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Abstract
We present a general method for analytically factorizing the n-fold form factor
integrals f

(n)
N,N (t) for the correlation functions of the Ising model on the diagonal

in terms of the hypergeometric functions 2F1([1/2, N + 1/2]; [N + 1]; t) which
appear in the form factor f

(1)
N,N (t). New quadratic recursion and quartic

identities are obtained for the form factors for n = 2, 3. For n = 2, 3, 4 explicit
results are given for the form factors. These factorizations are proved for all N

for n = 2, 3. These results yield the emergence of palindromic polynomials
canonically associated with elliptic curves. As a consequence, understanding
the form factors amounts to describing and understanding an infinite set of
palindromic polynomials, canonically associated with elliptic curves. From
an analytical viewpoint the relation of these palindromic polynomials with
hypergeometric functions associated with elliptic curves is made very explicitly,
and from a differential algebra viewpoint this corresponds to the emergence of
direct sums of differential operators homomorphic to symmetric powers of a
second order operator associated with elliptic curve.

PACS numbers: 05.50.+q, 05.10.−a, 02.30.Hq, 02.30.Gp, 02.40.Xx
Mathematics Subject Classification: 34M55, 47E05, 81Qxx, 32G34, 34Lxx,
34Mxx, 14Kxx

1. Introduction

The form factor expansion of Ising model correlation functions is essential for the study of
the long distance behavior and the scaling limit of the model. This study was initiated in
1966 when Wu [1] computed the first term in the expansion of the row correlations both for
T > Tc, where the result is a one dimensional integral, and for T < Tc, where the result is a 2
dimensional integral. By at least 1973 it was recognized [2] that the diagonal correlations and
form factors are a specialization of the results for the row correlations. The extension to form
factors for correlations in a general position and from the leading term to all terms was first
made in 1976 [3]. This leads to the general result that for the two dimensional Ising model
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with interaction energy E = −∑
j,k{Evσj,kσj+1,k + Ehσj,kσj,k+1}, with σj,k = ±1, the form

factor expansion for T < Tc is

〈σ0,0σM,N 〉 = (1 − t)1/4 ·
{

1 +
∞∑

n=1

f
(2n)
M,N

}
, (1)

where t = (sinh 2Ev/kBT sinh 2Eh/kBT )−2, and for T > Tc

〈σ0,0σM,N 〉 = (1 − t)1/4 ·
∞∑

n=0

f
(2n+1)
M,N , (2)

where t = (sinh 2Ev/kBT sinh 2Eh/kBT )2, and where f
(n)
M,N are n-fold integrals.

The form factor expansions (1) and (2) are of great importance for the study of the
magnetic susceptibility of the Ising model

χ(T ) = 1

kBT
·
∑
M,N

{〈σ0,0σM,N 〉 − M2}, (3)

whereM = (1−t)1/8 for T < Tc and equals zero for T > Tc is the spontaneous magnetization.
The study of this susceptibility has been the outstanding problem in the field for almost
60 years. The susceptibility is expressed in terms of the form factor expansion as

kBT · χ(T ) = (1 − t)1/4 ·
∑
m

χ(m)(T ), (4)

where

χ(m)(T ) =
∑
M,N

f
(m)
M,N , (5)

with m = 2n, for T < Tc, and m = 2n+ 1, for T > Tc. In the last twelve years a large number
of remarkable properties have been obtained for both χ(n)(T ) [4–13] and the specialization to
the diagonal [14]

χ
(n)
d (t) =

∑
N,N

f
(n)
N,N . (6)

These remarkable properties of χ(n) and χ
(n)
d (t) must originate in properties of the f

(n)
M,N

themselves.
For 40 years after the first computations of Wu, the form factor integrals for n � 2

appeared to be intractable in the sense that they could not be expressed in terms of previously
known special functions. However, in 2007 this intractability was shown to be false when
Boukraa et al [15] discovered by means of differential algebra computations on Maple, using
the form for the form factors proven in [16], many examples for n as large as nine that the
form factors in the isotropic case Eh = Ev can be written as sums of products of the complete
elliptic integrals K(t1/2) and E(t1/2) with polynomial coefficients, where for the diagonal case
(M = N ) we may allow Ev �= Eh.

These computer derived examples lead to the obvious

Conjecture 1. All n-fold form factor integrals for Ising correlations may be expressed in
terms of sums of products of one dimensional integrals with polynomial coefficients.

The first discovery that the n-fold multiple integrals which arise in the study of integrable
models can be decomposed into sums of products of one dimensional integrals (or sums) was
made for the correlation functions of the XXZ spin chain

HXXZ = −
∞∑

j=−∞

{
σx

j σ x
j+1 + σ

y

j σ
y

j+1 + �σz
j σ z

j+1

}
. (7)
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These correlations were expressed as multiple integrals for the massive regime (� < −1)
in 1992 [17] and in the massless regime (−1 � � � 1) in 1996 [18]. In 2001 Boos and
Korepin [19] discovered that for the case � = −1, the special correlation function (called the
emptiness probability)

P(n) =
〈

n∏
j=1

(
1 + σ z

j

2

)〉
, (8)

for n = 4 could be expressed in terms of ζ(3), ζ(5), ζ 2(3) and ln 2, and this decomposition
in terms of sums of products of zeta functions of odd argument was extended to P(5) in [20]
and P(6) in [21]. Similar decompositions of the correlation function

〈
σ z

0 σ z
n

〉
were obtained

for n = 3 in [22], for n = 4 in [23] and for n = 5 in [24]. The extension to the XXZ model
chain (7) with � �= −1 of the decomposition of the integrals for the third neighbor correlation〈
σ i

0σ
i
3

〉
for i = x, z was made in [25].

The discovery in [15] that a similar reduction takes place for Ising correlations thus leads
to the more far reaching

Conjecture 2. All multiple integral representations of correlations and form factors in all
integrable models can be reduced to sums of products of one dimensional integrals.

If correct this conjecture must rest upon a very deep and universal property of integrable
models.

In [15] the form factors were reduced to sums of products of the complete elliptic integrals
K(t1/2) and E(t1/2). However, the results become much more simple and elegant when
expressed in terms of the hypergeometric functions FN and FN+1 where

FN = 2F1([1/2, N + 1/2]; [N + 1]; t) (9)

appears in the form factor for n = 1

f
(1)
N,N (t) = tN/2

π
·
∫ 1

0
xN−1/2(1 − x)−1/2(1 − tx)−1/2 · dx = λN · tN/2 · FN, (10)

where

λN = (1/2)N

N !
, (11)

and (a)0 = 1 and for n � 1 (a)n = a(a + 1) · · · (a + n − 1) is Pochhammer’s symbol. Note
that F0 = 2

π
K(t1/2) = f

(1)
0,0 (t).

The expressions for f
(n)
N,N (t) in terms of FN and FN+1 are obtained from [15], rewritten

by use of the contiguous relations for hypergeometric functions, and we give some of these
expressions in appendix A. In all cases studied the form factors have the form

f
(2n)
N,N (t) =

n−1∑
m=0

K(2n)
m · f

(2m)
N,N (t) +

2n∑
m=0

C(2n)
m (N; t) · F 2n−m

N · Fm
N+1, (12)

f
(2n+1)
N,N (t)

tN/2
=

n−1∑
m=0

K(2n+1)
m · f

(2m+1)
N,N (t)

tN/2
+

2n+1∑
m=0

C(2n+1)
m (N; t) · F 2n+1−m

N · Fm
N+1, (13)

where f
(0)
N,N = 1. The degrees of the polynomials C

(j)
m (N; t) are for N � 1

deg C(2n)
m (N; t) = degC(2n+1)

m (N; t) = n · (2N + 1), (14)

with C(n)
m (N; t) ∼ tm as t ∼ 0.

3
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These polynomials are different from the corresponding polynomials in the K,E basis in
that they have the palindromic property

C(2n)
m (N; t) = tn(2N+1)+m · C(2n)

m (N; 1/t), (15)

C(2n+1)
m (N; t) = tn(2N+1)+m · C(2n+1)

m (N; 1/t). (16)

We conjecture that these results are true generally.
In this paper we begin the analytic proof of conjecture 1 and the derivation and

generalization of the results of [15] for the diagonal correlation M = N by studying
the three lowest order integrals f

(n)
N,N (t) for n = 2, 3, 4. The results are summarized in

section 2.
In section 3 we derive the results for f

(2)
N,N (t). We proceed by first differentiating the

integral f
(2)
N,N (t) with respect to t, which removes the term proportional to f

(0)
N,N (t) from

the general form (12). The resulting two dimensional integral is then seen to factorize into
a sum of products of one dimensional integrals. This factorized result is then compared
with the derivative of (12) to give three coupled first order inhomogeneous equations for
the three polynomials C(2)

m (N; t). These equations are decoupled to give inhomogeneous
equations of degree three which are explicitly solved to find the unique polynomial solutions
C(2)

m (N; t).
In section 4 we extend this method to f

(3)
N,N (t). The first step is to apply to f

(3)
N,N (t) the

second order operator which annihilates f
(1)
N,N (t). However, in this case we have not found

the mechanism which factorizes the resulting three dimensional integral. Instead we use the
property discovered in [15] that the resulting integral satisfies a fourth order homogeneous
equation which is homomorphic to the symmetric cube of a second order operator and thus a
factorized form is obtained. This form is then compared with the form obtained by applying
the second order operator to the form (13), and from this comparison we obtain 4 coupled
inhomogeneous equations for the 4 polynomials C(3)

m (t). These equations are then decoupled
to give inhomogeneous equations of degree 5 for C

(3)
3 (N; t) and of degree 8 for the three

remaining polynomials. We then solve these equations under the assumption that a polynomial
solution exists.

The results for f
(n)
N,N (t) with n = 1, 2, 3 have a great deal of structure which can be

generalized to arbitrary arbitrary n. Of particular interest is the fact that f
(2n)
N,N (t) vanishes as

tn(N+n) and f
(2n+1)
N,N (t)/tN/2 vanishes as tn(N+n+1) at t → 0 while each individual term in the

expansions (12) and (13) vanishes with a power (which may be zero) which is independent
of N. This cancellation for f

(2)
N,N (t) and f

(3)
N,N (t) is demonstrated in section 5 and gives an

interpretation of several features of the results obtained in sections 3 and 4. It also provides
an alternative form (138) for f

(3)
N,N (t) compared to the form (13). In section 6, in a differential

algebra viewpoint, the canonical link between the 20th order ODEs associated with the
C(4)

m (N; t) of f
(4)
N,N (t) and the theory of elliptic curves is made very explicit with the emergence

of direct sums of differential operators homomorphic to symmetric powers of a second order
operator associated with elliptic curves, and in an analytical viewpoint, is made very explicit
with exact expressions (given in appendix G), for the polynomials C(4)

m (N; t), valid for any N.
We conclude in section 7 with a discussion of possible generalizations of our results.

2. Summary of formalism and results

The form factor integrals for the diagonal correlations are [15, 16] for T < Tc

4
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f
(2n)
N,N (t) = tn(N+n)

(n!)2π2n

∫ 1

0

2n∏
k=1

dxkx
N
k

n∏
j=1

(
(1 − tx2j )

(
x−1

2j − 1
)

(1 − tx2j−1)
(
x−1

2j−1 − 1
)
)1/2

×
∏

1�j�n

∏
1�k�n

(
1

1 − tx2k−1x2j

)2 ∏
1�j<k�n

(x2j−1 − x2k−1)
2(x2j − x2k)

2, (17)

and for T > Tc

f
(2n+1)
N,N (t) = t (n+1/2)N+n(n+1)

n!(n + 1)!π2n+1

∫ 1

0

2n+1∏
k=1

dxkx
N
k

n+1∏
j=1

x−1
2j−1

[
(1 − tx2j−1)

(
x−1

2j−1 − 1
)]−1/2

×
n∏

j=1

x2j

[
(1 − tx2j )

(
x−1

2j − 1
)]1/2 ∏

1�j�n+1

∏
1�k�n

(
1

1 − tx2j−1x2k

)2

×
∏

1�j<k�n+1

(x2j−1 − x2k−1)
2

∏
1�j<k�n

(x2j − x2k)
2. (18)

When t = 0 the integrals in (17) and (18) reduce to a special case of the Selberg
integral [26, 27]

f
(2n)
N,N (t) ∼ tn(N+n)

(n!)2π2n

�(N + n + 1/2)�(n + 1/2)

�(N + 1/2)�(1/2)

n−1∏
j=0

[
�(N + j + 1/2)�(j + 1/2)�(j + 2)

�(N + n + j + 1)

]2

(19)

and

f
(2n+1)
N,N (t) ∼ tN(n+1/2)+n(n+1)

n!π2n+1

�(N + 1/2)�(1/2)

�(N + n + 1)

n−1∏
j=0

[
�(N + j + 3/2)�(j + 3/2)�(j + 2)

�(N + n + j + 2)

]2

.

(20)

In particular

f
(2)
N,N (t) = tN+1 · λ2

N+1

(2N + 1)
+ O(tN+2), (21)

f
(3)
N,N (t) = t3N/2+2 · λ3

N+1

2(2N + 1)(N + 2)2
+ O(t3N/2+3). (22)

2.1. General formalism

For the special case f
(2)
N,N (t) we will analytically derive the form (12) without making any

assumptions. However, for the general case we will proceed by assuming the forms (12)
and (13) as an ansatz and with this as a conjecture, we will derive inhomogeneous Fuchsian
equations for the polynomials C(n)

m (N; t)

	(n)
m (N; t) · C(n)

m (N; t) = I (n)
m (N; t), (23)

where 	(n)
m (N; t) is a linear differential operator and I (n)

m (N; t) a polynomial.
In all cases which have been studied, the operator 	(n)

m (N; t), corresponding to the lhs of
(23), has a direct sum decomposition where each term in the direct sum is homomorphic to
a either a symmetric power or a symmetric product for different values of N , of the second
order operator

O2(N; t) = D2
t − 1 + N − Nt

t (1 − t)
· Dt +

4 + 4N − t − 2Nt

4t2(1 − t)
, (24)

5
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where Dt = d/dt . The operator O2(N; t) is equivalent to the operator L2(N; t) which
annihilates f

(1)
N,N (t) [15], as can be seen in the operator isomorphism

O2(N; t) · tN/2+1 = tN/2+1 · L2(N; t). (25)

The solutions of O2(N; t) are expressed in terms of hypergeometric functions by noting
that

t2 · (1 − t) · O2(N) = t · (tDt + a)(tDt + b) − (tDt − a′)(tDt − b′),

with

a = −N − 1/2, b = −1/2, a′ = N + 1, b′ = 1, (26)

which for |t | < 1 3 has the two fundamental solutions [28, page 283]

ta
′ · 2F1([a + a′, b + a′]; [a′ − b′ + 1]; t), tb

′ · 2F1([a + b′, b + b′]; [b′ − a′ + 1]; t). (27)

Using (26) we have the two solutions of O2(N)

u1(N; t) = tN+1 · 2F1([1/2, 1/2 + N ]; [N + 1]; t) = tN+1 · FN, (28)

and:

t · 2F1([1/2, 1/2 − N ]; [1 − N ]; t). (29)

The solution u1(N; t) in (28) is regular at t = 0 and has the expansion

u1(N; t) = tN+1 ·
∞∑

n=0

bn(N) · tn, (30)

with

bn(N) = (1/2)n(1/2 + N)n

(N + 1)nn!
. (31)

Since we will in this paper work with positive integer values of N , it is better to introduce
as the second solution

tN+1 · 2F1([1/2, 1/2 + N ]; [1]; 1 − t). (32)

When N is not an integer the hypergeometric function (32) can be written as the following
linear combination of the two previous solutions (28) and (29)

�(−N)

�(1/2)�(1/2 − N)
· tN+1 · 2F1([1/2, 1/2 + N ]; [N + 1]; t)

+
�(N)

�(1/2)�(1/2 + N)
· t · 2F1([1/2, 1/2 − N ]; [1 − N ]; t). (33)

The hypergeometric function (32) is not analytic at t = 0 but, instead, has a logarithmic
singularity.

From [29, (2) on page 74 and (7) on page 75] we may choose to normalize the analytical
part of the second solution to t as t → 0. Denoting such a solution u2(N; t), it reads

u2(N; t) = t ·
N−1∑
n=0

an(N) · tn + tN+1 · N · λ2
N ·

∞∑
n=0

bn(N)[kn − ln(t)] · tn, (34)

3 For |t | > 1, we write z = 1/t and the identical procedure is found to interchange a with a′ and b with b′. Thus the
two fundamental solutions valid near t = ∞ are ũ1(N; z) = z−1/2 · 2F1([1/2, 1/2 + N ]; [1 + N ]; z) = z−1/2 · FN ,
ũ2(N; z) = z−N−1/2 · 2F1([1/2, 1/2 − N ]; [1 − N ]; z). The identification of the hypergeometric functions of (28)
and (29) with these two solutions is a consequence of the palindromic property of the operator O2(N; t). However,
we note that ũj (N; z) is not the analytic continuation of uj (N; t).

6
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with a0(N) = 1 and for n � 1

an(N) = (1/2)n(1/2 − N)n

(1 − N)nn!
= λN · (1/2)n(N − n)!

(1/2)N−nn!
(35)

and kn = Hn(1) + Hn+N(1) − Hn(1/2) − Hn+N(1/2), where

Hn(z) =
n−1∑
k=0

1

z + k
(36)

are the partial sums of the harmonic series. The series expansion (34) corresponds to the
maximal unipotent monodromy structure of O2(N; t) which amounts to writing the second
solution as:

u2(N; t) = w2(N; t) − N · λ2
N · u1(N; t) · ln(t) (37)

where w2(N; t) = t + · · · is analytical at t = 0. This function w2(N; t) is the solution analytic
at t = 0, different from u1(N; t), of an order-four operator which factorizes as the product
Õ2(N; t) ·O2(N; t), where Õ2(N; t) and O2(N; t) are two order-two homomorphic operators

Õ2(N; t) · I1 = J1 · O2(N; t), (38)

where one of the two order-one intertwinners I1 and J1 is quite simple, namely

I1 = 1

t
· Dt − t − 2

2t2 · (t − 1)
− N

2t2
. (39)

Finally, we note the relation which follows from the Wronskian of O2(N; t),

u1(N) · u2(N + 1) − βN · u2(N) · u1(N + 1) = tN+2, (40)

with

βN = (2N + 1)2

4N(N + 1)
. (41)

2.2. Explicit results for f
(2)
N,N (t)

For f
(2)
N,N (t) the parameter K

(2)
0 and the polynomials C(2)

m (N; t) of the form (12) are explicitly
computed in section 3 as

K
(2)
0 = N/2, (42)

and

C(2)
m (N; t) = A(2)

m · tm ·
2N+1−m∑

n=0

c
(2)

m;n(N) · tn, (43)

with

A(2)
n = (−1)n+1 · N

2
·
(

n

2

)
· βn

N . (44)

Using the notation that

[f ]n ≡ the coefficient of tn in the expansion of f at t = 0 (45)

we have for 0 � n � N − 1

c
(2)

2;n(N) = c
(2)

2;2N−1−n(N) = [t−2u2(N)2]n =
n∑

k=0

ak(N) · an−k(N), (46)

7
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c
(2)

1;n(N) = c
(2)

1;2N−n(N) = [t−2u2(N)u2(N + 1)]n =
n∑

k=0

ak(N) · an−k(N + 1), (47)

and

c
(2)

1;N(N) = λ2
N + c

(2)
2,N−1(N), (48)

and where for 0 � n � N

c
(2)

0;n(N) = c
(2)

0;2N+1−n(N) = [
t−2u2

2(N + 1)
]
n

= c
(2)

2;n(N + 1), (49)

where an(N) is given by (35). We note that the sum (46) for c
(2)
2,N−1 may be written by use of

the second form of an(N) in (35) in the alternative form

c
(2)

2;N−1 = λ2
N · 2N · HN(1/2), (50)

where HN(z) is given by (36).
We also derive the recursion relation for N � 1

f
(2)
N,N (t) = Nf

(2)
1,1 (t) − N

2
t1/2 ·

N−1∑
j=1

f
(1)
j,j (t) · f

(1)
j+1,j+1(t)

j (j + 1)
. (51)

2.3. Explicit results for f
(3)
N,N (t)

For f
(3)
N,N (t) the parameter K

(3)
0 and the polynomials C(3)

m (N; t) of the form (13) are explicitly
computed in section 4 as

K
(3)
0 = 3N + 1

6
, (52)

and

C(3)
m (N; t) = A(3)

m · tm ·
2N+1−m∑

n=0

c(3)
m,n(N) · tn +

N − 1

N
λN · C(2)

m (N, t), (53)

where we make the definition C
(2)
3 (N, t) = 0 and

A(3)
n = (−1)n+1 · 2

3
·
(

n

3

)
· λN · βn

N . (54)

The coefficients c
(3)

m;n(N)’s are given by a simple quartic expression of the an’s and bn’s. For
0 � n � N − 1 they read

c
(3)

3;n(N) = c
(3)

3;2N−2−n(N) = [
t−N−4u3

2(N)u1(N)
]
n

=
n∑

m=0

m∑
l=0

l∑
k=0

ak(N) · al−k(N) · am−l (N) · bn−m(N), (55)

and

c
(3)

2;n(N) = c
(3)

2;2N−n−1(N) = [
t−N−4u2

2(N)u2(N + 1)u1(N)
]
n

=
n∑

m=0

m∑
l=0

l∑
k=0

ak(N) · al−k(N) · am−l (N + 1) · bn−m(N), (56)

for 0 � n � N

c
(3)

0;n(N) = c
(3)

0;2N−n+1(N) = [
t−N−4u3

2(N + 1)u1(N)
]
n

=
n∑

m=0

m∑
l=0

l∑
k=0

ak(N + 1) · al−k(N + 1) · am−l (N + 1) · bn−m(N), (57)

8
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and for 0 � n � N − 1

c
(3)

1;n(N) = c
(3)

1;2N−n(N) = [
t−N−4u2(N)u2

2(N + 1)u1(N)
]
n

=
n∑

m=0

m∑
l=0

l∑
k=0

ak(N) · al−k(N + 1) · ak−m(N + 1) · bn−m(N), (58)

with the middle term of C
(3)
1 (N; t) of order N + 1

c
(3)

1;N = βN · λ2
N

N
+ βN · λN · [

(N − 1) · c
(3)

2;N−1 + 4c
(2)

2;N−1

]
−2

3
· βN · λN

N2
· [

2N2 · c
(3)

3;N−2 + (N2 − 1/4) · c
(3)

3;N−1

]
, (59)

where an(N) and bn(N) are given by (35) and (31).

3. The derivation of the results for f (2)
N,N (t)

We begin our derivation of the results for f
(2)
N,N of section 2.2 by integrating (17) (with 2n = 2)

by parts using

u = yN−1/2 · (1 − y)1/2 · (1 − ty)1/2, (60)

du = yN−3/2 [N · (1 − y) · (1 − ty) − 1/2(1 − ty2)]

(1 − y)1/2 · (1 − ty)1/2
· dy, (61)

dv = dy

(1 − txy)2
, v = y

1 − txy
, (62)

to find

f
(2)
N,N (t) =

∫ 1

0
dx

∫ 1

0
dy

tN+1

2π2

xN+1/2yN−1/2(1 − ty2)

(1 − x)1/2(1 − tx)1/2(1 − y)1/2(1 − ty)1/2(1 − txy)

−N

∫ 1

0
dx

∫ 1

0
dy

tN+1

π2

xN+1/2yN−1/2(1 − y)1/2(1 − ty)1/2

(1 − x)1/2(1 − tx)1/2(1 − txy)
. (63)

The first term in (63) is separated into two parts as∫ 1

0
dx

∫ 1

0
dy

t · xNyN

2π2

x1/2

y1/2

1

(1 − x)1/2(1 − tx)1/2(1 − y)1/2(1 − ty)1/2(1 − txy)

−
∫ 1

0
dx

∫ 1

0
dy

t · xNyN

2π2

tx1/2y3/2

(1 − x)1/2(1 − tx)1/2(1 − y)1/2(1 − ty)1/2(1 − txy)
,

(64)

and in this second term we interchange x ↔ y. Then, recombining these two terms, we see
that the factor 1 − txy cancels between the numerator and denominator in (64). Thus the first
term in (63) factorizes and we find

f
(2)
N,N (t) =

∫ 1

0
dx

∫ 1

0
dy

tN+1

2π2

xN+1/2yN−1/2

(1 − x)1/2(1 − tx)1/2(1 − y)1/2(1 − ty)1/2

− N

∫ 1

0
dx

∫ 1

0
dy

tN+1

π2

xN+1/2yN−1/2(1 − y)1/2(1 − ty)1/2

(1 − x)1/2(1 − tx)1/2(1 − txy)

= t1/2

2
· f

(1)
N,N · f

(1)
N+1,N+1 − N

∫ 1

0
dx

∫ 1

0
dy

tN+1

π2

xN+1/2yN−1/2(1 − y)1/2(1 − ty)1/2

(1 − x)1/2(1 − tx)1/2(1 − txy)
.

(65)

9
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From (17) we find for N � 1 that the integral in the second term of (65) is f
(2)
N,N (t)−f

(2)
N+1,N+1(t)

and thus we have

f
(2)
N,N (t) = t1/2

2
· f

(1)
N,N (t) · f

(1)
N+1,N+1(t) − N · [

f
(2)
N,N (t) − f

(2)
N+1,N+1(t)

]
. (66)

From (66) we obtain the recursion relation

f
(2)
N+1,N+1(t) = N + 1

N
· f

(2)
N,N (t) − t1/2

2N
· f

(1)
N.N (t) · f

(1)
N+1,N+1(t), (67)

and thus for N � 1

f
(2)
N,N (t) = Nf

(2)
1,1 (t) − N

2
t1/2 ·

N−1∑
j=1

f
(1)
j,j (t) · f

(1)
j+1,j+1(t)

j (j + 1)
. (68)

To proceed further we return to (65) which we write in terms of FN as

f
(2)
N,N (t) = λNλN+1

2
· tN+1 · FN · FN+1

−N

∫ 1

0
dx

∫ 1

0
dy

tN+1

π2

xN+1/2yN−1/2(1 − y)1/2(1 − ty)1/2

(1 − x)1/2(1 − tx)1/2(1 − txy)
. (69)

The integral in (69) does not have a manifest factorization. However, if we compute
df

(2)
N,N (t)/dt in the contour integral form of (17), and note that

d

dt

[
(y − t1/2)(1 − t1/2y)

(x − t1/2)(1 − t1/2x)

]1/2

= 1

t1/2

[
(y − t1/2)(1 − t1/2y)

(x − t1/2)(1 − t1/2x)

]1/2

× (xy − 1)(x − y)(t − 1)

(y − t1/2)(1 − t1/2y)(x − t1/2)(1 − t1/2x)
, (70)

the resulting integral does factorize and, introducing GN, some well-suited linear combination
of FN and FN+1,

GN = 2F1([3/2, N + 3/2]; [N + 1]; t)

= 1 + t

(1 − t)2
· FN − t

(1 − t)2
· 2N + 1

N + 1
· FN+1, (71)

we find

df
(2)
N,N (t)

dt
= (1 − t) · tN · (2N + 1)λ2

N

16(N + 1)

· [(2N + 1)2 · FN+1 · GN − (2N − 1)(2N + 3) · FN · GN+1]. (72)

It remains to integrate (72). However, in general, integrals of products of two
hypergeometric functions with respect to the argument will not have the form of the product of
two hypergeometric functions. We will thus proceed in the opposite direction by differentiating
(12) for 2n = 2 with respect to t and equating the result to (72) to obtain differential equations
for the C(2)

m (N; t) which we will then solve to obtain the final results (42)–(44).
From a straightforward use of the contiguous relations of hypergeometric functions [29],

we introduce the following well-suited linear combination of FN and FN+1

F̄N = 2F1([3/2, N + 3/2]; [N + 2]; t) = 4(N + 1)

2N + 1
· dFN

dt

= 1

1 − t
· (2 · (N + 1) · FN − (2N + 1) · FN+1). (73)

10



J. Phys. A: Math. Theor. 44 (2011) 305004 M Assis et al

The derivative of (12) with 2n = 2 may be written in the quadratic form4

B1 · F 2
N + B2 · FN · F̄N + B3 · F̄ 2

N, (74)

with

B1 = dC
(2)
0

dt
− (N + 1)

2(N + 1/2)t
· C

(2)
1 +

(N + 1)

(N + 1/2)
· dC

(2)
1

dt

− (N + 1)2

(N + 1/2)2t
· C

(2)
2 +

(N + 1)2

(N + 1/2)2
· dC

(2)
2

dt
, (75)

B2 = (N + 1/2)

(N + 1)
· C

(2)
0 +

[
1 +

1

2(N + 1/2)
+

1 − 2t + N(1 − t)

2(N + 1/2)t

]
· C

(2)
1 − (1 − t)

2(N + 1/2)
· dC

(2)
1

dt

+
(N + 1)(3 + 2N − 2t)

2(N + 1/2)2t
· C

(2)
2 − (N + 1)(1 − t)

(N + 1/2)2
· dC

(2)
2

dt
, (76)

B3 = − (1 − t)

4(N + 1)
· C

(2)
2 − (2 + 2N − t)(1 − t)

4(N + 1/2)2t
· C

(2)
2 +

(1 − t)2

4(N + 1/2)2
· dC

(2)
2

dt
. (77)

The derivative of f
(2)
N,N (t) in (72) by use of contiguous relations [29] is expressed in terms of

FN and F̄N as

df
(2)
N,N (t)

dt
= B4 · F 2

N + B5 · FN · F̄N + B6 · F̄ 2
N, (78)

where

B4 = 2N + 1

4
· λ2

NtN ,

B5 = [t − N(1 − t)](2N + 1)

4(N + 1)
· λ2

NtN ,

B6 = − NβNλ2
N

4(N + 1)
· (1 − t) · tN+1.

(79)

3.1. Linear differential equations for C(2)
m (N; t)

To obtain the C(2)
m (N; t) we equate (74) with (78) and find the following first order system of

equations for C(2)
m (N; t)

(2N + 1)

4
· λ2

N · tN = dC
(2)
0

dt
− (N + 1)

2(N + 1/2)t
· C

(2)
1 +

(N + 1)

(N + 1/2)
· dC

(2)
1

dt

− (N + 1)2

(N + 1/2)2t
· C

(2)
2 +

(N + 1)2

(N + 1/2)2
· dC

(2)
2

dt
, (80)

(2N + 1) · [t − N(1 − t)]

4(N + 1)
· λ2

N · tN = (N + 1/2)

(N + 1)
· C

(2)
0

+

[
1 +

1

2(N + 1/2)
+

1 − 2t + N(1 − t)

2(N + 1/2)t

]
· C

(2)
1 − (1 − t)

2(N + 1/2)

dC
(2)
2

dt

+
(N + 1)(3 + 2N − 2t)

2(N + 1/2)2t
· C

(2)
2 − (N + 1)(1 − t)

(N + 1/2)2
· dC

(2)
2

dt
, (81)

4 For convenience the dependence of the C
(2)
m on N and t is suppressed here and below (see (78)).

11
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− (2N + 1)2

16(N + 1)2
· λ2

N · (1 − t) · tN+1 = − (1 − t)

4(N + 1)
· C

(2)
1

− (2 + 2N − t)(1 − t)

4(N + 1/2)2t
· C

(2)
2 +

(1 − t)2

4(N + 1/2)2
· dC

(2)
2

dt
. (82)

From this first order coupled system we obtain third order uncoupled equations for the
C(2)

m (N; t)

2(1 − t)2 · t2 · d3C
(2)
0

dt3
− 6(N − (N − 1)t)(1 − t)t · d2C

(2)
0

dt2

+ 2[N + 2N2 + (1 + 4N − 4N2)t − (5N − 2N2)t2] · dC
(2)
0

dt

+ (2N + 1)(2Nt − 2N − 1) · C
(2)
0 = N(N + 1)(2N + 1)2

2
· λ2

N · (1 − t) · tN ,

(83)

2(1 − t)2(1 + t) · t3 · d3C
(2)
1

dt3
− 2(1 − t)[1 + 3N + 4t + (1 − 3N)t2] · t2 · d2C

(2)
1

dt2
+ 2[2 + 4N

+ 2N2 + (3 + 4N − 2N2) · t − (3 + 8N + 2N2) · t2 + 2N2 · t3] · t · dC
(2)
1

dt

− [4 + 8N + 4N2 + (5 + 6N) · t − (5 + 10N + 4N2) · t2] · C
(2)
1

= (2N + 1)2 · [−2N2(N + 1) · (t + 1)2 + (4N + 1) · t]

(N + 1)
· λ2

N · (1 − t) · tN+1,

(84)

and

2(1 − t)2 · t3 · d3C
(2)
2

dt3
− 6(1 + N − Nt) · (1 − t) · t2 · d2C

(2)
2

dt2

+ 2[7 + 9N + 2N2 − (7 + 12N + 4N2) · t + (1 + 3N + 2N2) · t2] · t · dC
(2)
2

dt

− [16 + 24N + 8N2 − (15 + 28N + 12N2) · t + (2 + 6N + 4N2) · t2] · C
(2)
2

= N2(2N + 1)4 · (1 − t)

8(N + 1)2
· λ2

N · tN+2. (85)

From (83)–(85) it follows that C(2)
m (N; t) and t2N+m+1 · C(2)

m (N; 1/t) satisfy the same
equation and thus, if C(2)

m (N; t) are polynomials they will satisfy the palindromic property
(15). From (83) and (85) it follows that the polynomials C

(2)
0 (N; t) and C

(2)
2 (N; t) satisfy

C
(2)
0 (N; t) = N

(N + 1) · β2
N+1 · t2

· C
(2)
2 (N + 1; t). (86)

We therefore may restrict our considerations to C
(2)
1 (N; t) and C

(2)
2 (N; t).

We will obtain the polynomial solutions for the differential equations (83)–(85) by
demonstrating that the homogeneous parts of the equations are homomorphic to symmetric
products or symmetric powers of the second order operator O2(N).

12
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3.2. Polynomial solution for C
(2)
2 (N; t)

Denote 	
(2)
2 (N, t) the order-three linear differential operator acting on C

(2)
2 (N, t) on the left

hand side of (85). Then it is easy to discover that the operator 	
(2)
2 (N, t) is exactly the

symmetric square of the second-order operator O2(N; t)

	
(2)
2 (N, t) = Sym2(O2(N; t)), (87)

which has the three linearly independent solutions

u1(N; t)2, u1(N; t) · u2(N; t), u2
2(N; t) (88)

where the functions uj (N; t) for j = 1, 2 are defined by (30)–(36). The indicial exponents of
(85) at t = 0 are

2N + 2, N + 2, 2, (89)

which are the exponents respectively of the three solutions (88). Therefore, because the
inhomogeneous term in (85) starts at tN+1 the coefficients c

(2)
2,n in (43) for 0 � n � N − 1 will

be proportional to the first N coefficients in the expansion of u2
2(N; t) about t = 0.

Equation (85) is invariant under the substitution

C
(2)
2 (N; t) −→ t2N+3 · C

(2)
2 (N; 1/t), (90)

which maps one solution into another. Therefore if it is known that the solution C
(2)
2 (N; t) is

a polynomial the palindromic property

c
(2)

2;n = c
(2)

2;2N−1−n (91)

must hold and thus C
(2)
2 (N; t) is given by (46) where the normalizing constant A

(2)
2 remains

to be determined.
However, the invariance (90) is, by itself, not sufficient to guarantee the existence of

a polynomial solution with the palindromic property (15). To demonstrate that there is a
polynomial solution we examine the recursion relation which follows from (85)

A
(2)
2 · {

2n(2N − n)(N − n) · c
(2)

2;n(N)

+ (4Nn − 2N − 2n2 + 2n − 1)(2n − 1 − 2N) · c
(2)

2;n−1(N)

+ 2(n − 1)(2N − n + 1)(N − n + 1) · c
(2)

2;n−2(N)
}

= (δn,N − δn,N+1) · N2(2N + 1)4

8(N + 1)2
· λ2

N. (92)

where c
(2)

2;n(N) = 0 for n � −1 and we may set c
(2)

2;0 = 1 by convention. By sending

n → 2N − n + 1 in (92) we see that c
(2)

2;n(N) and c
(2)

2;2N−n−1(N) do satisfy the same equation
as required by (91).

To prove that the solution C
(2)
2 (N; t) is indeed a polynomial we examine the recursion

relation (92) for n = N . If there were no inhomogeneous term then, because of the factor
N−n in front of c

(2)

2;n, the recursion relation (92) for n = N would give a constraint on c
(2)

2;N−1

and c
(2)

2;N−2. This constraint does in fact not hold, which is the reason that the solution u2
2(N; t)

is not analytic at t = 0 but instead has a term tN+2 ln t . However, when there is a nonzero
inhomogeneous term at order tN+2 the recursion equation (92) is satisfied with a nonzero
A

(2)
2 . The remaining coefficients c

(2)
2,n for N � 2N − 1 are determined by the palindromy

constraint (91).
For C

(2)
2 (N; t) to be a polynomial we must have c

(2)

2;n(N) = 0 for n � 2N . From the

recursion relation (92) we see that because of the coefficient 2N − n in front of c
(2)

2;n(N)

13



J. Phys. A: Math. Theor. 44 (2011) 305004 M Assis et al

the coefficient c
(2)

2;2N(N) may be freely chosen. The choice of c
(2)

2;2N(N) �= 0 corresponds to

the solution of 	
(2)
2 (N; t) which has the indicial exponent N + 2 and clearly does not give a

polynomial solution. However by setting n = 2N + 1 in (92) we obtain

2(N + 1)(2N + 1) · c
(2)

2;2N+1(N) − (2N + 1)2 · c
(2)

2;2N(N) = 0. (93)

and if we choose c
(2)

2;2N(N) = 0 we obtain c
(2)

2;2N+1(N) = 0 also. Therefore because (92) is

a three term relation, it follows that c
(2)

2;n(N) = 0 for n � 2N as required for a polynomial
solution.

It remains to explicitly evaluate the normalization constant A
(2)
2 which satisfies (92) with

n = N . A more efficient derivation is obtained if we return to the original inhomogeneous
equation (85). Then we note that if we include the term with n = 0 in the second terms on
the right-hand side of (34) in the computation of the term of order tN+2 in the left hand side
of (85) we must get zero because u2

2 is a solution of the homogeneous part of (85). Therefore
when we use the extra term in u2

2 of

−2tN+2 · N · λ2
N · ln t, (94)

in the lhs of (85), and keep the terms which do not involve ln t , we find

2(N2 − 1) · c
(2)

2;N−2(N) − (2N2 − 1) · c
(2)

2;N−1(N) = −4N3 · λ2
N. (95)

Thus, using (95) we evaluate (92) with n = N as

−4A
(2)
2 N3λ2

N = N2(2N + 1)4

8(N + 1)2
· λ2

N, (96)

and thus

A
(2)
2 = −N

2
· β2

N . (97)

3.3. Polynomial solution for C
(2)
1 (N; t)

The computation of C
(2)
1 (N; t) has features which are characteristic of C(n)

m (N; t) which are
not seen in C

(2)
2 (N; t). Similarly to what has been done in the previous subsection we introduce

	
(2)
1 (N; t), the order-three linear differential operator acting on C

(2)
1 (N; t) in the lhs of (84).

The indicial exponents at t = 0 of the operator 	
(2)
1 (N; t) are

1, N + 1, 2N + 2 (98)

This order-three operator 	
(2)
1 (N; t) is found to be related to the symmetric product of O2(N)

and O2(N + 1) by the direct sum decomposition

Sym(O2(N),O2(N + 1)) · t = 	
(2)
1 ⊕

(
Dt − N + 1

t

)
. (99)

The three linearly independent solutions of 	
(2)
1 (N; t) are to be found in the set of four

functions

t−1 · u1(N; t) · u1(N + 1; t), t−1 · u2(N, t) · u1(N + 1; t),

t−1 · u1(N; t) · u2(N + 1; t), t−1 · u2(N; t) · u2(N + 1; t),
(100)

where from the definitions of u1(N; t) in (30) and u2(N; t) in (34) the behaviors of these four
solutions as t → 0 are t2N+2, tN+2, tN+1, t respectively.

14
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Following the argument given above for C
(2)
2 (N; t) we conclude, because the

inhomogeneous term in (83) is of order tN+1, that the terms up through order tN must be
proportional to the solution of the homogeneous equation

t−1 · u2(N; t) · u2(N + 1; t), (101)

which begins at order t. This observation determines the form (43) and the coefficients (47)
c
(2)

1;n(N) for 0 � n � N − 1. The normalizing constant A
(2)
1 and the remaining coefficient

c
(2)

1;N(N) (48) are then obtained from the inhomogeneous equation (83). Finally, to prove

that C
(2)
1 (N; t) is actually a palindromic polynomial the recursion relation for the coefficients

c
(2)

1;n(N) must be used. Details of these computations are given in appendix B.

3.4. The constant K
(2)
0

Finally, we need to evaluate the constant of integration K
(2)
0 in (12). This is easily done by

noting, from the original integral expression (17), that f
(2)
N,N (0) = 0 for all N. From (43)– (44)

we see that

C
(2)
0 (N; 0) = −N

2
, C

(2)
1 (N; 0) = C

(2)
2 (N; 0) = 0, (102)

and using this in (12) we obtain K
(2)
0 = N/2 as desired.

4. The derivation of the results for f (3)
N,N (t)

The form factor f
(3)
N,N (t) is defined by the integral (18) with 2n+ 1 = 3, and if we are to follow

the method of evaluation developed for f
(2)
N,N (t), we need to demonstrate analytically that there

is an operator which, when acting on the integral, will split it into three factors. Unfortunately
we have not analytically obtained such a result.

However, we are able to proceed by using the methods of differential algebra and from [15]
it is known computationally for integer N that f (3)

N,N is annihilated by the operator L4(N)·L2(N)

where

L2(N) = D2
t +

2t − 1

(t − 1)t
· Dt − 1

4t
+

1

4(t − 1)
− N2

4t2
, (103)

and L2(N) annihilates f
(1)
N,N (t), and where

L4(N) = D4
t + 10

(2t − 1)

(t − 1)t
· D3

t +
(241t2 − 241t + 46)

2(t − 1)2t2
· D2

t

+
(2t − 1)(122t2 − 122t + 9)

(t − 1)3t3
· Dt +

81

16

(5t − 1)(5t − 4)

t3(t − 1)3
− 5

2

N2

t2
· D2

t

+
(23 − 32t)N2

2(t − 1)t3
· Dt +

9

8

(8 − 17t)N2

(t − 1)t4
+

9

16

N4

t4
. (104)

Furthermore the operator L4(N) is homomorphic to the symmetric cube of L2(N) by the
following relation,

L4(N) · Q(N) = R(N) · Sym3(L2(N)), (105)

where

Q(N) = (t − 1) · t · D3
t +

7

2
(2t − 1) · D2

t +
(41t2 − 41t + 6)

4(t − 1)t
· Dt

+
9

8

(2t − 1)

(t − 1)t
− 9

4

(t − 1)N2

t
· Dt − 9

8

(2t − 1)

t2
N2, (106)
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and

R(N) = (t − 1) · t · D3
t +

23

2
(2t − 1) · D2

t +
21

4

6 − 29t + 29t2

(t − 1)t
· Dt

+
9

8

(2t − 1)(125t2 − 125t + 16)

(t − 1)2t2
− 9N2

4
·
(

(t − 1)

t
· Dt +

(10t − 9)

2t2

)
. (107)

We therefore conclude, since f
(3)
N,N (t) is regular at t = 0 and the solution of L2(N) which

is regular at t = 0 is FN, that

Q(N) · B0 · t3N/2 · F 3
N = L2(N) · f

(3)
N,N , (108)

where B0 is a normalizing constant which is determined from the behavior at t = 0. From the
integral (18) we find

f
(3)
N,N = N + 2

4(N + 1/2)

(
(1/2)N+1

(N + 2)!3

)3

· t3N/2+2 + O(t3N/2+3), (109)

and from the expansion of FN we have

Q(N) · t3N/2 · F 3
N = 3(2N + 1)3

8(N + 1)2(N + 2)
· t3N/2 + O(t3N/2+1), (110)

and thus

B0 = 1
3 · λ3

N. (111)

Operating Q(N) on t3N/2F 3
N , one can write the result in the basis FN and F̄N . Similarly,

one can operate on the form f
(3)
N,N in (13) with L2(N) and write the result in the same basis FN

and F̄N . Then, matching powers of the hypergeometric functions on both sides of the relation
(108) will yield four coupled inhomogeneous ODEs to be solved. The four coupled ODEs are
given in appendix C.

For C(3)
m (N; t) with m = 0, 1, 2, the reduction of the four coupled second order equations

leads to inhomogeneous 8th order uncoupled ODEs for each C(3)
m (N; t) separately, of the form

8∑
j=0

Pm,j (t) · t j · dj

dt j
C(3)

m (N; t) = Im(t), (112)

where

I0 = tN+1 ·
14∑

j=0

I0(j) · t j , I1 = tN+1 ·
17∑

j=0

I1(j) · t j ,

I2 = tN+2 ·
14∑

j=0

I2(j) · t j ,

(113)

where the Im(t) are antipalinromic and Pm,n(t) are polynomials. In particular

Pm,8(t) = (1 − t)9 · Pm(t), (114)

where P0(t) and P2(t) are order six and P1(t) is order eight.
However, for C

(3)
3 (N; t) a step-by-step elimination process in the coupled system

terminates in a fifth order equation instead. We derive and present this 5th order equation in
appendix D, but the eighth order equations given by Maple are too long to present.
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4.1. Polynomial solution for C
(3)
3 (N; t)

The homogeneous operator on the lhs of the ODE (D.1) for C
(3)
3 (N, t) is found on Maple to

be isomorphic to Sym4(O2(N)) · t (N+1), the symmetric fourth power of O2(N) multiplied by
t (N+1). Therefore all five solutions of the homogeneous equation are given as t−(N+1) times
products of the solutions u1(N; t) and u2(N; t). The fifth order ODE has at t = 0 the indicial
exponents

−N + 3, 3, N + 3, 2N + 3, 3N + 3. (115)

Therefore because the polynomial solution must by definition be regular at t = 0, the first
N + 1 terms (from t3 through tN+3) in the solution

t−(N+1) · u3
2(N) · u1(N), (116)

which vanishes as t3, will solve the inhomogeneous equation (D.1), so that

C
(3)
3 (N; t) = A

(3)
3 · t3 ·

2N−2∑
n=0

c
(3)

3;n · tn, (117)

where for 0 � n � N − 1

c
(3)

3;n =
n∑

m=0

m∑
l=0

l∑
k=0

ak(N) · al−k(N) · am−l (N) · bn−m(N). (118)

The lowest order inhomogeneous term is tN+3 which is the next indicial exponent in (115) and
therefore the normalizing constant A

(3)
3 is found from the first logarithmic term in the solution

of the homogeneous equation by exactly the same argument used for C
(2)
2 (N; t). Thus we find

A
(3)
3 = 2

3
· β3

N · λN. (119)

The remaining demonstration that C
(3)
3 (N; t) is a palindromic polynomial follows from

the recursion relation for the coefficients, as was done for C
(2)
2 (N; t), with the exception that

because the inhomogeneous term in (D.1) is proportional to tN+1(t2 −1) instead of tN+1(t −1),
there is an identity which must be verified. Details are given in appendix D.

4.2. Polynomial solutions for C
(3)
2 (N; t) and C

(3)
0 (N; t).

A new feature appears in the computation of C
(3)
2 (N; t) and C

(3)
0 (N; t).

The indicial exponents at t = 0 of the 8-th order operator 	
(3)
2 (N; t)

−N + 2, 2, 3, N + 2, N + 3, 2N + 2, 2N + 3, 3N + 3, (120)

and for 	
(3)
0 (N; t) are

−N, 0, 1, N + 1, N + 2, 2N + 2, 2N + 3, 3N + 3. (121)

From these exponents it might be expected that the solution of 	
(3)
2 (N; t)

(
	

(3)
0 (N; t)

)
which is of order t2(t0) could have a logarithmic term t3 ln t (t ln t) which would preclude
the existence of a polynomial solution of the corresponding inhomogeneous equation.
However, this does, in fact, not happen because there is a decomposition of the 8th order
operators into a direct sum of the third order operators 	

(2)
2 (N; t)

(
	

(2)
0 (N; t)

)
with exponents

2, N + 2, 2N + 2(0, N + 1, 2N + 2) and new fifth order operators M(3)
m (N; t)

	(3)
m (N; t) = M(3)

m (N; t) ⊕ 	(2)
m (N; t) (122)
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with exponents −N+2, 2, N+2, 2N+2, 3N+2 for M
(3)
2 (N; t) and −N, 0, N+1, 2N+2, 3N+3)

for M
(3)
0 (N; t). Furthermore M

(3)
2 (N; t) is homomorphic to the symmetric fourth power of

O2(N) and M
(3)
0 (N; t) is homomorphic to the symmetric fourth power of O2(N + 1) (see

appendix E for details). The inhomogeneous equation is solved in terms of a linear combination
of the solutions of the third order and fifth order homogeneous equations.

However, a simpler form of the answer results if we notice the isomorphisms

	
(3)
2 (N; t) = Sym(O2(N),O2(N),O2(N),O2(N + 1)) · tN+2, (123)

	
(3)
0 (N; t)= Sym(O2(N),O2(N + 1),O2(N + 1),O2(N + 1)) · tN+4. (124)

The desired solutions for 	
(3)
2 (N; t) are constructed from the two solutions which have

the exponents 2 and 3,

t−N−2 · u2
2(N) · u1(N) · u2(N + 1), t−N−2 · u3

2(N) · u1(N + 1), (125)

which, by use of the Wronskian condition (40), may be rewritten as a linear combination of
two solutions each with the exponent of 2 as

A
(3)
2 · t−N−2 · u2

2(N) · u1(N) · u2(N + 1) + B
(3)
2 · u2

2(N), (126)

and similarly for C
(3)
0 (N; t), we choose as the solution of the homogeneous equation the two

solutions with exponent 0

A
(3)
0 · t−N−4 · u3

2(N + 1) · u1(N) + B
(3)
0 t−2 · u2

2(N + 1). (127)

This procedure determines the constants c
(3)

2;n for 0 � n � N − 1 and and c
(3)

0;n for 0 � n � N ,

with palindromy determining the remaining c
(3)

2;n for N � n � 2N − 1 (56) and and c
(3)

0;n for
N + 1 � n � 2N + 1 (57).

The constants A
(3)
2 and B

(3)
2 in (53) are found by using (53) with (56) in the inhomogeneous

equation for C
(3)
2 (N; t) and matching the first two terms in the inhomogeneous terms of orders

tN+2 and tN+3 (which are the same orders as the corresponding indicial exponents (120)). This
generalizes the determination of A(2)

m for C(2)
m above. Similarly the constants A

(3)
0 and B

(3)
0

are found using (53) with (57) in the inhomogeneous equation for C
(3)
0 and matching to the

inhomogeneous terms tN+1 and tN+2. Thus we obtain the results (53)–(54) summarized in
section 2.3.

4.3. Polynomial solution for C
(3)
1 (N; t)

The computation of C
(3)
1 (N; t) has further new features.

The 8th order homogeneous operator 	
(3)
1 (N; t) of the inhomogeneous equation for

C
(3)
1 (N; t) has the eight indicial exponents at t = 0

−N + 1, 1, 2, N + 1, N + 2, 2N + 2, 2N + 3, 3N + 3, (128)

and, as in the case of 	
(3)
0 (N; t) and 	

(3)
2 (N; t) has a decomposition into a direct sum of

	
(2)
1 (N; t) and a fifth order operator. However, simpler results are obtained by observing that

	
(3)
1 (N; t) is homomorphic to the symmetric product

Sym(O2(N),O2(N),O2(N + 1),O2(N + 1)) · tN+3 = 	
(3)
1 (N; t) ⊕

(
Dt − (N + 1)

t

)
, (129)

which satisfies a 9-th order ODE with indicial exponents at t = 0

−N + 1, 1, 2, N + 1, N + 2, N + 3, 2N + 2, 2N + 3, 3N + 3. (130)
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The solutions with exponents of 1 and 2 are respectively

t−N−3 · u2(N) · u1(N) · u2
2(N + 1), t−N−3 · u2

2(N) · u2(N + 1) · u1(N + 1). (131)

Again, recalling the Wronskian relation (40), we may construct the polynomial C
(3)
1 (N; t),

similar to the construction of C
(3)
2 (N; t), from the linear combination

A
(3)
1 · t−N−3 · u2(N) · u1(N) · u2

2(N + 1) + B
(3)
1 · t−1 · u2(N) · u2(N + 1), (132)

which determines the coefficients c
(3)

1;n for 0 � n � N − 1, with palindromy determining the

remaining c
(3)

1;n for N + 1 � n � 2N (58). The coefficients A
(3)
1 and B

(3)
1 (132) are determined

in a manner similar to the determination of A
(3)
2 and B

(3)
2 , by matching to the terms of order

tN+1 and tN+2.
Finally the term c

(3)

1;N is computed by using the previously determined results for C
(3)
2 (N; t)

and C
(3)
3 (N; t) in the coupled differential equation (C.3), giving the result (59).

4.4. Determination of K
(3)
0

It remains to determine the constant K
(3)
0 (52), which is easily done by setting t = 0 in (13) to

obtain

0 = K
(3)
0 · λN + A

(3)
0 +

N − 1

N
· λN · A

(2)
0 . (133)

Using (44) and (54).

5. The Wronskian cancellation for f (2)
N,N (t) and f (3)

N,N (t)

The polynomials C(n)
m (N; t) are of order tm as t → 0. However, from (21) and (22) we see

that f
(2)
N,N (t) vanishes as tN+1 and f

(3)
N,N (t) vanishes as tN+2. Therefore for t → 0, a great deal

of cancellation must occur in (12) and (13). This cancellation is an important feature of the
structure of the results of section 2.2 and 2.3.

To prove the cancellations we note that the nth power of the Wronskian relation (40) is

t−n(N+2) ·
n∑

j=0

(−1)j ·
(

n

j

)
· β

j

N · [u2(N + 1)u1(N)]n−j · [u2(N)u1(N + 1)]j = 1, (134)

or alternatively,
n∑

j=0

(−1)j ·
(

n

j

)
· β

j

N ·
[
u2(N + 1)

t

]n−j

· u2(N)j · F
n−j

N F
j

N+1 = 1. (135)

Thus, by defining
N= to mean equality up though and including terms of order tN we see

immediately from the form (12) with (42) for K
(2)
0 and (46), (47) and (49) for the c(2)

m,n with

0 � n � N that the terms though order tN in f
(2)
N.N (t) are

f
(2)
N,N

N= N

2
·
⎧⎨
⎩1 −

2∑
j=0

(−1)j
(

2
j

)
· β

j

N ·
[
u2(N + 1)

t

]2−j

· u2(N)jF
2−j

N F
j

N+1

⎫⎬
⎭ , (136)

which vanishes by use of (135). This derivation has made no use of c
(2)

1;N . This term contributes
only to order tN+1 and may be determined from the normalization amplitude (21). This provides
an alternative to the derivation of (48) of appendix B.
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To prove the cancellation for f
(3)
N,N (t) we note that, because of the term C(2)

m (N; t) in

C(3)
m (N; t) for m = 0, 1, 2 in (53), we may use the expression (12) and (42)–(49) for f

(2)
N,N (t)

in the form
2∑

m=0

C(2)
m (N; t) · F 2−m

N Fm
N+1 = f

(2)
N,N (t) − N

2
. (137)

Thus from (13), (10) and (137) we obtain an alternative form for f
(3)
N,N (t) of

f
(3)
N,N (t) =

{
2

3
+

N − 1

N
f

(2)
N,N (t)

}
· f

(1)
N,N (t) + tN/2 ·

3∑
m=0

C̄(3)
m (N; t) · F 3−m

N Fm
N+1, (138)

where

C̄3
m(N; t) = (−1)n+1 · 2

3
·
(

n

3

)
· βn

N · λN ·
2N+1−m∑

n=0

c
(3)

m;nt
n. (139)

We have already demonstrated by use of (136) that f
(2)
N,N (t) vanishes though order tN.

Therefore, using the expressions (55)–(58) for c
(3)

m;n which are all valid through (at least)

order tN and the definition (10) of f
(1)
N,N (t) we find

f
(3)
N,N (t)

tN/2

N= 2

3
λNFN ·

⎧⎨
⎩1 −

3∑
j=0

(−1)j ·
(

3
j

)
· β

j

N ·
[
u2(N + 1)

t

]3−j

· u2(N)j · F
3−j

N F
j

N+1

⎫⎬
⎭ ,

(140)

which vanishes by use of the Wronskian relation (135) with n = 3.
We have thus demonstrated that f

(3)
N,N (t)/tN/2 vanishes to order tN as t → 0. However

we see, from the original integral (18), that in fact f
(3)
N,N (t)/tN/2 is of order tN+2. Therefore

the coefficient of tN+1 must also vanish. This is not proven by (140). However the coefficient
c
(3)
1,N has not been used in the derivation of (140) and the choice of c

(3)
1,N to make the coefficient

of tN+1 vanish provides an alternative derivation of (59).

6. Factorization for f (n)
N,N with n � 4

In principle the methods of differential algebra of the previous sections can be extended to form
factors f

(n)
N,N (t) with n � 4. However, the complexity of the calculations rapidly increases.

For f
(2n)
N,N (t) there are 2n + 1 polynomials C(2n)

m (N; t) and since from [15] we find that for
N � 1

L2n+1 · · · L3 · L1 · f
(2n)
N,N (t) = 0, (141)

where Lk is a linear differential operator of order k, the polynomials C(2n)
m (N; t) will satisfy

a system of 2n + 1 coupled differential equations where the maximum derivative order is n2.
These equations can be decoupled into 2n + 1 Fuchsian ODEs which generically have order
n2(2n + 1).

Similarly for f
(2n+1)
N,N (t) we found in [15] that

L2n+2 · · · L4 · L2 · f
(2n+1)
N,N (t) = 0, (142)

and thus the 2n + 2 polynomials C(2n+1)
m (N; t) satisfy inhomogeneous coupled equations of

maximum differential order n(n+1) which for N � 1 are generically decoupled into Fuchsian
equations of order 2n(n + 1)2.
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We have obtained for f
(4)
N,N (t) the 20th order ODEs for C(4)

m (N; t) in the cases
N = 1, · · · , 10 and will illustrate the new features which arise by considering the case
m = 4.

We find by use of Maple that (at least for low values of N) the operator 	
(4)
4 (N; t) has a

direct sum decomposition

	
(4)
4 (N; t) = M

(4)
7 (N) ⊕ M

(4)

5;1(N) ⊕ M
(4)

5,2(N) ⊕ M
(4)
3 (N), (143)

where M
(4)

k;n(N) is order k and is homomorphic to the symmetric k − 1 power of O2(N)

M
(4)
7 (N) · J

(4)
2 (N; t) = G

(4)
2 (N; t) · Sym6(O2(N)), (144)

M
(4)

5;1(N) · J
(4)
1 (N; t) = G

(4)
1 (N; t) · Sym4(O2(N)), (145)

M
(4)

5;2(N) = Sym4(O2(N)), (146)

M
(4)
3 (N) · J0(N; t) = G

(4)
0 (N; t) · Sym2(O2(N)), (147)

where the intertwinners J (4)
m (2; t) and G(4)

m (2; t) are linear differential operator of order m. The
intertwinners J (4)

m (2; t) in (144)–(147), are explicitly given in appendix F. Further examples
of intertwinners are given in appendix F. These differential algebra exact results (in particular
(144)–(147)) are the illustration of the canonical link between the palindromic polynomials
and the theory of elliptic curves.

Direct sum decompositions5 have been obtained for 	(2)
m (N; t),	(3)

m (N; t) and 	(4)
m (N; t)

and we conjecture that this occurs generically for all 	(n)
m (N; t). Taking into account the

homomorphism of O2(N; t) and O2(N + 1; t), and recalling, for instance, subsections 4.2
and 4.3, it may be easier to write direct sum decomposition formulae in terms of sum of
symmetric products of O2(N; t) and O2(N + 1; t). In order to extend these results, beyond
these few special cases of 	(4)

m (N; t), a deeper and systematic study of the homomorphisms
is still required.

From an analytical viewpoint, a complication which needs to be understood is how to use
the solutions of the homogeneous operators 	(n)

m (N; t) to obtain the polynomial solution of the
inhomogeneous equations. The first difficulty here is that for C(4)

m (N; t) the inhomogeneous
terms are large polynomials, of order 100 and higher. Moreover, the orders of palindromy
point of the C

(4)
4 (N; t) with N = 1, . . . , 10 are all larger than the order tN+4 where the

solutions of the homogeneous operators M
(4)

k;n(N; t) have their first logarithmic singularity.
Consequently linear combinations of solutions must be made which cancel these logarithmic
singularities at tN+4 to give sets of solutions to 	

(4)
4 (N; t) which are analytic up to the order

of the first inhomogeneous terms. Thus the determination of the correct linear combination
of solutions of the operators M

(4)

k;n(N; t) is significantly more complex than was the case

for C(3)
m (N; t). Exact results for the C

(4)
j ’s, based on the Wronskian cancellation method of

section 5, and valid for any value of N , are displayed in appendix G. These are exact results for
the palindromic polynomials in terms of FN and u2(N), namely two hypergeometric functions
associated with elliptic curves. Thus, these analytical results can also be seen as an illustration
of the canonical link between our palindromic polynomials and the theory of elliptic curves.
They confirm the deep relation we find, algebraically and analytically, on these structures with
the theory of elliptic curves. In a forthcoming publication we will show that the relation is in
fact, more specifically, a close relation with modular forms.

5 Note that in direct sum decomposition like (143), some ambiguity may occur with terms like M
(4)

5;1(N) ⊕ M
(4)

5,2(N)

where M
(4)

5,1(N) and M
(4)

5,2(N) are both homomorphic to a same operator (here Sym4(O2(N))).
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7. Conclusions

In this paper we have proven the factorization, for all N, of the diagonal form factor f
(n)
N,N (t)

for n = 2, 3 previously seen in [15] for N � 4 and provided a conjecture for n = 4. Besides
new results like the quadratic recursion (51), or non trivial quartic identities (like (55)–(58)),
one of the main result of the paper is the fact that, introducing the selected hypergeometric
functions FN , which are also elliptic functions, and are simply related to the (simplest) form
factor f

(1)
N,N , the form factors actually become polynomials of these FN ’s with palindromic

polynomial coefficients. The complexity of the form factors, is, thus, reduced to some
encoding in terms of palindromic polynomials. As a consequence, understanding the form
factors amounts to describing and understanding an infinite set of palindromic polynomials,
canonically associated with elliptic curves.

We also observe that all of these palindromic polynomials are built from the solutions
of the operator O2(N), and, therefore, are all properties of the basic elliptic curve
which underlies all computations of the Ising model. There is a deep structure here
which needs to be greatly developed. The differential algebra approach of the linear
differential operators associated with these palindromic polynomials is found to be a
surprisingly rich structure canonically associated with elliptic curves. In a forthcoming
publication, we will show that such rich structures are closely related to modular
forms.

Analytically, the conjecture and the Wronskian method of logarithm cancellation can
be extended to large values of n, but the method of proof by differential equations becomes
prohibitively cumbersome for n � 4. This is very similar to the situation which occurred
for the factorization of correlations in the XXZ model where the factorizations of [19–25]
done for small values of the separation of the spins by means of explicit computations on
integrals was proven for all separations in [30] by means of the qKZ equation satisfied by
the correlations and not by the explicit integrals which are the solution of this equation. This
suggests that our palindromic polynomials may profitably be considered as a specialization
of polynomials of n variables. Moreover, if the two conjectures presented in the introduction
are indeed correct, then such kind of structures could also have relevance to the 8 vertex
model and to the higher genus curves which arise in the chiral Potts model. Consequently the
computations presented here could be a special case of a much larger modularity phenomenon.
This could presumably generalize the relations which the Ising model has with modular forms
and Calabi–Yau structures [31].
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Appendix A. Form factors in the basis FN and FN+1

By use of the contiguous relations for hypergeometric functions the examples given in [15] of
f

(n)
N,N (t) expressed in terms of the elliptic integrals K(t1/2) and E(t1/2) may be re-expressed

in terms of the functions FN and FN+1. Several examples are as follows

f
(2)
0,0 = t

4
· F0 · F1, (A.1)

22
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f
(2)
1,1 = 1

2
− 1

4
(t + 1)(2t2 + t + 2) · F 2

1 +
32

25
· t · (4t2 + 5t + 4) · F1 · F2 − 34

27
t2(t + 1) · F 2

2 ,

(A.2)

f
(2)
2,2 = 1 − 1

26
(t + 1)(64t4 + 16t3 + 99t2 + 16t + 64) · F 2

2

+
52

28 · 3
· t · (64t4 + 88t3 + 105t2 + 88t + 64) · F2 · F3

− 54

27 · 32
· t2 · (t + 1)(2t2 + t + 2) · F 2

3 , (A.3)

f
(2)
3,3 = 3

2
− 1

27 · 3
· (t + 1)(576t6 + 96t5 + 730t4 + 425t3 + 730t2 + 96t + 576) · F 2

3

+
72

212 · 3
· t (768t6 + 928t5 + 1240t4 + 1455t3 + 1240t2 + 928t + 768) · F3F4

− 74

215 · 3
· t2(t + 1)(64t4 + 16t3 + 99t2 + 16t + 64) · F 2

4 . (A.4)

For f
(3)
N,N with N = 0, · · · , 4

f
(3)
0,0 = 1

2 · 3
· f

(1)
0,0 − 1

2 · 3
(1 + t) · F0

3 +
1

22
t · F0

2 · F1, (A.5)

f
(3)
1,1

t1/2
= 2

3
· f

(1)
1,1

t1/2
− 1

23 · 3
(1 + t)(23t2 + 13t + 23) · F1

3

+
32

26
t (8t2 + 15t + 8) · F1

2 · F2 − 34

26
t2(t + 1)F1F

2
2 +

35

29
t3 · F2

3, (A.6)

f
(3)
2,2

t
= 7

2 · 3
· f

(1)
2,2

t
− 1

210 · 3
(1 + t)(26 · 3 · 7t4 + 1136t3 + 3229t2 + 1136t + 1344) · F2

3

+
52

211 · 3
t (25 · 32t4 + 596t3 + 859t2 + 596t + 25 · 32) · F2

2 · F3

− 55

210 · 32
(t + 1)(3t2 + 4t + 3)t2 · F2 · F 2

3 +
56

211 · 34
t3(3t2 + 8t + 3) · F3

3, (A.7)

f
(3)
3,3

t3/2
= 5

3
· f

(1)
3,3

t3/2
− 1

211 · 34
(t + 1)(27 · 33 · 52t6 + 49 680t5 + 153 306t4 + 160 427t3

+ 153 306t2 + 49 680t + 27 · 33 · 52) · F 3
3

+
72

216 · 33
t (210 · 32 · 5t6 + 79 200t5 + 128 104t4 + 168 593t3

+ 128 104t2 + 79 200t + 210 · 32 · 5) · F 2
3 · F4

− 74

216 · 33
(t + 1)t2(24 · 32 · 5t4 + 670t3 + 1763t2 + 670t + 24 · 32 · 5) · F3 · F 2

4

+
76

221 · 34
t3(26 · 5t4 + 740t3 + 1407t2 + 740t + 26 · 5) · F 3

4 , (A.8)
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f
(3)
4,4

t2
= 13

6
· f

(1)
4,4

t2
− 1

222 · 3
(t + 1)(214 · 5 · 7 · 13t8 + 3254 272t7 + 11 474 624t6 + 8672 032t5

+ 20 423 231t4 + 8672 032t3 + 11 474 624t2 + 3254 272t + 214 · 5 · 7 · 13) · F 3
4

+
33

223 · 5
t (212 · 3 · 52 · 7t8 + 3334 912t7 + 4845 120t6 + 7068 720t5

+ 8865 649t4 + 7068 720t3 + 4845 120t2 + 3334 912t + 212 · 3 · 52 · 7) · F 2
4 · F5

− 36

220 · 53
t2(t + 1)(24 · 32 · 5 · 72t6 + 26 292t5 + 69 377t4 + 78 580t3

+ 69 377t2 + 26 292t + 24 · 32 · 5 · 72) · F4 · F 2
5

+
38

220 · 53
t3(23 · 33 · 5 · 7t6 + 23 · 33 · 7 · 11t5 + 28 413t4 + 46 432t3

+ 28 413t2 + 23 · 33 · 7 · 11t + 23 · 33 · 5 · 7) · F 3
5 . (A.9)

The coefficients which are not given in factored form all contain large prime factors.
For f

(4)
N,N with N = 0, 1, 2, 3

f
(4)
0,0 = 1

3
· f

(2)
0,0 − 1

22 · 3
· t · F 4

0 +
1

25
· t · F 2

0 · F 2
1 , (A.10)

f
(4)
1,1 = − 1

23 · 3
+

5

2 · 3
· f

(2)
1,1 +

1

25 · 3
(4t4 + 4t3 + 15t2 + 4t + 4)(t + 1)2 · F 4

1

− 3

27
t (t + 1)(8t4 + 18t3 + 35t2 + 18t + 8) · F 3

1 · F2

+
34

211
· t2(8t4 + 28t3 + 45t2 + 28t + 8) · F 2

1 · F 2
2

− 35

212
· t3 · (t + 1) · (4t2 + 11t + 4) · F1 · F 3

2 +
37

215
t4(t2 + 4t + 1) · F 4

2 , (A.11)

f
(4)
2,2 = −1

3
+

22

3
· f

(2)
2,2 +

1

214 · 3
(214t10 + 40 960t9 + 84 480t8 + 136 640t7 + 176 180t6

+ 201 075t5 + 176 180t4 + 136 640t3 + 84 480t2 + 40 960t + 214) · F 4
2

− 52

214 · 32
t (t + 1)(213t8 + 13 312t7 + 29 504t6 + 36 320t5 + 45 337t4

+ 36 320t3 + 29 504t2 + 13 312t + 213) · F 3
2 · F3

+
54

217 · 32
t2(212t8 + 11 264t7 + 21 760t6 + 31 576t5 + 36 209t4

+ 31 576t3 + 21 760t2 + 11 264t + 212) · F 2
2 · F 2

3

− 56

215 · 34
· t3(t + 1)(28t6 + 480t5 + 906t4 + 979t3 + 906t2 + 480t + 28) · F2 · F 3

3

+
58

215 · 34
t4(25t6 + 96t5 + 177t4 + 224t3 + 177t2 + 96t + 25) · F 4

3 , (A.12)

f
(4)
3,3 = − 7

23
+

11

2 · 3
· f

(2)
3,3 +

1

216 · 34
(213 · 34 · 7t14 + 10 838 016t13 + 19 643 904t12

+ 34 169 856t11 + 50 403 584t10 + 62 791 680t9 + 73 309 425t8 + 79 935 700t7
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+ 73 309 425t6 + 62 791 680t5 + 50 403 584t4 + 34 169 856t3 + 19 643 904t2

+ 10 838 016t + 213 · 34 · 7) · F 4
3

− 72

219 · 34
t (t + 1)(214 · 33 · 7t12 + 4257 792t11 + 9547 776t10 + 13 813 120t9

+ 19 341 120t8 + 21 399 090t7 + 24 976 435t6 + 21 399 090t5 + 19 341 120t4

+ 13 813 120t3 + 9547 776t2 + 4257 792t + 214 · 33 · 7) · F 3
3 · F4

+
74

225 · 35
t2 · (215 · 32 · 7t12 + 4988 928t11 + 9680 384t10 + 15 992 320t9

+ 21 863 120t8 + 26 325 960t7 + 28 527 015t6 + 26 325 960t5 + 21 863 120t4

+ 15 992 320t3 + 9680 384t2 + 4988 928t + 215 · 32 · 7) · F 2
3 · F 2

4

− 76

227 · 34
t3 · (t + 1)(214 · 3 · 7t10 + 501 760t9 + 1191 680t8 + 1548 640t7

+ 2065 400t6 + 2169 745t5 + 2065 400t4 + 1548 640t3

+ 1191 680t2 + 501 760t + 214 · 3 · 7) · F3 · F 3
4

+
78

231 · 34
t4 · (212 · 7t10 + 71 680t9 + 147 840t8 + 235 040t7 + 299 555t6

+ 339 180t5 + 299 555t4 + 235 040t3 + 147 840t2 + 71 680t + 212 · 7) · F 4
4 . (A.13)

For f
(5)
N,N with N = 1, 2, 3

f
(5)
1,1

t1/2
= −22

5
· f

(1)
1,1

t1/2
+

f
(3)
1,1

t1/2
+

1

26 · 3 · 5
(t + 1)2(26 + 136t3 + 159t2 + 136t + 26) · F 5

1

− 3

28
t (t + 1)(25t4 + 80t3 + 99t2 + 80t + 25) · F 4

1 · F2

+
33

212
t2(27t4 + 368t3 + 483t2 + 368t + 27) · F 3

1 · F 2
2

− 35

210
t3(t + 1)(4t2 + 5t + 4) · F 2

1 · F 3
2

+
37

215
t4(8t2 + 13t + 8) · F1 · F 4

2 − 39

215 · 5
(t + 1) · t5 · F 5

2 , (A.14)

f
(5)
2,2

t
= − 137

23 · 5
· f

(1)
2,2

t
+

3

2
· f

(3)
2,2

t

+
1

218 · 3 · 5
(8t2 + 7t + 8)(29 · 3 · 61t8 + 241 856t7 + 508 200t6 + 708 609t5

+ 780 244t4 + 708 609t3 + 508 200t2 + 241 856t + 29 · 3 · 61) · F 5
2

− 52

218 · 32
t (t + 1)(92 160t8 + 239 360t7 + 540 576t6 + 723 924t5

+ 868 861t4 + 723 924t3 + 540 576t2 + 239 360t + 92 160) · F 4
2 · F3

+
54

220 · 33
t2(90 624t8 + 338 816t7 + 743 304t6 + 1122 432t5 + 1278 697t4

+ 1122 432t3 + 743 304t2 + 338 816t + 90 624) · F2
3F3

2

− 56

217 · 34
t3(t + 1)(1392t6 + 4010t5 + 6983t4 + 8136t3

25
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+ 6983t2 + 4010t + 1392) · F 2
2 · F 3

3

+
58

220 · 35
t4(684t6 + 2752t5 + 5161t4 + 6240t3 + 5161t2 + 2752t

+ 684) · F2 · F 4
3

− 59

219 · 36
t5(t + 1)(42t4 + 133t3 + 167t2 + 133t + 42) · F 5

3 , (A.15)

f
(5)
3,3

t3/2
= − 127

3 · 5
· f

(1)
3,3

t3/2
+ 2 · f

(3)
3,3

t3/2

+
1

220 · 35 · 5
(216 · 34 · 5 · 17t14 + 1377 976 320t13 + 3016 452 096t12

+ 5930 641 920t11 + 9308 313 280t10 + 12 328 157 240t9 + 14 834 544 515t8

+ 15 849 843 292t7 + 14 834 544 515t6 + 12 328 157 240t5 + 9308 313 280t4

+ 5930 641 920t3 + 3016 452 096t2 + 1377 976 320t + 216 · 34 · 5 · 17) · F 5
3

− 72

222 · 35
t (t + 1)(219 · 33 · 5t12 + 151 511 040t11 + 351 000 576t10

+ 605 214 208t9 + 835 692 208t8 + 1025 976 166t7 + 1112 168 875t6

+ 1025 976 166t5 + 835 692 208t4 + 605 214 208t3 + 351000576 t2

+ 151 511 040t + 219 · 33 · 5) · F 4
3 · F4

+
74

229 · 35
t2(218 · 33 · 52t12 + 572 129 280t11 + 1334 317 056t10

+ 2446 757 888t9 + 3545 541 888t8 + 4425 343 776t7 + 4784 608 975t6

+ 4425 343 776t5 + 3545 541 888t4 + 2446 757 888t3 + 1334 317 056t2

+ 572 129 280t + 218 · 33 · 52) · F 3
3 · F 2

4

− 76

227 · 35
t3(t + 1)(213 · 3 · 5 · 7t10 + 2007 040t9 + 4885 888t8 + 7228 048t7

+ 9666 130t6 + 10 423 545t5 + 9666 130t4 + 7228 048t3 + 4885 888t2

+ 2007 040t + 213 · 3 · 5 · 7) · F 2
3 · F 3

4

+
78

234 · 35
t4(214 · 5 · 13t10 + 3665 920t9 + 9078 784t8 + 15 185 664t7

+ 20 375 540t6 + 22 605 185t5 + 20 375 540t4 + 15 185 664t3 + 9078 784t2

+ 3665 920t + 214 · 5 · 13) · F3 · F 4
4

− 710

235 · 35 · 5
t5(t + 1)(213 · 5t8 + 104 960t7 + 267 136t6 + 319 904t5

+ 436 441t4 + 319 904t3 + 267 136t2 + 104 960t + 213 · 5) · F 5
4 . (A.16)

Appendix B. Polynomial solution calculations for C(2)
1 (N ; t)

We here give explicitly the calculational details for C
(2)
1 (N; t).

Using the form (43) in the inhomogeneous equation (83) we find the recursion relation
for the coefficients c

(2)

1;n for n �= N,N + 1, N + 2, N + 3

2n · (n − N)(n − 2N − 1) · c
(2)

1;n − {2n3 − 6Nn2 − 2(4 + N − 2N2)n + 5 + 6N} · c
(2)

1;n−1

26
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−{2n3 − 6(3 + N)n2 + (46 + 34N + 4N2)n − 35 − 38N − 8N2} · c
(2)

1;n−2

+ 2(n − 2)(n − 2N − 3)(n − N − 3) · c
(2)

1;n−3 = 0, (B.1)

where by definition c
(2)

1;n = 0 for n � −1. This recursion relation has four terms instead of the

three terms in the corresponding relation (92) for c
(2)

2;n. We note that, if we send n → 2N −n+3

in (B.1), we see that c
(2)

1;n and c
(2)
2N−n satisfy the same equation. Since the coefficient of c

(2)

1;n
vanishes for n = 0, the term c

(2)

1;0 is not determined from (B.1) and by convention we set

c
(2)

1;0 = 1.

Following the procedure used for C
(2)
2 (N; t) we note that equation (84) will be satisfied

to order tN if we choose the c
(2)

1;n for 0 � n � N − 1 to be the corresponding coefficients in
t−1 · u2(N; t) · u2(N + 1; t) and hence (47) follows.

The inhomogeneous recursion relations for n = N,N + 1 are

A
(2)
1

{−(2N2 + 2N − 5) · c
(2)

1;N−1 + (8N2 + 8N − 35) · c
(2)

1;N−2

− 6(N − 2)(N + 3) · c
(2)

1;N−3

} = −2N2(2N + 1)2λ2
N, (B.2)

A
(2)
1

{−2N(N + 1) · c
(2)

1;N+1 − (2N + 1)2 · c
(2)

1;N
+ (6N2 + 6N − 5) · c

(2)

1;N−1 + 4(N + 2)(N − 1) · c
(2)

1;N−2

}
= − (2N + 1)2(4N3 + 4N2 − 4N − 1)λ2

N

4(N + 1)
, (B.3)

and the relations for N+2, N+3 are identical with N,N+1, respectively, with the (palindromic)
replacement

c
(2)

1;N−m −→ c
(2)

1;N+m. (B.4)

If there were no inhomogeneous term (B.2) would be a new constraint in the coefficients
c
(2)

1;n for n = N −1, N −2, N −3. However this constraint does not hold (because the solution
to the homogeneous equation has a term tN+1 ln t).

The normalizing constant A
(2)
1 can be evaluated from (B.2) and the sum on the LHS of

(B.2) is evaluated the same way the corresponding sum was for C
(2)
2 (N; t), by comparing with

the full solution t−1u2(N; t)u2(N + 1; t) of the homogeneous equation. Thus we find

−(2N2 + 2N − 5) · c
(2)

1;N−1(N) + (8N2 + 8N − 35) · c
(2)

1;N−2(N)

− 6(N + 3)(N − 2) · c
(2)

1;N−3(N) = −2N2(N + 1)λ2
N, (B.5)

and, hence, we find from (B.2)

A
(2)
1 = NβN. (B.6)

It remains to compute c
(2)

1;N from (B.3). We obtain the palindromic solution by requiring

that c
(2)
1,N+1 = c

(2)

1;N−1 and thus (B.3) reduces to

(2N + 1)2 · c
(2)

1;N + (4N2 + 4N − 5) · c
(2)

1;N−1 + 4(N + 2)(N − 1) · c
(2)

1;N−2

= − (2N + 1)2(4N3 + 4N2 − 4N − 1)λ2
N

4(N + 1)
. (B.7)
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An equivalent and more efficient method for evaluating c
(2)

1;N , which avoids the need to evaluate

the sums on the lhs of (B.7), is to directly evaluate C
(2)
1 (N; t) in terms of C

(2)
2 (N; t) by use of

the coupled equation (82). From this we find

c
(2)

1;N(N) = λ2
N +

N−1∑
k=0

ak(N) · aN−1−k(N), (B.8)

and, by explicitly evaluating the sum in (B.8), we obtain the result (48). Finally, the c
(2)

1;n for
N + 1 � n � 2N are determined from the palindromy of (B.1).

Appendix C. Coupled differential equations for C(3)
m (N ; t)

The four coupled differential equations for C(3)
m (N; t) are

− 2N + 1

2 · (t − 1)t
· C

(3)
0 (t) − (N + 1)(2tN + 1 + t)

t2 · (2N + 1)(t − 1)
· C

(3)
1 (t)

− 2
(N + 1)2(2tN + 3)

t2(2N + 1)2(t − 1)
· C

(3)
2 (t) − 8

(N + 1)3(tN − t + 3)

(t − 1)(2N + 1)3t2
· C

(3)
3 (t)

+
tN + 2t − N − 1

(t − 1)t
· d

dt
C

(3)
0 (t) + 2

(N + 1)(tN − N + t)

t (t − 1)(2N + 1)
· d

dt
C

(3)
1 (t)

+ 4
(N + 1)2(tN − N + 1)

t (t − 1)(2N + 1)2
· d

dt
C

(3)
2 (t) + 8

(N + 1)3(tN − N + 2 − t)

t (2N + 1)3(t − 1)

· d

dt
C

(3)
3 (t) +

d2

dt2
C

(3)
0 (t) + 2

N + 1

2N + 1
· d2

dt2
C

(3)
1 (t) + 4

(N + 1)2

(2N + 1)2
· d2

dt2
C

(3)
2 (t)

+ 8
(N + 1)3

(2N + 1)3
· d2

dt2
C

(3)
3 (t) = 3

4
tN−1 · (2N + 1) · B0(N), (C.1)

−2
(N + 1)(2N + 6tN + 3t + 2)

t2(2N + 1)2
· C

(3)
1 (t) − 8

(N + 1)2(4tN + 4N + 5 + t)

t2(2N + 1)3
· C

(3)
2 (t)

− 24
(N + 1)3(6N + 2tN + 9 − 2t)

(2N + 1)4t2
· C

(3)
3 (t) + 6

d

dt
C

(3)
0 (t)

+ 4
(N + 1)(5tN + N + 3t + 1)

t (2N + 1)2
· d

dt
C

(3)
1 (t)

+ 8
(N + 1)2(2N + 4tN + t + 4)

t (2N + 1)3
· d

dt
C

(3)
2 (t)

+ 48
(N + 1)3(tN + N + 3 − t)

t (2N + 1)4
· d

dt
C

(3)
3 (t) + 4

(t − 1)(N + 1)

(2N + 1)2
· d2

dt2
C

(3)
1 (t)

+ 16
(N + 1)2(t − 1)

(2N + 1)3
· d2

dt2
C

(3)
2 (t) + 48

(N + 1)3(t − 1)

(2N + 1)4
· d2

dt2
C

(3)
3 (t)

= 3

2
tN−1 · (2N2t + t + 4tN − 2N − 2N2) · B0(N), (C.2)

C
(3)
1 (t) + 4

(N + 1)(2N + 2 − t)

t (2N + 1)2
· C

(3)
2 (t) + 4

(t − 1)(N + 1)

(2N + 1)2
· d

dt
C

(3)
2 (t)

+ 4
(N + 1)2(12N2 − 16tN − 2t2N + 30N + 2t2 + 18 − 17t)

(2N + 1)4t2
· C

(3)
3 (t)
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+ 8
(t − 1)(N + 1)2(tN + 5N − t + 5)

t (2N + 1)4
· d

dt
C

(3)
3 (t)

+ 8
(t − 1)2(N + 1)2

(2N + 1)4
· d2

dt2
C

(3)
3 (t) = 3

4

(2N + 1)2

(N + 1)
· tN+1 · B0(N), (C.3)

6 · C
(3)
0 (t) + 4

(N + 1)(4N + 2tN + 4 − t)

t (2N + 1)2
· C

(3)
1 (t)

+ 8
(N + 1)2(4N2 + 8N2t − 10t2N + 10tN + 12N − t − 4t2 + 8)

(2N + 1)4t2
· C

(3)
2 (t)

+ 48
(N + 1)3(4N2 − 2t2N − 10tN + 16N + 2t2 + 13 − 14t)

(2N + 1)5t2
· C

(3)
3 (t)

+ 16
(t − 1)(N + 1)

(2N + 1)2
· d

dt
C

(3)
1 (t)

+ 16
(t − 1)(N + 1)2(5tN + 3N + 2t + 3)

t (2N + 1)4
· d

dt
C

(3)
2 (t)

+ 96
(N + 1)3(t − 1)(tN + 3N + 4 − t)

t (2N + 1)5
· d

dt
C

(3)
3 (t)

+ 16
(t − 1)2(N + 1)2

(2N + 1)4
· d2

dt2
C

(3)
2 (t) + 96

(t − 1)2(N + 1)3

(2N + 1)5
· d2

dt2
C

(3)
3 (t)

= 3tN · (3N(t − 1) + 2t − 1) · B0(N), (C.4)

where B0(N) is given by (111).

Appendix D. The ODE and recursion relation for C(3)
3 (N ; t)

The ODE for C
(3)
3 (N; t) can be found by carefully using the four coupled ODEs (C.1)–(C.4).

First use (C.3) to solve for C
(3)
1 (N; t) and then use this is in equation (C.4) in order to solve

for C
(3)
0 (N; t). Next, use both C

(3)
0 (N; t) and C

(3)
1 (n; t) in (C.1) and (C.2) to produce ODEs

of orders four in C
(3)
2 (N, t) and five in C

(3)
3 (N; t) in (C.1) and orders three in C

(3)
2 (N; t) and

four in C
(3)
3 (N; t) in (C.2).

In the new (C.1), the fourth derivative of C
(3)
2 (N; t) can be solved in terms of the other

derivatives, and likewise in the new (C.2), the third derivative of C
(3)
2 (N; t) can be solved in

terms of the other derivatives. Taking the derivative of the expression for the third derivative
of C

(3)
2 (N; t) and equating it to the expression for the fourth derivative of C

(3)
2 (N; t) we

find an alternate expression for the third derivative of C
(3)
2 (N; t). Finally, equating the two

expressions for the third derivative of C
(3)
2 (N; t), a full cancellation of all of the derivatives of

C
(3)
2 (N; t) takes place, leaving a fifth order ODE in terms of only C

(3)
3 (t)

4[2(N − 1)(2N + 1)(3N + 1)(N + 1)t4 − (2N + 3)(36N3 − 7N2 − 69N − 32)t3

+ 4(N + 2)(36N3 − 10N2 − 116N − 69)t2

− (2N + 5)(60N3 − 23N2 − 275N − 188)t

+ 18(2N + 3)(N + 3)(N − 3)(N + 1)] · C
(3)
3 (t)

− 8[(N − 1)(2N + 1)(3N + 1)(N + 1)t4

− (−130N + 40N3 − 47 + 24N4 − 73N2)t3

+ 2(18N4 − 129 + 45N3 − 113N2 − 270N)t2
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− (−253N2 − 422 + 24N4 − 740N + 80N3)t

+ (N + 1)(6N3 + 19N2 − 114N − 211)] · t · d

dt
C

(3)
3 (t)

+ 20(t − 1)[2N(N − 1)(N + 1) · t3 − 3(2N3 − 4N2 − 8N − 3)

· t2 + 3(−13 + 2N3 − 8N2 − 24N)t]

− 2(N − 9)(N + 2)(N + 1)] · t2 · d2

dt2
C

(3)
3 (t)

+ 40(t − 1)2[(N − 1)2t2 − (4N + 1 + 2N2)t

+ (N + 5)(N + 1)] · t3 · d3

dt3
C

(3)
3 (t)

− 40(t − 1)3[(N − 1)t − N − 1]t4 · d4

dt4
C

(3)
3 (t) + 8(t − 1)4 · t5 · d5

dt5
C

(3)
3 (t)

= − 3(t2 − 1) · N2(2N + 1)6

(N + 1)3
· tN+3 · B0(N). (D.1)

From this differential equation we obtain the recursion relation for the coefficients c
(3)

3;n
and the normalization constant A

(3)
3 defined by the form (53), where by definition c

(3)

3;n = 0 for
n � −1

A
(3)
3 · {

8n(2N − n)(N − n)(N + n)(3N − n) · c
(3)

3;n + 4(2N + 1 − 2n)(2 − 7n

+ 7N − N2 + 4n4 − 12N3 − 8n3 + 24N3n

− 4N2n + 11n2 + 4N2n2 − 16Nn3 + 24Nn2 − 22Nn) · c
(3)

3;n−1

− 16(N + 1 − n)(9 − 22n + 22N + N2 + 3n4 − 18N3 − 12n3 + 18N3n

− 6N2n + 23n2 + 3N2n2 − 12Nn3 + 36Nn2 − 46Nn) · c
(3)

3;n−2

+ 4(2N + 3 − 2n)(32 − 69n + 69N + 7N2 + 4n4 − 36N3 − 24n3 + 24N3n

− 12N2n + 59n2 + 4N2n2 − 16Nn3 + 72Nn2 − 118Nn) · c
(3)

3;n−3

− 8(n − 2)(2N + 2 − n)(N + 2 − n)(N − 2 + n)(3N + 2 − n) · c
(3)

3;n−4

}
= (δn,N − δn,N+2) · 3(2N + 1)6

(N + 1)3
· B0. (D.2)

We note by sending n → 2N − n + 2 that c
(3)

3;n and c
(3)

3;2N−2−n satisfy the same equation.

For n = 0 (D.2) is identically zero for any c
(3)

3;0 which we set equal to unity by convention.

For 0 � n � N − 1 the rhs of (D.2) vanishes and hence the c
(3)

3;n are identical with the
coefficients (118) of the solution (116) ot the homogeneous equation.

For n = N the coefficient of c
(3)

3;N vanishes, and thus if there were no inhomogeneous

term, the coefficients c
(3)

3;n for n = N − 4, N − 3, N − 2N − 1 would have to satisfy a non
trivial constraint. This constraint does not, in fact, hold and is the reason that the homogeneous
equation has a term tN+3 ln t . However, with a nonvanishing inhomogeneous term, the equation
for n = N determines the normalization constant.

For n = N + 1 the equation (D.2) reduces to

8(N + 1)(N − 1)(2N + 1)(2N − 1) · (
c
(3)

3;N+1 − c
(3)
3,N−4

)
− 8(2N + 1)(2N − 1)(2N2 − 1) · (c(3)

3;N − c
(3)

3;N−2

) = 0 (D.3)

which will be satisfied by the palindromic property

c
(3)

3;n = c
(3)

3;2N−2−n (D.4)
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with n = N + 1 and n = N . Finally, the c
(3)

3;n for N � n � 2N − 2 are determined from the
palindromy of (D.2).

Appendix E. Homomorphisms for C(3)
0 (N ; t) and C(3)

2 (N ; t)

The fifth order operator M
(3)
0 (N; t) in the direct sum decomposition (122) of 	

(3)
0 (N; t) has

the homomorphism (in terms of the operator L2(N))

M
(3)
0 (N) · J

(3)
0 (N; t) = G

(3)
0 (N; t) · Sym4(L2(N + 1)), (E.1)

where the intertwinners J
(3)
0 (N; t) and G

(3)
0 (N; t) are:

J
(3)
0 (N; t) = tN+1 · (t − 1) · t ·

(
Dt − d ln(RA

N)

dt

)
= tN+1 · ((t − 1) · t · Dt − (2N + 2(N + 1))), (E.2)

G
(3)
0 (N; t) = tN+1 · (t − 1) · t ·

(
Dt − d ln(RB

N)

dt

)
, (E.3)

where

RA
N = (t − 1)2(2N+1) · t−2(N+1), (E.4)

RB
N = (t + 1)(t − 1)4N−3

t2N+6
· PN, (E.5)

PN = (4N + 3) · (3N + 2) · (t2 + 1) + 2(20N2 + 15N + 2) · t

= (4N + 3) · (3N + 2) · (t + 1)2 + 4(2(2N + 1)(N − 1) + N) · t. (E.6)

The homomorphism for M
(3)
2 (N; t) is

M
(3)
2 (N; t) · J

(3)
2 (N; t) = G

(3)
2 (N; t) · Sym4(L2(N + 1)), (E.7)

where the intertwinners J
(3)
2 (N; t) and G

(3)
2 (N; t) are

J
(3)
2 (N; t) = tN+2 · ((t − 1) · t · Dt + 2(N + 1) · t + 2N), (E.8)

G
(3)
2 (N; t) = tN+2 · (t − 1) · t ·

(
Dt − d ln(RB

N(−(N + 1)))

dt

)
, (E.9)

where RB
N is exactly the RB

N in (E.5).

Appendix F. Homomorphisms for Ω(4)
4 (N ; t)

Many exact results have been obtained on the intertwinners occurring in (144), (145), (146),
(147). Let us display the simplest ones.

For J
(4)
0 (N; t) we have

J
(4)
0 (2; t) = t2 · (t + 1) · (2t2 + t + 2),

J
(4)
0 (3; t) = t2 · (t + 1) · (64t4 + 16t3 + 99t2 + 16t + 64),

J
(4)
0 (4; t) = t2 · (t + 1) · (576t6 + 96t5 + 730t4 + 425t3 + 730t2 + 96t + 576),

J
(4)
0 (5; t) = t2 · (t + 1) · (16 384t8 + 2048t7 + 19 264t6

+ 6608t5 + 28 861t4 + 6608t3 + 19 264t2 + 2048t + 16 384). (F.1)
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For J
(4)
1 (N; t) we have

2t3 · J
(4)
1 (2; t) = (t − 1) · J

(4)
0 (2; t) · Dt − 2t · (10t4 + 2t3 − 5t − 4),

64t4 · J
(4)
1 (3; t) = (t − 1) · J

(4)
0 (3; t) · Dt

− 2t · (448t6 + 32t5 + 95t4 − 220t2 − 112t − 128),

576 · t5 · J
(4)
1 (4; t) = (t − 1) · J

(4)
0 (4; t) · Dt

− 2t · (5184t8 + 192t7 + 406t6 + 1148t5 − 2471t3 − 1288t2 − 864t − 1152),

16 384 · t6 · J
(4)
1 (5; t) = (t − 1) · J

(4)
0 (5; t) · Dt

− 2t · (180 224t10 + 4096t9 + 7488t8 + 15 168t7 + 41 307t6

− 83 454t4 − 44 112t3 − 29 952t2 − 22 528t − 32768). (F.2)

Finally, the simplest J
(4)
2 (N; t), namely J

(4)
2 (2; t) reads:

16t6 · J
(4)
2 (2; t) = 8(t − 1)2 · J

(4)
0 (2; t) · D2

t − t · (t − 1)

· (432t4 + 80t3 − 99t2 − 240t − 208) · Dt

+ 3(1040t5 − 1176t4 − 233t3 − 100t2 + 168t + 256). (F.3)

Appendix G. Exact results for the C(4)
m ’s

The f
(4)
N,N (t)’s have a new feature not previously seen. The inhomogeneous terms on the

ODE’s for C(2)
m (N; t) and C(3)

m (N; t) begin at tN+a where a is 0,1 or 2 depending on the values
of m. Therefore, to the order needed for the polynomial solution, the logarithms in the solution
u2(N) never can contribute. However, for f

(4)
N,N (N; t) the order of the inhomogeneous terms

grows as t2N instead of tN. Therefore, since logarithms occur in u2(N) at order tN+1 in order
to find the polynomial solution to the 20th order inhomogeneous equation in terms of the
solutions of u2(N) and u1(N), we need to find linear combinations of solutions of the terms
in the direct sum decomposition which cancel these logarithms.

This procedure for solving the inhomogeneous equations is too cumbersome by itself to
obtain explicit results as was done for f

(2)
N,N (t) and f

(3)
N,N (t). However, when the cancellation

of logarithms is combined with the Wronskian cancellation method of section 5, it is
possible to conjecture results for C(4)

m (N; t) which have been verified to satisfy the 20th
order inhomogeneous equations through N = 10:

C
(4)
0

2N+1= −K̄
(4)
0 · u4

2(N + 1)

t4
− K̄

(4)
0 · 4

N
· C

(2)
0 · u2(N + 1)

t2
+

2

3
·
[
C

(2)
0 · u2

2(N + 1)

t2
− 2βN

·C(2)
0 · u2

2(N + 1) · u2(N)

t2
· FN+1 − C

(2)
1 · u3

2(N + 1)

t3
· FN+1

]

+
Nλ2

3
· βN · u3

2(N + 1)

t4
· tN+2 · FN+1, (G.1)

C
(4)
1

2N+1= 4 · K̄
(4)
0 · βN

u3
2(N + 1)u2(N)

t3

+ K̄
(4)
0 · 4

N
·
[

2βN · C
(2)
0 · u2(N + 1) · u2(N)

t
− C

(2)
1 · u2

2(N + 1)

t2

]

+
2

3
·
[

6β2
N · C

(2)
0 · u2(N + 1) · u2

2(N)

t
· FN+1 + 2C

(2)
1
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· u3
2(N + 1)

t3
· FN − 2C

(2)
2 · u3

2(N + 1)

t3
· FN+1

]

− Nλ2

3

[
βN · u3

2(N + 1)

t3
· tN+1 ·FN + 3β2

N · u2
2(N + 1) · u2(N)

t3
· tN+2 · FN+1

]
,

(G.2)

C
(4)
2

2N+1= −6K̄
(4)
0 · β2

N · u2
2(N + 1) · u2

2(N)

t2
−

(
4

N
· K̄

(4)
0 + 2

)

·
[
β2

N · C
(2)
0 · u2

2(N) − 2βN · C
(2)
1

u2(N + 1) · u2(N)

t
+ C

(2)
2

u2
2(N + 1)

t2

]

+
2

3
·
[
−6β3

N · C
(2)
0 · u3

2(N) · FN+1 − 9βN · C
(2)
1

· u2(N + 1) · u2(N)

t
+ 6C

(2)
2 · u3

2(N + 1)

t3
· FN

]

+
Nλ2

3
·
[

3β2
N · u2

2(N + 1) · u2(N)

t2
· tN+1 · FN

+ 3 · β3
N · u2(N + 1) · u2

2(N)

t2
· tN+2 · FN+1

]
, (G.3)

C
(4)
3

2N+2= K̄
(4)
0 4 · β3

N · u2(N + 1) · u3
2(N)

t

− K̄
(4)
0 · 4

N
·
[
β2

N · C
(2)
1 · u2

2(N) − 2βN · C
(2)
2 · u2(N + 1)u2(N)

t

]

+
2

3
·
[

2β3
N · C

(2)
0 · u3

2(N) · FN − 2β3
N · C

(2)
1 · u3

2(N)

·FN+1 − 6βN · C
(2)
2 · u2

2(N + 1) · u2(N)

t2· · FN

]

− Nλ2

3
·
[

3β3
N · u2(N + 1) · u2

2(N)

t
· tN+1 · FN + β4

N · u3
2(N)

t
tN+2 · FN+1

]
,

(G.4)

C
(4)
4

2N+3= −K̄
(4)
0 · β4

N · u4
2(N) − K̄

(4)
0 · 4

N
· β2

N · C
(2)
2 · u2

2(N)

+
2

3
·
[
β3

N · C
(2)
1 · u3

2(N) · FN + 2β2
N · C

(2)
2 · u2(N + 1) · u2

2(N)

t

·FN + β2
N · C

(2)
2 · u2

2(N)

]
+

Nλ2

3
· β4

N · u3
2(N) · tN+1 · FN. (G.5)

In order to construct the full C(4)
m , the expressions above are series expanded up to the order of

palindromy, with palindromy determining the rest of the terms. The palindromy points of the
C(4)

m are given as follows: m = 0 : 2N + 1, m = 1 : 2N + 1, m = 2 : 2N + 2, m = 3 : 2N + 2,
m = 4 : 2N + 3. Therefore, the expressions above give all terms to all C(4)

m except for the
middle term of C

(4)
2 at order 2N + 2, which is determined such that all terms in f

(4)
N cancel up

to and including 2N + 3.
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Note that while these C(4)
m guarantee that all terms will vanish up to and including 2N + 3,

it is not obvious that the expansion at order 2N + 4 will match the expansion of f
(4)
N , even

though it is the case.
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