixed.
To illustrate this direct sum decomposition, the corresponding linear differential operator for
f

(3)
N,N reads

F3(N) = L4(N) · L2(N) = M4(N) ⊕ L2(N) (66)

where L2(N) is the linear differential operator for f
(1)
N,N and the fourth-order operator M4(N)

is displayed in appendix B for successive values of N. One remarks on these successive
expressions that the degree of each polynomial occurring in these linear differential operators
M4(N) grows linearly with N.

As a further example consider f (5)(N,N), where we find that the corresponding linear
differential operator decomposes as

F5 = L6(N) · L4(N) · L2(N) = M6(N) ⊕ M4(N) ⊕ L2(N) (67)

where L2(N) is the differential operator for f
(1)
N,N ,M4(N) is the previous fourth-order

differential operator, and the sixth-order operator M6(N) has again coefficients whose degrees
grow with N for successive values of N. There is nothing specific to f

(3)
N,N and f

(5)
N,N : similar

results hold for all f
(n)
N,N ’s, with n being even or odd.

In contrast with the Russian-doll way of writing the differential operators for f
(n)
N,N , the

direct sum structure, as a consequence of this growing degree, cannot be written for generic N
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as operators with polynomials in front of the derivatives. This ‘non-closure’ of the direct sum
structure will have some consequences when performing the scaling limit of these differential
operators (see section 5).

4.4. Equivalence of various Lj(N)’s and Mj(N)’s linear differential operators

We find that the symmetric square18 of L2(N)

Sym2(L2(N)) = Dt3 + 3
(2t − 1)

(t − 1)t
· Dt2 +

(1 − 7t + 7t2)

(t − 1)2t2
· Dt

− 1

2

1 − 2t

(t − 1)2t2
− N2

t
· Dt − N2

(t − 1)t2
(68)

and the linear differential operator L3(N) are equivalent

L3(N) · U(N) = V (N) · Sym2(L2(N)) (69)

with the following intertwinners:

U(N) = (t − 1)t · Dt2 + (3t − 1) · Dt + 1 +
(1 − t)

t
· N2 (70)

V (N) = (t − 1)t · Dt2 + (11t − 5) · Dt +
(5t − 1)(5t − 4)

(t − 1)t
− (t − 1)

t
· N2. (71)

Similarly, with the symmetric cube of L2(N), we have the equivalence

L4(N) · A(N) = B(N) · Sym3(L2(N)) (72)

with

A(N) = (t − 1)t · Dt3 +
7

2
(2t − 1) · Dt2 +

(41t2 − 41t + 6)

4(t − 1)t
· Dt

+
9

8

2t − 1

(t − 1)t
− 9

4

(t − 1) · N2

t
· Dt − 9

8

(2t − 1)

t2
· N2 (73)

B(N) = (t − 1)t · Dt3 +
23

2
(2t − 1) · Dt2 +

21

4

(6 − 29t + 29t2)

(t − 1)t
· Dt

+
9

8

(2t − 1)(125t2 − 125t + 16)

(t − 1)2t2
− 9

4

(t − 1)

t
· N2 · Dt − 9

8

(10t − 9)

t2
· N2. (74)

More generally, all Lm(N)’s are (m − 1)-symmetric power of L2(N). As a consequence,
their solutions are (m − 1)-homogeneous polynomial of the two hypergeometric solutions of
L2(N).

Similarly, for the linear differential operators occurring in the direct sum, one easily
verifies, for every integer N, that, for instance, M4(N)’s are equivalent to the cubic-symmetric
power of L2(N):

M4(N) · Q(N) = S(N) · Sym3(L2(N)) (75)

where, for N = 0, 1, 2,

Q(0) = (t − 1)t · Dt + t − 1

2
, (76)

18 The symmetric j th power of a second-order linear differential operator having two solutions f1 and f2 is the linear
differential operator of order j + 1, which has f

j

1 , . . . , f
j−k

1 f k
2 , . . . , f

j

2 as solutions.
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Q(1) = 2(t − 1)3t2 · Dt3 + 3(3 − 7t + 4t2)(t − 1)t · Dt2

+

(
12t3 − 28t2 +

41

2
t − 9

2

)
· Dt +

3

4

2t2 − 2t + 1

t
, (77)

Q(2) = 1

3
(t − 1)3(3 + 8t + 3t2)t · Dt3 +

1

2
(15 − t − 35t2 + 15t3 + 6t4)(t − 1) · Dt2

− 1

24

(18t5 − 12t4 − 97t3 + 577t2 − 738t + 252

t
· Dt

− 1

16

12t5 + 14t4 − 260t3 + 497t2 − 314t + 24

t2
. (78)

As a further example, one can verify, for every value of the integer N, that the sixth-order
operator M6(N) is equivalent to the fifth symmetric power of L2(N). The solutions of the
linear differential operators Mm(N) are also (m − 1)-homogeneous polynomials of the two
hypergeometric solutions of L2(N).

As a consequence of this direct sum decomposition, the solutions f (n)(N,N) are (non-
homogeneous) polynomials of the two hypergeometric solutions of L2(N) or, equivalently,
f

(1)
N,N (or hN see (44)) and its first derivative. The second-order linear differential operator

L2(N) is equivalent [19] to the second-order differential operator LE

LE = 4t · Dt2 + 4Dt − 1

t − 1
(79)

corresponding to the complete elliptic integral E. As a consequence of the previously described
direct sum decomposition, f (n)

N,N ’s can also be written as polynomial expressions of the complete
elliptic integral E and its first derivative E′ or, alternatively, E and the complete elliptic
integral K.

Let us just give here a set of miscellaneous examples. For f
(2)
N,N , one has

2f
(2)
0,0 = (K − E) · K

2f
(2)
1,1 = 1 − 3KE − (t − 2) · K2

6t · f
(2)
2,2 = 6t − (2 + 6t2 − 11t) · K2 − (15t − 4) · KE − 2(1 + t) · E2

90t2f
(2)
3,3 = 135t2 − (137t3 − 242t2 + 52t + 8) · K2

+ (8t3 − 319t2 + 112t + 16) · KE − 4(1 + t)(2t2 + 13t + 2)E2

3150t3 · f
(2)
4,4 = 6300t3 − (32t5 + 2552t2 + 128 + 6440t4 − 11 191t3 + 464t) · K2

+ (128t5 + 5648t2 − 14 519t3 + 1056t + 576t4 + 256) · EK

− 8(1 + t)(16t4 + 58t3 + 333t2 + 58t + 16) · E2 (80)

where E and K are given by (17). Other examples are given in appendix C.

Remark. All these remarkable structures are not restricted to diagonal two-point correlation
functions. Actually, one can calculate various j -particle contributions f

(j)

M,N of the off-diagonal
two-point correlation functions and verify, again, that they are also polynomial expressions of
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the complete elliptic integrals E and K. For instance, for T > Tc,

C(2)(0, 1) = 3
8 − 1

4 (1 + s2)K − 1
2EK − 1

8 (s2 − 3)(1 + s2) · K2 (81)

where s = sinh(2K). Other miscellaneous examples of such off-diagonal j -particle
contributions are displayed in appendix D.

4.5. The elliptic representation of Painlevé VI

The results we have underlined in this section, namely the unexpectedly simple and remarkable
polynomial expressions for the form factors f

(j)

N,N , correspond to the fact that the associated
linear differential operators are direct sums of operators equivalent to symmetric powers of the
second-order differential operator LE . We already encountered this central key role played by
the linear differential operator LE , or the hypergeometric second-order differential operator
(38), in our previous holonomic analysis of the two-point correlation functions of the Ising
model [19]. In order to understand the key role played by LE , or equivalently operator (38),
it is worth recalling (see [32] or for a review [33]) the so-called ‘elliptic representation’ of
Painlevé VI. This elliptic representation of Painlevé VI amounts to seeing Painlevé VI as a
‘deformation’ (see equation (33) in [33]) of the hypergeometric linear differential equation
associated with the linear differential operator:

L = (1 − t)t · Dt2 + (1 − 2t) · Dt − 1
4 . (82)

One easily verifies that this linear differential operator is actually equivalent (in the sense of
the equivalence of differential operators) with LE or equivalently (38). This deep relation
between elliptic curves and Painlevé VI explains the occurrence of Painlevé VI in the Ising
model and on other lattice Yang–Baxter integrable models which are canonically parametrized
in terms of elliptic functions (like the eight-vertex Baxter model, the RSOS models, see for
instance [34]). We will see, in section 6, another example of this deep connection between the
transcendent solutions of Painlevé VI and the theory of elliptic functions, modular curves and
quasi-modular functions.

5. The scaling of f
(j)
N ,N

The scaling of f
(n)
N,N ’s amounts, on the functions and on the corresponding differential

operators, to taking the limit N → ∞ and t → 1, keeping the limit x = N · (1 − t)

finite or, in other words, to performing the change of variables t = 1 − x/N , keeping only
the leading term in N. Performing these straightforward calculations, the linear differential
operators in t for f

(n)
N,N ’s, where N was a parameter, become linear differential operators in the

only scaling variable x.
Calling F scal

j the scaling limit of the operator Fj (N) we find for j even that

F scal
8 = Lscal

9 · Lscal
7 · Lscal

5 · Lscal
3 · Lscal

1

F scal
6 = Lscal

7 · Lscal
5 · Lscal

3 · Lscal
1

F scal
4 = Lscal

5 · Lscal
3 · Lscal

1

F scal
2 = Lscal

3 · Lscal
1

F scal
0 = Lscal

1

(83)
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where

Lscal
5 = 2x5Dx5 + 10x4Dx4 − 2x3(7 + 5x2)Dx3 + 2(−16 + 13x2)x2Dx2

+ 2(5 − 12x2 + 4x4)xDx − 10 + 8x2 − 24x4,

Lscal
3 = 2x3Dx3 + 8x2Dx2 − 2(x − 1)(x + 1)xDx − 2,

Lscal
1 = Dx

(84)

and Lscal
9 , Lscal

7 are given in appendix E.
Similarly, for j odd, we have

F scal
9 = Lscal

10 · Lscal
8 · Lscal

6 · Lscal
4 · Lscal

2

F scal
7 = Lscal

8 · Lscal
6 · Lscal

4 · Lscal
2

F scal
5 = Lscal

6 · Lscal
4 · Lscal

2

F scal
3 = Lscal

4 · Lscal
2

F scal
1 = Lscal

2

(85)

where

Lscal
4 = 16x4Dx4 + 96x3Dx3 + 40(2 − x2)x2Dx2 + 8(x2 − 2)xDx + 9x4 − 8x2 + 16,

Lscal
2 = 4xDx2 + 4Dx − x

(86)

and Lscal
10 , Lscal

8 , Lscal
6 are given in appendix E.

Thus, we see that the scaled operators F scal
j have a ‘Russian-doll’ structure inherited from

the lattice operators Fj (N).
Consider the linear differential operator corresponding to the modified Bessel function

Kn(x/2) for n = 0, namely,

B = Dx2 +
Dx

x
− 1

4
. (87)

We recognize, in this linear differential operator, the exact identification with the scaled
differential operator F scal

1 = Lscal
2 . We find that the symmetric square of the linear differential

operator B and the scaled operator Lscal
3 are equivalent:

Lscal
3 · (xDx2 + 2Dx − x) = (2x4Dx2 + 12x3Dx − 2x4 + 8x2) · Sym2(B). (88)

Similarly, the symmetric third power of the linear differential operator B and the scaled
operator Lscal

4 are equivalent, and, more generally, the symmetric j th power of (87) and the
scaled operator Lscal

j+1 are equivalent:

Lscal
j+1 � Symj (B). (89)

Recall that the differential operators Fj (N), corresponding to the form factors f
(j)

N,N , can
be written as direct sums only when the integer N is fixed. At the scaling limit, this feature
disappears in the scaled differential operators F scal

j which have no direct sums. Therefore
while the scaling limit preserves the Russian-doll (telescopic) structure (see (61), (85)) and
also preserves the fact that the various operators in this Russian-doll (telescopic) structure
are equivalent to symmetric powers of an operator (87) which replaces the operator LE , the
direct sum structure is lost. As a consequence, the scaling of f

(j)

N,N ’s cannot be seen as simple
polynomials of modified Bessel functions.

There is one exception that concerns f
(2)
N,N . Its scaled linear differential operator F scal

2
has the non-shared property of being equivalent to the direct sum of Dx with the symmetric
square of (87), namely,

F scal
2 = Lscal

1 ⊕ Lscal
3 � Dx ⊕ Sym2(B). (90)
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From this equivalence, one immediately deduces the expression of the scaling of f
(2)
N,N as

quadratic expression of the modified Bessel functions of x/2 which actually identifies with
formulae (2.31b)–(3.151) in [9].

The occurrence of modified Bessel functions, emerging from a confluence of two
singularities of the complete elliptic integrals E and K or from the hypergeometric function
2F1, should not be considered as a surprise if one recalls the following limit of the
hypergeometric function 2F1 yielding confluent hypergeometric functions 1F1. These
confluent hypergeometric functions, 1F1, are nothing but modified Bessel functions [30]:

1F1(a, b; z) → 2F1

(
a, p, b; z

p

)
when p → ∞

I (ν, z) = zν

2νez�(ν + 1)
· 1F1

(
ν +

1

2
, 2ν + 1; 2z

)
.

(91)

Remark. It was shown, in section 4, as a consequence of the decomposition of their
differential operators in direct sums of operators equivalent to symmetric powers of LE ,
that the functions f

(n)
N,N are polynomial expressions of E and K functions. Therefore, their

singularities are only the three regular points t = 0, t = 1 and t = ∞. The scaling limit
(t = 1−x/N, t → 1, N → ∞) corresponds to the confluence of the two regular points t = 0
and t = ∞, yielding the, now, irregular point x = ∞. The occurrence of irregular points
with their Stokes phenomenon, and, especially, the loss of a remarkable direct sum structure,
shows that the scaling limit is a quite non-trivial limit.

Contrary to the common wisdom, the scaling limit does not correspond to more
‘fundamental’ symmetries and structures (more universal . . .): this limit actually destroys
the remarkable structures and symmetries of the lattice models19.

6. Algebraic solutions of PVI for λ = cos(πm/n) and modular curves

The function C(N,N; λ) is such that its log-derivative is actually a solution of the sigma form
of Painlevé VI: it is a transcendent function ‘par excellence’. However, the unexpectedly
simple expressions for these form factors f

(j)

N,N strongly suggest to try to resum the infinite

sums (9), and (10), of form factors f
(j)

N,N , corresponding to the function C(N,N; λ), and see
if these transcendent functions could be ‘less complex’ than one can imagine at first sight,
at least for a set of ‘singled-out’ values of λ. For instance, are there any values of λ �= 1
which share, with λ = 1, the property that C(N,N; λ) satisfies a Fuchsian linear differential
equation?

Actually, introducing, instead of the modulus k of elliptic functions (for T > Tc, k = s2),
or the s and t variables, the nome of the elliptic functions (see relations (5.7)–(5.11) in [14]), we
have been able to perform such a resummation, getting, for arbitrary λ, nice closed expressions
for C(N,N; λ) for the first values of N (N = 0, 1, 2, . . .), as sums of ratios of theta functions
(and their derivatives), corresponding to Eisenstein series or quasi-modular forms. These
results will be displayed in forthcoming publications. The simplest example corresponds to
N = 0 where C−(N,N; λ) is just the ratio of two Jacobi θ3 functions:

C−(0, 0; λ) = θ3(u, q)

θ3(0, q)
, where λ = cos(u). (92)

19 These kind of results should not be a surprise for the people working on integrable lattice models or on Painlevé
equations [35, 36].
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All these results strongly suggest to focus on u = πm/n (m and n integers) yielding for the
possible choice of ‘singled-out’ values of λ:

λ = cos(πm/n). (93)

Actually, these special values (93) of λ already occurred in a study of N = 2 supersymmetric
field theories [25] in a similar series construction of solutions of the Painlevé V (or Painlevé
III for a ratio of functions) equation for the scaling limit of the Ising model [9].

We have begun to investigate this situation. When n = 3, . . . , 20 (and all the possible
values of m, but a set of first successive values of N), we have found that C±(N,N; λ) do
indeed satisfy Fuchsian linear differential equations but, unlike the equations found in [19] for
λ = 1, the order of the Fuchsian linear differential equations depends only on n and not on N.

As examples of these Fuchsian linear differential equations, we found, for instance, that
C−(N,N; cos(π/4)), for N = 0, 1, 2, are annihilated, respectively, by

L
[1/4]
0 = (t − 1)2t · Dt2 +

3

8
(t − 1)(3t − 2) · Dt − 15t

256
+

3

32

L
[1/4]
1 = (t − 1)2t · Dt2 + (t − 1)(5t − 2) · Dt − 7t

256
+

1

16

L
[1/4]
2 = (t − 8)(t − 1)2t · Dt2 + (t − 1)(t2 − 2t + 16) · Dt +

209t2

256
− 25t

16
+

1

2

(94)

and that C−(0, 0; cos(π/3)) is annihilated by

L
[1/3]
0 = (t − 1)3t3 · Dt4 +

11

3
(2t − 1)(t − 1)2t2 · Dt3 +

7

27
(43t2 − 43t + 4)(t − 1)t · Dt2

+
7

1458
(2t − 1)(247t2 − 247t − 80) · Dt +

35

486
. (95)

These linear differential operators are of a quite different nature from the one depicted in
section 4 which can be decomposed in direct sums of (operators equivalent to) symmetric
powers of LE . In contrast with the direct sum decomposition we have underlined previously,
these linear differential operators are irreducible. However, we do expect from section 4.5
a connection with elliptic curves. Actually, instead of a connection through the second-
order differential operator LE , or the hypergeometric second-order linear differential operator
(38), we have an even more striking link with the theory of elliptic curves. These solutions
C(N,N; λ) are actually algebraic solutions of Painlevé VI, associated with modular curves20.
We found for n � 8 these singled-out Fuchsian linear differential equations, corresponding to
algebraic solutions of Painlevé VI, and beyond, directly these modular curves for larger values
of n for which we do not have the Fuchsian linear differential equations yet.

We first obtained these modular curves as polynomial relations P(σ, t) = 0, between σ

and t , and we then found, in a second step, the polynomial relations P(τ, t) = 0, between
τ = C±(N,N; cos(πm/n)) and t. For instance, one finds that τ = C−(0, 0; cos(π/3)) is

20 The occurrence of modular curves is pretty clear for N = 0 from (92), from the analysis of its invariance group,
subgroup of the modular group.
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Table 1. Order of the linear ODE, as well as degree and genus of the corresponding modular curve
in τ = C±(0, 0; λ) for λ = cos(π/n), when available. The corresponding degree and genus of the
modular curve in σ(0, 0; λ), when available.

n 3 4 5 6 7 8 9 10 11 12 14 16 18 20

ODE order 4 2 12 4 24 8
τ -degree 12 16 60 48 168 128 240
τ -genus 1 3 13 13 41
σ -degree 4 2 12 4 24 8 36 12 60 16 24 32 36 48
σ -genus 0 0 1 0 4 0 1 1

solution of a genus one algebraic curve

16τ 12 − 16τ 9 − 8(t − 1)t · τ 3 + t · (1 − t) = 0 (96)

or that τ = C−(N,N; cos(π/4)) is solution of genus three algebraic curve, for instance, for
N = 0,

16τ 16 + 16(t − 1) · τ 8 + t2 · (t − 1) = 0, (97)

the corresponding solutions being quite simple algebraic expressions:

C−(0, 0; cos(π/4)) = 2−1/4(1 − t)1/16[1 + (1 − t)1/2]1/4 (98)

C−(1, 1; cos(π/4)) = 2−3/4(1 − t)1/16[1 + (1 − t)1/2]3/4 (99)

C−(2, 2; cos(π/4)) = 2−5/4(1 − t)1/16[1 + (1 − t)1/2]5/4[5 − (1 − t)1/2]/4. (100)

We give in table 1, when available, the order of the Fuchsian linear differential
equation for λ = cos(π/n), the degree and genus of the corresponding algebraic curve
P(C−(0, 0; λ), t) = 0, and the degree and genus of the algebraic σ -curve P(σ(0, 0; λ), t) = 0.

We found the following results on the polynomial relations P(τ, t) = 0, between
τ = C−(N,N; cos(πm/n)) and t. These polynomials are actually polynomials of the variable
ρ = τn for n odd and of the variable ρ = τ 2n for n even. This property is related to the
invariance of the variable ρ under a subgroup of the modular group21. Let us denote by
Q(ρ, t) = 0 the polynomial relation between ρ and t. We also found that the degree of the
polynomial Q in ρ actually identifies with the degree in σ of the polynomial P(σ, t) = 0.
Thus, the τ -degree in table 1 can be seen to be the σ -degree multiplied by n for n odd and
by 2n for n even. The order of the Fuchsian linear differential equations for C−(N,N; λ)

identifies with that degree in σ . We finally found that the genus of the modular curve
P(σ, t) = 0 identifies with the genus of the τn (resp. τ 2n)-modular curve Q(ρ, t) = 0:
the genus corresponding to C−(0, 0; cos(π/3))3, C−(0, 0; cos(π/5))5 are respectively 0, 1,
the genus corresponding to C−(0, 0; cos(π/4))8, C−(0, 0; cos(π/6))12, C−(0, 0; cos(π/8))16

are 0 but the genus for C−(0, 0; cos(π/10))20 is 1. In contrast the genus corresponding to
C−(0, 0; cos(π/6))6, C−(0, 0; cos(π/8))8 are 1 and the genus for C−(0, 0; cos(π/10))10 is 5.

For N = 0, and only in this case, a large set of these algebraic curves (for instance (96) or
the modular curve for n = 7 in the previous table) are invariant under the t ↔ 1− t symmetry:

(t, σ, σ ′, σ ′′) → (1 − t,−σ − 1/4, σ ′,−σ ′′). (101)

21 See in particular Barth and Michel [37] for further details on the X00(n, 2) modular curves and the characterization
of the genus of modular curves from subgroups of SL(2, Z). We will study C±(N, N; λ) from this modular subgroup
point of view elsewhere.



96 S Boukraa et al

This remarkable symmetry is, in fact, inherited from the covariance by (101) of the sigma
form (11) when N = 0.

A large set of algebraic solutions of Painlevé VI (and associated modular curves) have
been obtained by many authors [38–43]. However, most of these results on algebraic solutions
are for the canonical form22 of Painlevé VI in terms of the variable y:

d2y

dt2
= 1

2

(
1

y
+

1

1 − y
+

1

y − t

) (
dy

dt

)2

−
(

1

t
+

1

t − 1
+

1

y − t

)
dy

dt

+
y(y − 1)(y − t)

t2(t − 1)2

(
α + β

t

y2
+ γ

t − 1

(y − 1)2
+ δ

t (t − 1)

(y − t)2

)
. (102)

There are several sets of α, β, γ, δ which lead to the same equation [44] for σ . For T < Tc

one such set23 of parameters of (102), corresponding to the N-dependent sigma form (11), is

α = 1
2

(
N + 1

2

)2
, β = − 1

2

(
N − 1

2

)2
, γ = 1

8 , δ = 3
8 . (103)

It is interesting to make the connection between our results and those previously known
algebraic solutions. Such a ‘dictionary’ will be performed elsewhere24, let us just give one
simple example. The variable y being a rational expression of σ and its derivatives (see [44]),
the algebraic solution (98) with (103), becomes y = 1 − √

1 − t which is the well-known
solution25 y = √

t (see [40]) under the change t → 1 − t, y → 1 − y, β → −γ and γ → −β

which is a symmetry of (102).

7. Conclusion

The diagonal Ising two-point correlation functions can be expressed (see for instance
[19, 45]) as homogeneous polynomials of complete elliptic integral E and K. These diagonal
Ising correlations are λ = 1 subcase of their λ-extensions C(N,N; λ) we considered in this
paper. By (7) and (8) these polynomials of E and K are also expressed as infinite sums of
the form factors f

(j)

M,N ’s which, themselves, are polynomials of E and K. This yields a double
infinity (M,N) of remarkable identities on the complete elliptic integrals E and K. Similarly,
with the previous algebraic solutions for λ = cos(πm/n), one sees that an algebraic expression
C(N,N; cos(πm/n)) (associated with a modular curve) can be written as an infinite sum of
polynomials in E and K. Each of these modular curves will provide a remarkable identity on
the complete elliptic integrals E and K.

Recalling relations like (5.7)–(5.11) of [14], all these identities can also be written in
terms of the nome of the elliptic functions occurring in the Ising model. These identities,
now, become remarkable identities on some infinite Gaussian sums or on series expansions of
theta functions or, for large enough values of N, on Eisenstein series and other quasi-modular
forms. We will describe and analyse these identities in a forthcoming publication.

The calculations displayed in this paper can be seen as successful explicit examples
of factorization of multiple integrals, providing examples of explicit calculations of the
new mantra that ‘nested sums are Hopf algebras and thus multiple Feynman-like integrals
must factorize in terms of polynomial expressions of one-dimensional integrals’. For our

22 For N = 0 this equation has been solved in terms of theta functions [40–42], has dihedral symmetry and has a
countable number of algebraic solutions.
23 To be considered when comparing with [40].
24 We found that the SL(2, Z) subgroup for τn for n odd (resp. τ 2n for n even) identify with the one for y (see
[37, 40].
25 The solution y = √

t solves (102) for the parameters (α, β, γ, δ) = (α, −α, 1/2 − δ, δ).
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j -particle contributions of the diagonal correlation functions, C(j)(M,N)’s, the fact that they
are polynomial expressions of singled-out one-dimensional integrals (the complete elliptic
integrals E and K) is understood in terms of direct sums of linear differential operators
equivalent to symmetric powers of a singled-out linear differential operator. In the scaling limit,
this direct sum structure, yielding polynomial expressions (that is the so-called ‘factorization
of multiple integrals’), is lost: what remains is a Russian-doll structure of differential operators
equivalent to symmetric powers of a singled-out differential operator.

The problem of the factorization of multiple integrals is, obviously, an important one
for Feynman-like integrals. It also occurs on various calculations of correlation functions
of integrable models, like the Heisenberg spin chain, where multiple integrals also occur.
These factorizations are obtained by Boos and Korepin [46, 47] by adding to the integrand
a successive set of anti-symmetric integrands (these anti-symmetric integrands being chosen
in such a way that their multiple integral is zero). The combination of the initial integral
with these new integrands yielding expressions depending on less variables, thus reducing
the n-multiple integrals to a (n − 1)-multiple integral. More recently, Boos et al [48] also
deduced factorization of multiple integrals representing the density matrix of the Heisenberg
spin chain: the key ingredient, in the emergence of such factorization, is a functional identity
on the integrand, this relation coming from the Bethe ansatz integrability of the model. The
factorization of some multiple integrals can probably be seen as a consequence of some
‘Yang–Baxter integrability’, it seems, however, to occur beyond this narrow framework. The
Feynman-like integrals, where such factorization of some multiple integrals occurs, are not
arbitrary holonomic expressions. What are the (more or less integrable) constraints one
must impose on holonomic integrands such that their multiple integrals exhibit factorization,
remains a fascinating open question [49]. A key point we have tried to promote here is that,
instead of trying to calculate multiple integrals where the integrands have no free parameters,
that is to say that the multiple integrals are just constants [50], we perform calculations on
multiple integrals where the integrands do depend on one, or many, parameters. We can then
use the holonomic structure.

In short, it is simpler to get multiple integrals that depend on one variable than obtaining
their evaluation at a given value on this variable. This is typically a Yang–Baxter viewpoint:
it is easier to solve an integrable model with a spectral parameter that enables to describe
the Yang–Baxter structure than trying to solve that model for a given value of that parameter
(quantum groups, knot theory, etc). It is easier to solve the anisotropic Ising model than the
isotropic one, and, similarly, it is easier to consider multiple integrals that depend on a variable
than evaluating constants [49] (polynomial expressions of ζ(3)), ζ(5), . . .) corresponding to
these multiple integrals at a given value of that parameter: this way of looking at the problem
enables us to see the emergence of highly non-trivial algebraic structures on linear differential
operators, that are a very efficient and powerful tool of experimental mathematics, and other
formal calculations, to study factorizations of multiple integrals.
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Appendix A. Differential operators Lj(N )

The jth linear differential operators Lj(N) have the following form:

Lj(N) =
n0∑

n=0

N2n

t2n
·
(

j−2k∑
k=0

P
(j)

n,k (t)

(t (t − 1))k
Dtj−2n−k

)
(A.1)

where n0 = (j − 1)/2 for j odd and n0 = j/2 for j even. The polynomials P
(j)

n,k (t) are of
degree k in t.

A.1. P
(5)
n,k (t)

P
(5)
0,0 = 1, P

(5)
0,1 = 40t − 20, P

(5)
0,2 = −563t + 558t2 + 118,

P
(5)
0,3 = 4291

2
t − 10 169

2
t2 + 3320t3 − 220,

P
(5)
0,4 = 80 + 10 848t2 − 16 978t3 + 8180t4 − 2227t,

P
(5)

0,5 = 4(85 − 1139t + 3672t2 − 4250t3 + 1600t4)t,

P
(5)
1,0 = −5, P

(5)
1,1 = −91t + 59, P

(5)
1,2 = −469t2 + 626t − 181,

P
(5)
1,3 = 144 − 840t + 1368t2 − 656t3, P

(5)
2,0 = 4, P

(5)
2,1 = 16t − 16.

A.2. P
(6)
n,k (t)

P
(6)
0,0 = 1, P

(6)
0,1 = 70t − 35, P

(6)
0,2 = 7427

4
t2 − 7427

4
t + 413,

P
(6)
0,3 = 2(2t − 1)(5912t2 − 5912t + 979),

P
(6)
0,4 = 2 410 523

16
t4 − 2 410 523

8
t3 +

3 200 163

16
t2 − 98 705

2
t + 3383,

P
(6)

0,5 = 1

16
(2t − 1)(3 585 925t4 − 7 171 850t3 + 4 326 453t2 − 740 528t + 19 600),

P
(6)
0,6 = 625

64
t (t − 1)(48 841t4 − 97 682t3 + 63 549t2 − 14 708t + 784),

P
(6)
1,0 = −35

4
, P

(6)
1,1 = −336t +

413

2
,

P
(6)
1,2 = −34 799

8
t2 +

43 231

8
t − 6133

4
,
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P
(6)
1,3 = −88 609

4
t3 + 41 823t2 − 96 849

4
t +

16 691

4
,

P
(6)
1,4 = −25

64
(t − 1)(94 091t3 − 146 523t2 + 67 548t − 9216),

P
(6)
2,0 = 259

16
, P

(6)
2,1 = 1917

8
t − 3159

16
,

P
(6)
2,2 = 125

64
(407t − 272)(t − 1), P

(6)
3,0 = −225

64
.

A.3. P
(7)
n,k (t)

P
(7)
0,0 = 1, P

(7)
0,1 = −56 + 112t, P

(7)
0,2 = 5012t2 − 5026t + 1148,

P
(7)
0,3 = −10 736 + 79 727t − 174 373t2 + 115 544t3,

P
(7)
0,4 = 46 172 − 548 736t + 2 042 953t2 − 2 975 244t3 + 1 472 828t4,

P
(7)

0,5 = −78 640 + 1 605 642t − 9 634 279t2 + 23 975 501t3 − 26 144 958t4 + 10 305 440t5,

P
(7)
0,6 = 29 160 − 1 616 078t +

67 624 527

4
t2 − 136 608 085

2
t3

+
511 207 495

4
t4 − 111 249 042t5 + 36 334 360t6,

P
(7)
0,7 = 9

2
t (59 940 − 1 665 037t + 11 865 715t2 − 36 308 026t3 + 54 466 294t4

− 39 393 900t5 + 10 951 200t6),

P
(7)
1,0 = −14, P

(7)
1,1 = −966t + 574,

P
(7)
1,2 = −24 712t2 + 29 686t − 8248,

P
(7)
1,3 = −290 812t3 + 530 547t2 − 299 013t + 51 188,

P
(7)
1,4 = −1 561 136t4 + 3 851 903t3 − 3 309 480t2 + 1 156 221t − 136 440,

P
(7)

1,5 = 129 600 − 22 166 415

2
t3 +

18 989 235

2
t4 +

11 893 977

2
t2 − 2 902 725

2
t − 3 028 104t5,

P
(7)
2,0 = 49, P

(7)
2,1 = 1686t − 1254, P

(7)
2,2 = 17 887t2 − 27 026t + 9679,

P
(7)
2,3 = −22 761 − 133 569t2 + 57 753t3 + 98 253t,

P
(7)
3,0 = −36, P

(7)
3,1 = 324 − 324t.

A.4. P
(8)
n,k (t)

P
(8)
0,0 = 1, P

(8)
0,1 = 168t − 84, P

(8)
0,2 = 11 697t2 − 11 697t + 2730,

P
(8)
0,3 = 2(2t − 1)(109 862t2 − 109 862t + 21 881),

P
(8)
0,4 = 77 675 835

8
t4 − 77 675 835

4
t3 +

108 450 015

8
t2 − 7 693 545

2
t + 364 365,
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P
(8)

0,5 = 1

4
(2t − 1)(257 365 313t4 − 514 730 626t3 + 340 542 345t2 − 83 177 032t + 6 033 464),

P
(8)
0,6 = 2 610 671 − 135 579 123

2
t +

4 351 723 053

8
t2 − 31 150 612 733

16
t3

− 47 738 959 467

16
t5 +

55 357 772 589

16
t4 +

15 912 986 489

16
t6,

P
(8)
0,7 = 1

8
(2t − 1)(16 309 728 941t6 − 48 929 186 823t5 + 54 824 769 942t4

− 28 100 895 179t3 + 6 440 184 015t2 − 544 600 896t + 8 016 008),

P
(8)
0,8 = 2401

256
t (t − 1)(719 580 625t6 − 2 158 741 875t5 + 2 496 751 275t4

− 1 395 599 425t3 + 383 051 976t2 − 45 042 576t + 1 308 736),

P
(8)
1,0 = −21, P

(8)
1,1 = −2352t + 1365,

P
(8)
1,2 = −414 555

4
t2 +

483 843

4
t − 33 315,

P
(8)
1,3 = −2 290 461t3 + 4 034 358t2 − 2 237 787t + 386 664,

P
(8)
1,4 = −426 526 863

16
t4 +

504 203 159

8
t3 − 845 513 895

16
t2 +

36 865 265

2
t − 2 230 431,

P
(8)

1,5 = −616 586 181

4
t5 +

7 342 474 719

16
t4 − 4 139 827 129

8
t3

+
4 378 085 671

16
t2 − 67 155 042t + 6 072 033,

P
(8)
1,6 = −49

64
(t − 1)(449 304 249t5 − 1 168 884 874t4 + 1 134 316 077t3

− 509 448 428t2 + 105 774 112t − 8 294 400),

P
(8)
2,0 = 987

8
, P

(8)
2,1 = 15 993

2
t − 22 299

4
,

P
(8)
2,2 = 2 933 043

16
t2 − 4 128 099

16
t +

696 405

8
,

P
(8)
2,3 = 7 002 915

4
t3 − 14 949 545

4
t2 +

10 236 397

4
t − 4 465 707

8
,

P
(8)
2,4 = 343

128
(t − 1)(2 179 797t3 − 4 103 797t2 + 2 457 908t − 468 864),

P
(8)
3,0 = −3229

16
, P

(8)
3,1 = −21 963

4
t +

76 827

16
,

P
(8)
3,2 = −343

64
(6607t − 5032)(t − 1), P

(8)
4,0 = 11 025

256
.
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A.5. P
(9)
n,k (t)

P
(9)
0,0 = 1, P

(9)
0,1 = −120 + 240t, P

(9)
0,2 = 5796 − 24 546t + 24 516t2,

P
(9)
0,3 = −145 528 + 991 701t − 2 099 751t2 + 1 396 208t3,

P
(9)
0,4 = 2 045 004 − 20 325 858t + 69 369 177t2 − 97 902 648t3 + 48 749 364t4,

P
(9)

0,5 = −16 074 560 + 225 525 578t − 1 125 696 965t2 + 2 565 535 675t3

− 2 714 936 962t4 + 1 079 617 840t5,

P
(9)
0,6 = 66 126 712 − 1 333 788 966t +

37 765 468 163

4
t2 − 63 124 281 313

2
t3

+
216 166 206 483

4
t4 − 45 734 526 046t5 + 15 125 870 712t6,

P
(9)
0,7 = −118 102 672 + 3 823 928 460t − 78 510 959 875

2
t2

+
374 049 548 401

2
t3 − 471 178 501 099t4 + 646 530 989 251t5

− 455 734 056 216t6 + 128 906 004 992t7,

P
(9)
0,8 = 47 071 232 − 4 139 526 516t +

138 902 716 891

2
t2

− 484 196 478 836t3 +
3 495 148 889 889

2
t4 − 3 539 969 007 392t5

+ 4 054 878 125 399t6 − 2 448 333 931 344t7 + 604 418 968 592t8,

P
(9)
0,9 = 80t (9 561 344 − 427 020 633t + 4 937 178 194t2 − 26 308 505 171t3

+ 76 760 779 797t4 − 130 255 661 861t5 + 128 108 854 250t6

− 67 626 000 000t7 + 14 796 800 000t8), P
(9)
1,0 = −30,

P
(9)
1,1 = −5082t + 2898, P

(9)
1,2 = −352 662t2 + 404 466t − 110 238,

P
(9)
1,3 = −12 963 996t3 + 22 438 245t2 − 12 306 435t + 2 123 604,

P
(9)
1,4 = −271 930 980t4 + 631 696 597t3 − 523 169 724t2 + 181 823 257t − 22 193 940,

P
(9)

1,5 = −3 245 449 704t5 +
18 983 501 249

2
t4 − 21 116 262 613

2
t3

+
11 093 266 991

2
t2 − 2 731 643 299

2
t + 125 146 416,

P
(9)
1,6 = −20 342 103 432t6 + 71 951 600 804t5 − 100 847 772 344t4 + 71 245 445 309t3

− 26 573 340 926t2 + 4 930 067 225t − 354 631 488,

P
(9)
1,7 = 406 425 600 − 363 525 018 400t5 − 6 762 200 560t + 46 013 156 464t2

+ 214 239 244 800t6 − 51 475 353 600t7 + 324 098 542 224t4 − 162 977 694 704t3,

P
(9)
2,0 = 273, P

(9)
2,1 = 29 490t − 19 650,



102 S Boukraa et al

P
(9)
2,2 = 1 217 265t2 − 1 636 902t + 528 465,

P
(9)
2,3 = 23 917 695t3 − 48 731 759t2 + 31 834 675t − 6 637 935,

P
(9)
2,4 = 222 934 641t4 − 612 371 540t3 + 607 781 638t2 − 257 369 288t + 39 119 361,

P
(9)

2,5 = 734 599 360t − 2 367 055 040t2 − 2 730 725 376t4 − 87 745 536

+ 785 703 936t5 + 3 664 705 792t3,

P
(9)
3,0 = −820, P

(9)
3,1 = −46 428t + 37 212,

P
(9)
3,2 = −839 284t2 + 1 358 312t − 535 156,

P
(9)
3,3 = 2 455 552 − 9 463 296t + 11 831 808t2 − 4 814 848t3,

P
(9)
4,0 = 576, P

(9)
4,1 = −9216 + 9216t.

A.6. P
(10)
n,k (t)

P
(10)
0,0 = 1, P

(10)
0,1 = −165 + 330t, P

(10)
0,2 = 11 286 − 189 189

4
t +

189 189

4
t2,

P
(10)
0,3 = 440(−1 + 2t)(4400t2 − 4400t + 947),

P
(10)
0,4 = 9 053 979 − 85 922 628t +

2 289 151 821

8
t2 − 1 601 770 797

4
t3 +

1 601 770 797

8
t4,

P
(10)

0,5 = 1

8
(2t − 1)(27 291 921 049t4 − 54 583 842 098t3 + 37 651 935 321t2

− 10 360 014 272t + 946 138 408),

P
(10)
0,6 = 907 059 937 − 63 513 668 189

4
t +

414 126 483 423

4
t2 − 10 567 258 749 853

32
t3

+
17 677 263 640 199

32
t4 − 14 872 361 118 327

32
t5 +

4 957 453 706 109

32
t6,

P
(10)
0,7 = 1

8
(2t − 1)(9 240 801 571 631t6 − 27 722 404 714 893t5 + 32 221 157 315 067t4

− 18 238 306 771 979t3 + 5 175 369 000 414t2 − 676 616 400 240t

+ 30 201 789 392),

P
(10)
0,8 = 7 010 881 775 − 537 428 072 635

2
t +

53 588 823 341 945

16
t2 − 320 491 542 697 265

16
t3

+
16 973 016 403 001 045

256
t4 − 8 195 527 196 507 945

64
t5 +

18 373 024 724 608 855

128
t6

− 5 532 574 254 401 525

64
t7 +

5 532 574 254 401 525

256
t8,

P
(10)
0,9 = 5

256
(2t − 1)(2 925 753 951 778 285t8 − 11 703 015 807 113 140t7

+ 19 103 849 088 522 126t6 − 16 350 991 940 670 388t5 + 7 838 575 034 697 949t4
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− 2 079 015 276 577 248t3 + 280 113 055 050 736t2 − 15 268 105 688 320t

+ 148 553 637 120),

P
(10)
0,10 = 32 805

1024
t (t − 1)(8 079 810 760 125t8 − 32 319 243 040 500t7

+ 53 723 369 995 078t6 − 48 052 759 343 484t5 + 24 975 072 368 117t4

− 7 567 996 044 344t3 + 1 257 903 576 048t2 − 96 158 271 040t + 1 833 995 520),

P
(10)
1,0 = −165

4
, P

(10)
1,1 = −10 032t + 5643,

P
(10)
1,2 = −4 116 057

4
t2 +

4 646 169

4
t − 629 409

2
,

P
(10)
1,3 = −116 107 101

2
t3 + 98 646 966t2 − 107 291 349

2
t +

18 577 449

2
,

P
(10)
1,4 = −62 944 154 655

32
t4 +

71 575 322 887

16
t3 − 117 218 126 643

32
t2

+
10 187 763 521

8
t − 630 658 425

4
,

P
(10)

1,5 = −163 658 617 341

4
t5 +

1 868 493 139 019

16
t4 − 1 024 185 567 025

8
t3

+
1 072 700 805 259

16
t2 − 16 676 053 189t +

3 132 363 327

2
,

P
(10)
1,6 = −32 591 037 777 225

64
t6 +

112 104 944 104 795

64
t5 − 154 297 814 907 493

64
t4

+
108 234 764 940 653

64
t3 − 20 292 699 152 369

32
t2

+
958 545 911 705

8
t − 35 460 987 675

4
,

P
(10)
1,7 = −110 727 690 476 325

32
t7 +

446 374 095 368 415

32
t6 − 740 746 002 842 197

32
t5

+
163 197 508 324 913

8
t4 − 82 052 435 490 193

8
t3 +

93 651 745 559 635

32
t2

− 1 748 299 590 545

4
t +

105 491 089 125

4
,

P
(10)
1,8 = −6561

1024
(t − 1)(1 530 421 397 125t7 − 5 554 611 547 375t6

+ 8 232 623 167 111t5 − 6 428 537 243 541t4 + 2 844 044 623 496t3

− 711 552 088 080t2 + 93 740 238 400t − 5 138 022 400),

P
(10)
2,0 = 4389

8
, P

(10)
2,1 = 364 353

4
t − 469 491

8
,

P
(10)
2,2 = 194 340 135

32
t2 − 251 951 799

32
t +

19 747 365

8
,
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P
(10)
2,3 = 830 796 045

4
t3 − 406 585 301t2 +

1 027 545 163

4
t − 208 821 765

4
,

P
(10)
2,4 = 490 847 729 943

128
t4 − 645 152 215 543

64
t3 +

1 232 916 142 207

128
t2

− 63 246 182 437

16
t +

4 689 902 523

8
,

P
(10)

2,5 = 2 314 309 478 331

64
t5 − 15 325 677 165 945

128
t4 +

1 231 151 157 175

8
t3

− 12 252 529 589 789

128
t2 +

230 003 188 957

8
t − 26 662 508 757

8
,

P
(10)
2,6 = 729

512
(t − 1)(95 338 644 413t5 − 286 574 346 250t4 + 332 882 516 705t3

− 186 665 173 556t2 + 50 609 686 768t − 5 337 817 088),

P
(10)
3,0 = −86 405

32
, P

(10)
3,1 = −1 071 807

4
t +

3 230 007

16
,

P
(10)
3,2 = −616 031 665

64
t2 +

934 953 233

64
t − 173 220 155

32
,

P
(10)
3,3 = −4 731 457 901

32
t3 +

2 715 664 857

8
t2 − 8 133 623 529

32
t +

1 981 312 349

32
,

P
(10)
3,4 = −2187

512
(t − 1)(191 281 007t3 − 399 820 191t2 + 271 766 508t − 60 099 968),

P
(10)
4,0 = 1 057 221

256
, P

(10)
4,1 = 23 053 617

128
t − 41 642 109

256
,

P
(10)
4,2 = 2187

1024
(892 447t − 727 072)(t − 1), P

(10)

5,0 = −893 025

1024
.

Appendix B. Direct sum structure

We display the fourth-order differential operator M4(N) introduced in section 4.3 for
successive values of N:

M4(0) = Dt4 + 2
(2t − 1)(2t2 − 2t + 3)

(t2 − t + 1)(t − 1)t
· Dt3 +

1

2

(−73t + 14 + 102t2 − 58t3 + 29t4)

(t2 − t + 1)(t − 1)2t2
· Dt2

+
1

2

(2t − 1)(5t4 − 10t3 + 27t2 − 22t + 2)

(t2 − t + 1)(t − 1)3t3
· Dt +

1

16

t4 − 2t3 + 42t2 − 41t + 4

(t2 − t + 1)(t − 1)3t3

M4(1) = Dt4 + 2
P3

(t − 1)t · P4
· Dt3 +

1

2

P2

(t − 1)2t2P4
· Dt2

+
P1

(t − 1)3t3 · P4
· Dt +

1

16

P0

(t − 1)3t4 · P4

where

P0 = 256t6 − 560t5 + 312t4 − 143t3 + 227t2 − 72t − 16,

P1 = 64t7 − 856t6 + 2826t5 − 4087t4 + 2978t3 − 1098t2 + 182t − 8,

P2 = 208 + 7807t2 − 14 253t3 + 12 412t4 − 4624t5 + 448t6,
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P3 = 64t5 − 556t4 + 1225t3 − 1078t2 + 396t − 48,

P4 = 16 + 209t2 − 120t3 + 16t4 − 120t,

M4(2) = Dt4 + 2
P3

t (t − 1)P4
· Dt3 +

1

2

P2

t2(t − 1)2P4
· Dt2

+
1

2

P1

t3(t − 1)3P4
· Dt +

1

16

P0

t4(t − 1)3P4

where the corresponding Pi’s read

P0 = −1344t11 + 10 752t10 + 139 321t9 − 721 147t8 + 1 888 781t7 − 3 452 437t6

+ 4 219 535t5 − 3 184 189t4 + 1 330 028t3 − 202 384t2 − 34 048t + 7168,

P1 = 448t11 + 4256t10 + 56 658t9 − 519 911t8 + 1 502 563t7 − 2 077 796t6

+ 1 426 525t5 − 372 047t4 − 39 536t3 + 5418t2 + 14 336t − 896,

P2 = 4928t10 − 37 632t − 1 394 407t3 + 4 810 853t4 − 8 001 289t5

+ 6 880 493t6 + 415 793t8 − 2 881 207t7 + 16 128t9 + 11 648 + 174 818t2,

P3 = 1344t9 + 1568t8 + 65 828t7 − 382 102t6 + 760 238t5 − 702 181t4

+ 302 183t3 − 46 627t2 + 1568t − 1792,

P4 = 448t8 + 448t7 + 16 513t6 − 81 242t5 + 127 675t4 − 81 242t3 + 16 513t2 + 448t + 448.

Appendix C. The form factors f
(j)
N ,N

In order to check all the results displayed in this paper, we have performed a large number of
series expansions. Even the series expansions obtained recursively, order by order, from the
sigma form of Painlevé VI (11) in section 3, were checked against series expansions obtained
independently. Some were based on extremely large series expansions, not in s or t, but in
the nome of elliptic functions (see (5.7)–(5.11) of [14]), others were obtained from series
expansions with hypergeometric functions’ coefficients.

Actually, our new simple integral representations (35), (36) are of a great help to
produce large series expansions for the quantities f

(2n)
N,N (t) and f

(2n+1)
N,N (t). This amounts

to expanding only the (1 − tx2j−1x2k)
−2 term in (36). Recalling the Euler representation of

the hypergeometric functions [30],

F(a, b, c; t) = �(c)

�(c − b)�(b)

∫ 1

0
xb−1(1 − x)c−b−1(1 − xt)−a dx, (C.1)

one can rewrite, alternatively, these integral representations (35), (36) expansions of f
(2n)
N,N (t)

and f
(2n+1)
N,N (t), as nested sums of products of hypergeometric functions. By expanding the

factor (1 − tx1x2)
−2 in a power series in t , we obtain

f
(2)
N,N (t) = tN+1 ·

∞∑
j=0

(j + 1)tj · (1/2)N+j (3/2)N+j

4(N + j + 1)!2

×F(−1/2, N + j + 1/2, N + j + 2; t)F (1/2, N + j + 3/2, N + j + 2; t).

The series expansions for h2j (N,N)(t)’s and h2j+1(N,N)(t)’s agree with the series
expansions for Ĉj (N,N)’s and with the series expansions for f

(2j)

N,N ’s and f
(2j+1)

N,N ’s. In this

appendix, we display f
(2j)

N,N ’s and f
(2j+1)

N,N ’s for some j and some N.
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C.1. f
(1)
N ,N and f

(2)
N ,N

f
(1)
N,N ’s are given in the text by (41) and (44). f

(2)
N,N ’s are given explicitly as a function of K

and E in the text.

C.2. f
(3)
N ,N

f
(3)
N,N ’s read, for N = 0, . . . , 4,

6f
(3)
0,0 = K − (t − 2)K3 − 3K2E

6t1/2f 3
1,1 = 4(K − E) − 6K2E − (2t − 3)K3 + 3KE2

18tf
(3)
2,2 = 7(t + 2)K − 14(t + 1)E + 24E3

+ 3(2t2 − 11t + 2)EK2 − 3(t2 − 2)K3 + 36(t − 1)KE2

270t5/2f
(3)
3,3 = −30(8t2 + 7t + 8)t · E + 30(4t2 + 3t + 8)K

− (72t4 − 158t3 + 189t2 − 156t + 8)K3

+ 6(24t4 − 108t3 + 29t2 − 6t + 4)EK2

+ 3(232t3 − 111t2 − 180t − 8)E2K + 4(t + 1)(2t2 + 103t + 2)tE3

47 250t4f
(3)
4,4 = 975(3t + 4)(8t2 − 5t + 12)t2K − 7800t2(t + 1)(6t2 − t + 6)E

− (16 216t6 − 32 109t5 + 4218t4 + 38 472t3 − 38 064t2 + 3264t + 128)K3

+ 3(10 832t6 − 43 424t5 + 4925t4 + 13 248t3 − 10 112t2 + 3328t + 128)EK2

− 48(4t6 − 2885t5 + 939t4 + 1510t3 + 1792t2 + 212t + 8)E2K

+ 16(8t6 + 216t5 + 4893t4 + 5464t3 + 4893t2 + 216t + 8)E3.

C.3. f
(4)
N ,N

Some of f
(4)
N,N ’s read

24f
(4)
0,0 = 4(K − E) · K − (2t − 3)K4 − 6K3E + 3K2E2

24f
(4)
1,1 = 9 − 30KE − 10(t − 2)K2 + (t2 − 6t + 6)K4 + 15K2E2 + 10(t − 2)K3E

72t · f
(4)
2,2 = 72t − 32(1 + t)E2 − 16(2 + 6t2 − 11t)K2 − 16(15t − 4)KE

+ (24t3 − 98t2 + 113t − 36)K4 + 12(9 + t)E3K + 3(71t − 60)K2E2

+ 2(66 + 74t2 − 157t)EK3 − 24E4

1080t2f
(4)
3,3 = 22(8t3 − 319t2 + 112t + 16)KE − 88(1 + t)(2t2 + 13t + 2)E2

+ (957t4 − 3646t3 + 4230t2 − 1488t − 8)K4

+ 8(46t3 + 51t2 + 543t − 110)E3K

+ 3(16t4 − 72t3 + 2537t2 − 2704t + 272)K2E2

− 6(8t4 − 903t3 + 1934t2 − 988t + 40)EK3 + 24(13 + 13t2 − 28t)E4

− 22(137t3 − 242t2 + 52t + 8)K2 + 2025t2.
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C.4. f
(5)
N ,N

We give some f
(5)
N,N ’s:

120t1/2f
(5)
1,1 = 64 · (K − E) − 20(2t − 3)K3 − 120EK2 + 60E2K

+ (4t − 5)(2t − 3)K5 + 15(2t − 3)K4E + 45K3E2 − 15K2E3

360tf
(5)
2,2 = 149(t + 2)K − 298(t + 1)E + 720E3 − 90(t2 − 2)K3

+ 90(2t2 − 11t + 2)EK2 + 1080(t − 1)E2K

+ (5t3 + 28t2 − 90t + 60)K5 − 10(t3 − 16t2 + 24t − 4)EK4

− 5(32t2 − 179t + 122)K3E2 − 30(19t − 29)K2E3 − 360E4K

5400t5/2f
(5)
3,3 = 792(4t2 + 3t + 8)t · K − 792t (8t2 + 7t + 8) · E

− 40(72t4 − 158t3 + 189t2 − 156t + 8)K3

+ 240(24t4 − 108t3 + 29t2 − 6t + 4)EK2

+ 120(232t3 − 111t2 − 180t − 8)E2K + 160(t + 1)(2t2 + 103t + 2)E3

+ 5(96t5 − 520t4 + 1310t3 − 1589t2 + 800t − 88)K5

+ 5(424 − 2488t + 5051t2 − 4962t3 + 2008t4 − 192t5)EK4

− 5(1984t4 − 9228t3 + 9423t2 − 3272t + 816)E2K3

+ 5(784 − 4104t + 11 697t2 − 6056t3)E3K2

− 40(2t3 + 738t2 − 567t + 47)E4K + 360(t2 − 28t + 1)E5.

C.5. f
(6)
N ,N

Some f
(6)
N,N read

720f
(6)
1,1 = 225 − 259(t − 2)K2 − 777KE − 105K3E3 + 525K2E2

+ 350(t − 2)EK3 + 35(6 + t2 − 6t)K4 − 21(6 + t2 − 6t)EK5

− 105(t − 2)E2K4 − (t − 2)(t2 − 10t + 10)K6

2160tf
(6)
2,2 = 2160t − 544(15t − 4)KE − 1088(1 + t) · E2 − 544(6t2 − 11t + 2) · K2

+ 50(24t3 − 98t2 + 113t − 36)K4 − 1200E4 + 600(9 + t)E3K

+ 150(71t − 60)K2E2 + 100(66 + 74t2 − 157t)EK3 + 360KE5

− 15(235t − 264)K3E3 + 3(720 − 1889t + 1490t2 − 344t3) · EK5

− 90(21 + t)E4K2 − 45(92 + 74t2 − 173t) · E2K4

− 3(32t4 − 220t3 + 504t2 − 467t + 150)K6.

All these f
(j)

N,N displayed when expanded have their leading coefficients starting as given

in (35) and (36). Let us give some f
(6)
N,N as a series to show the magnitude of the numerical
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coefficients involved. The series expansion of f
(6)
N,N for the first values of N reads

N = 0 :
t9

1 073 741 824
+

37t10

8 589 934 592
+ · · ·

N = 1 :
7t12

4 398 046 511 104
+

21t13

2 199 023 255 552
+ · · ·

N = 2 :
21t15

1 125 899 906 842 624
+

19 215t16

144 115 188 075 855 872
+ · · ·

N = 3 :
10 395t18

18 446 744 073 709 551 616
+

84 315t19

18 446 744 073 709 551 616
+ · · ·

N = 4 :
2 335 905t21

75 557 863 725 914 323 419 136
+

166 783 617t22

604 462 909 807 314 587 353 088
+ · · · .

C.6. f
(7)
1,1 ,f

(8)
1,1 and f

(9)
1,11

Here, we give f
(j)

N,N for the other values of j = 7, 8, 9 and N = 1:

5040t1/2f
(7)
1,1 = 2304 · (K − E) − 784(2t − 3) · K3 − 4704K2E + 2352KE2

+ 840(2t − 3)K4E − 840K2E3 + 56(4t − 5)(2t − 3)K5 + 2520K3E2

− 28(4t − 5)(2t − 3)EK6 − 210(2t − 3)E2K5

− (32t3 − 156t2 + 228t − 105)K7 + 105K3E4 − 420K4E3

645 120f
(8)
1,1 = 11 025 − 38 748KE − 12 916(t − 2)K2 + 29 610K2E2

+ 1974(t2 − 6t + 6)K4 + 19 740(t − 2)K3E − 8820K3E3

− 84(t − 2)(t2 − 10t + 10)K6 − 1764(t2 − 6t + 6)K5E

− 8820(t − 2)K4E2 + 945K4E4 + (t4 − 20t3 + 48t2 − 56t + 28)K8

+ 36(t − 2)(t2 − 10t + 10)K7E + 378(t2 − 6t + 6)K6E2 + 1260(t − 2)K5E3

362 880t1/2f
(9)
1,1 = 147 456 · (K − E) + 157 440KE2 − 52 480(2t − 3) · K3

− 314 880K2E − 65 520K2E3 + 65 520(2t − 3)K4E

+ 4368(4t − 5)(2t − 3)K5 + 196 560K3E2 + 12 600K3E4 − 50 400K4E3

− 3360(4t − 5)(2t − 3)K6E + 120(105 − 228t + 156t2 − 32t3)K7

− 25 200(2t − 3)K5E2 + 630(4t − 5)(2t − 3) · K7E2 − 945E5K4

+ 4725E4K5 + 3150(2t − 3)K6E3 + 45(32t3 − 156t2 + 228t − 105)K8E

+ (128t4 − 960t3 + 2460t2 − 2572t + 945)K9.

Appendix D. Miscellaneous off-diagonal j-particle contributions

We display here some off-diagonal j -particle contributions:

2s2 · C(2)(0, 2) = 2s2 − 2(1 + s2)s2 · K + (2s4 + s2 − 2) · K2 − (s − 2)(s + 2)KE − 2E2

8s4 · C(2)(0, 3) = s2(8 + 27s2 + 8s4)
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− 24s2(1 + s2) · E − 2s2(1 + s2)(−4 + 13s2 + 8s4) · K

+ (1 + s2)(8s8 + 7s6 + 3s4 − 8s2 − 8) · K2

+ 4(4 + 6s2 + 7s4 + 6s6) · EK − 8(s4 + 1) · E2

18s6 · C(2)(0, 4) = 36(2 + 8s2 + 13s4 + 8s6 + 2s8)s2

− 24s2(1 + s2)(6s8 + 18s6 + 11s4 − 12s2 − 8)K

− 48s2(1 + s2)(7s4 + 15s2 + 7)E

+ (s2 + 2)(72s12 + 144s10 − 60s8 − 200s6 + s4 + 62s2 − 16)K2

+ (64 − 408s2 − 576s4 + 591s6 + 1088s8 + 336s10)EK

− 4(8 − 93s2 − 200s4 − 93s6 + 8s8)E2

8s2 · C(2)(1, 2) = 7s2 − 4(1 + s2) · E − 2(1 + s2)(s2 − 2) · K

+ (1 + s2)(4 + 3s2 − 5s4)K2 + 4(s4 − 3s2 − 3)EK + 8E2

6s4 · C(2)(1, 3) = 9s4 − 4(1 + s2)(s4 + 3s2 + 1) · E

+ 4(1 + s2)(1 + 3s2 − s4) · K + (10 + 8s2 − 2s4 − 8s6 − 5s8) · K2

+ (−24 − 32s2 − 13s4 + 16s6 + 4s8) · EK + 2(7s4 + 12s2 + 7) · E2.

Appendix E. Differential operators in the scaling limit

The differential operators Lscal
6 , . . . , Lscal

10 introduced in section 5 read

Lscal
6 = 64x6Dx6 + 320x5Dx5 − 16x4(48 + 35x2)Dx4

+ 32x3(91x2 − 4)Dx3 + 4x2(848 − 1788x2 + 259x4)Dx2

− 20x(80 − 380x2 + 383x4)Dx − 225x6 − 2480x2 + 1600 + 17 580x4,

Lscal
7 = 4x7Dx7 − 56(3 + x2)x5Dx5 + 8(41 + 84x2)x4Dx4

+ 4(69 − 810x2 + 49x4)x3Dx3 − 8(251 − 971x2 + 372x4)x2Dx2

+ 4(275 − 2116x2 + 4212x4 − 36x6)xDx − 1100 + 2832x2 − 35 280x4 + 1152x6,

Lscal
8 = 256x8Dx8 − 1024x7Dx7 − 5376(2 + x2)x6Dx6 + 256(334 + 399x2)x5Dx5

− 32(4040 + 26 304x2 − 987x4)x4Dx4 − 64(4216 − 57 384x2 + 12 027x4)x3Dx3

+ 16(76 688 − 537 424x2 + 482 478x4 − 3229x6)x2Dx2

− 16(48 400 − 598 032x2 + 2 328 262x4 − 60 013x6)xDx

+ 774 400 − 3 342 592x2 + 72 498 272x4 − 4 879 248x6 + 11 025x8,

Lscal
9 = 4x9Dx9 + 480x8Dx8 − 24(5x2 − 961)x7Dx7 + 8(71 315 − 1092x2)x6Dx6

+ 12(645 013 − 19 478x2 + 91x4)x5Dx5 + 8(6 985 303 + 4920x4 − 354 291x2)x4Dx4

+ 4(44 460 417 − 3 774 790x2 + 108 828x4 − 820x6)x3Dx3

− 4(443 021 + 5 872 124x2 − 382 676x4 + 9216x6)x2Dx2

+ 4(576x8 − 16 128x6 + 94 812x4 + 9 265 148x2 − 268 975 475)xDx
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+ 1024(36x6 − 2019x4 + 66 804x2 − 1 254 400),

Lscal
10 = 1024x10Dx10 + 168 960x9Dx9 + 8448(1368 − 5x2)x8Dx8

+ 11 264(37 880 − 399x2)x7Dx7 + 4224(2 194 904 − 44 164x2 + 133x4)x6Dx6

+ 128(946 138 408 − 30 108 276x2 + 259 215x4)x5Dx5

+ 32(29 025 917 984 − 1 305 848 840x2 + 21 377 796x4 − 86 405x6)x4Dx4

+ 64(60 403 578 784 − 3 569 603 544x2 + 92 712 956x4 − 1 057 221x6)x3Dx3

+ 4(1 794 785 734 400 − 134 201 812 672x2 + 5 056 843 872x4 − 110 074 968x6

+ 1 057 221x8)x2Dx2 + 972(3 056 659 200 − 330 174 912x2

+ 18 778 592x4 − 694 968x6 + 18 375x8) · xDx − 893 025x10.
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