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Abstract
We recall that diagonals of rational functions naturally occur in lattice statistical 
mechanics and enumerative combinatorics. We find that the diagonal of a 
seven parameter rational function of three variables with a numerator equal 
to one and a denominator which is a polynomial of degree at most two, can 
be expressed as a pullbacked 2F1 hypergeometric function. This result can be 
seen as the simplest non-trivial family of diagonals of rational functions. We 
focus on some subcases such that the diagonals of the corresponding rational 
functions can be written as a pullbacked 2F1 hypergeometric function with 
two possible rational functions pullbacks algebraically related by modular 
equations, thus showing explicitely that the diagonal is a modular form. We 
then generalize this result to nine and ten parameter families adding some 
selected cubic terms at the denominator of the rational function defining the 
diagonal. We show that each of these rational functions yields an infinite 
number of rational functions whose diagonals are also pullbacked 2F1 
hypergeometric functions and modular forms.

Keywords: diagonals of rational functions, pullbacked hypergeometric 
functions, modular forms, modular equations, Hauptmoduls, creative 
telescoping, series with integer coefficients
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1. Introduction

It was shown in [1, 2] that different physical related quantities, like the n-fold integrals χ(n), 
corresponding to the n-particle contributions of the magnetic susceptibility of the Ising model 
[3–6], or the lattice Green functions [7–11], are diagonals of rational functions [12–17].

While showing that the n-fold integrals χ(n) of the susceptibility of the Ising model are 
diagonals of rational functions requires some effort, seeing that the lattice Green functions are 
diagonals of rational functions nearly follows from their definition. For example, the lattice 
Green functions (LGF) of the d-dimensional face-centred cubic (fcc) lattice are given [10, 11] 
by:

1
πd

∫ π

0
· · ·

∫ π

0

dk1 · · · dkd

1 − x · λd
, with: λd =

(
d
2

)−1 d∑
i=1

d∑
j=i+1

cos(ki) cos(kj). (1)

The LGF can easily be seen to be a diagonal of a rational function: introducing the complex 
variables zj = ei kj, j = 1, · · · , d , the LGF (1) can be seen as a d-fold generalization of 
Cauchy’s contour integral [1]:

Diag(F) =
1

2πi

∮

γ

F(z1, z/z1)
dz1

z1
. (2)

Furthermore, the linear differential operators annihilating the physical quantities men-
tioned earlier χ(n), are reducible operators. Being reducible they are ‘breakable’ into smaller 
factors [4, 5] that happen to be operators associated with elliptic functions, or generalizations 
thereof: modular forms, Calabi–Yau operators [18, 19]... Yet there exists a class of diagonals 
of rational functions in three variables5 whose diagonals are pullbacked 2F1 hypergeometric 
functions, and in fact modular forms [21]. These sets of diagonals of rational functions in 
three variables in [21] were obtained by imposing the coefficients of the polynomial P(x, y, z) 
appearing in the rational function 1/P(x, y, z) defining the diagonal to be zero or one6.

While these constraints made room for exhaustivity, they were quite arbitrary, which raises 
the question of randomness of the sample : is the emergence of modular forms [20], with the 
constraints imposed in [21], an artefact of the sample? 

Our aim in this paper is to show that modular forms emerge for a much larger set of rational 
functions of three variables, than the one previously introduced in [21], firstly because we 
obtain a whole family of rational functions whose diagonals give modular forms by adjoining 
parameters, and secondly through considerations of symmetry.

In particular, we will find that the seven-parameter rational function of three variables, 
with a numerator equal to one and a denominator being a polynomial of degree two at most, 
given by:

R(x, y, z) =
1

a + b1 x + b2 y + b3 z + c1 y z + c2 x z + c3 x y
,

 (3)
can be expressed as a particular pullbacked 2F1 hypergeometric function7

1
P2(x)1/4 · 2F1

(
[

1
12

,
5

12
], [1], 1 − P4(x)2

P2(x)3

)
, (4)

5 Diagonals of rational functions of two variables are just algebraic functions, so one must consider at least three 
variables to obtain special functions.
6 Or 0 or  ±1 in the four variable case also examined in [21].
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where P2(x) and P4(x) are two polynomials of degree two and four respectively. We then focus 
on subcases where the diagonals of the corresponding rational functions can be written as a 
pullbacked 2F1 hypergeometric function, with two rational function pullbacks related algebra-
ically by modular equations8.

This seven-parameter family will then be generalized into nine, then ten-parameter families 
of rational functions that are reciprocal of a polynomial in three variables of degree at most 
three. We will finally show that each of the previous results yields an infinite number of new 
exact pullbacked 2F1 hypergeometric function results, through symmetry considerations on 
monomial transformations and some function-dependent rescaling transformations.

2. Diagonals of rational functions of three variables depending on seven 
parameters

2.1. Recalls on diagonals of rational functions

Let us recall the definition of the diagonal of a rational function in n variables 
R(x1, . . . , xn) = P(x1, . . . , xn)/Q(x1, . . . , xn), where P  and Q are polynomials of x1, · · · , xn 
with integer coefficients such that Q(0, . . . , 0) �= 0. The diagonal of R is defined through its 
multi-Taylor expansion (for small xi’s)

R
(

x1, x2, . . . , xn

)
=

∞∑
m1 = 0

· · ·
∞∑

mn = 0

Rm1, ..., mn · xm1
1 · · · xmn

n , (5)

as the series in one variable x:

Diag
(
R
(

x1, x2, . . . , xn

))
=

∞∑
m = 0

Rm, m, ..., m · xm. (6)

Diagonals of rational functions of two variables are algebraic functions [26, 27]. Interesting 
cases of diagonals of rational functions thus require considering rational functions of at least 
three variables.

2.2. A seven-parameter family of rational functions of three variables

We obtained the diagonal of the rational function in three variables depending on seven 
parameters:

R(x, y, z) =
1

a + b1 x + b2 y + b3 z + c1 y z + c2 x z + c3 x y
.

 (7)
This result was obtained by:

 •  Running the HolonomicFunctions [28] package in Mathematica for arbitrary parameters 
a, b1, · · · , c1, · · · and obtaining a large-sized second order linear differential operator L2.

7 The selected 2F1([1/12, 5/12], [1], P) hypergeometric function is closely related to modular forms  
[22, 23]. This can be seen as a consequence of the identity with the Eisenstein series E4 and E6 and this very 
2F1([1/12, 5/12], [1], P) hypergeometric function (see theorem 3 page 226 in [24] and page 216 of [25]): 
E4(τ) = 2F1([1/12, 5/12], [1], 1728/j(τ))4 (see also equation (88) in [22] for E6).
8 Thus providing a nice illustration of the fact that the diagonal is a modular form [23].

Y Abdelaziz et alJ. Phys. A: Math. Theor. 51 (2018) 455201
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 •  Running the maple command ‘ hypergeometricsols’ [29] for different sets of values of the 
parameters on the operator L2, and guessing9 the Gauss hypergeometric function 2F1 with 
general parameters solution of L2.

2.3. The diagonal of the seven-parameter family of rational functions: the general form

We find the following experimental results: all these diagonals are expressed in terms of 
only one pullbacked hypergeometric function. This is worth pointing out that for an order-
two linear differential operator with pullbacked 2F1 hypergeometric function solutions, the  
‘hypergeometricsols’ command in nearly all cases gives the solutions as a sum of two 2F1 
hypergeometric functions. Here, quite remarkably, the result is ‘encapsulated’ in just one pull-
backed hypergeometric function. We find that these diagonals are expressed as pullbacked 
hypergeometric functions of the form

1
P4(x)1/6 · 2F1

(
[

1
12

,
7

12
], [1],

1728 · x3 · P5(x)
P4(x)2

)
, (8)

where the two polynomials P4(x) and P5(x), in the 1728 x3 P5(x)/P4(x)2 pullback, are polynomi-
als of degree four and five in x respectively. The pullback in (8), given by 1728 x3 P5(x)/P4(x)2, 
has the form 1 − Q̃ where Q̃ is given by the simpler expression

Q̃ =
P2(x)3

P4(x)2 , (9)

where P2(x) is a polynomial of degree two in x. Recalling the identity

2F1

(
[

1
12

,
7
12

], [1], x
)

= (1 − x)−1/12 · 2F1

(
[

1
12

,
5

12
], [1],

−x
1 − x

)
, (10)

the previous pullbacked hypergeometric function (8) can be rewritten as

1
P2(x)1/4 · 2F1

(
[

1
12

,
5

12
], [1], −1728 · x3 · P5(x)

P2(x)3

)
, (11)

where P5(x) is the same polynomial of degree five as the one in the pullback in expression (8). 
This new pullback also has the form 1 − Q with Q given by10:

−1728 · x3 · P5(x)
P2(x)3 = 1 − Q where: Q =

P4(x)2

P2(x)3 . (12)

Finding the exact result for arbitrary values of the seven parameters now boils down to a 
guessing problem.

2.4. Exact expression of the diagonal for arbitrary parameters a, b1, ..., c1, ...

Now that the structure of the result is understood ‘experimentally’ we obtain the result for 
arbitrary parameters a, b1, b2, b3, c1, c2, c3.

Assuming that the diagonal of the rational function (7) has the form explicited in the previ-
ous subsection

9 The program ‘hypergeometricsols’ [29] does not run for arbitrary parameters, hence our recourse to guessing.
10 Note that Q given in (12), is the reciprocal of Q̃ given in (9): Q = 1/Q̃.

Y Abdelaziz et alJ. Phys. A: Math. Theor. 51 (2018) 455201
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1
P2(x)1/4 · 2F1

(
[

1
12

,
5

12
], [1], 1 − P4(x)2

P2(x)3

)
, (13)

where P2(x) and P4(x) are two polynomials of degree two and four respectively:

P4(x) = A4 x4 + A3 x3 + A2 x2 + A1 x + A0, (14)

P2(x) = B2 x2 + B1 x + B0, (15)

one can write the order-two linear differential operator having this eight-parameter solution 
(13), and identify this second order operator depending on eight arbitrary parameters Ai, Bi in 
(14), with the second order linear differential operator obtained using the HolonomicFunctions 
[28] program for arbitrary parameters. Using the results obtained for specific values of the 
parameters, one easily guesses that A0 = a6 and B0 = a4. One finally gets11:

P2(x) =

8 ·
(

3 a c1 c2 c3 + 2 · (b2
1 c2

1 + b2
2 c2

2 + b2
3 c2

3 − b1 b2 c1 c2 − b1 b3 c1 c3 − b2 b3 c2 c3)
)
· x2

− 8 · a ·
(

a · (b1 c1 + b2 c2 + b3 c3) − 3 b1 b2 b3

)
· x + a4,

 

(16)

and

P4(x) = 216 · c2
1 c2

2 c2
3 · x4 − 16 ·

(
9 · a c1 c2 c3 · (b1 c1 + b2 c2 + b3 c3)

− 6 · (b2
1 b2 c2

1 c2 + b1 b2
2 c1 c2

2 + b2
1 b3 c2

1 c3 + b1 b2
3 c1 c2

3 + b2
2 b3 c2

2 c3 + b2 b2
3 c2 c2

3)

+ 4 · (b3
1 c3

1 + b3
2 c3

2 + b3
3 c3

3) − 3 b1 b2 b3 c1 c2 c3

)
· x3

+ 12 ·
(

3 a3 c1 c2 c3 + 4 · a2 · (b2
1 c2

1 + b2
2 c2

2 + b2
3 c2

3)

+ 2 · a2 · (b1 b2 c1 c2 + b1 b3 c1 c3 + b2 b3 c2 c3)

− 12 · a · b1 b2 b3 · (b1 c1 + b2 c2 + b3 c3) + 18 · b2
1 b2

2 b2
3

)
· x2

− 12 · a3 ·
(

a · (b1 c1 + b2 c2 + b3 c3) − 3 b1 b2 b3

)
· x + a6.

 

(17)

The polynomial P5(x) in (12), given by P5(x) = (P4(x)2 − P2(x)3)/1728/x3, is a slightly 
larger polynomial of the form

P5(x) = 27 · c4
1 c4

2 c4
3 · x5 + · · · + q1 · x + q0, where:

q0 = − b1 b2 b3 a3 · (a c1 − b2 b3) · (a c2 − b1 b3) · (a c3 − b1 b2).
 (18)

The coefficient q1 in x reads for instance:

11 The exact expressions (16) and (17) of these two polynomials P2(x) and P4(x) can be found as electronic material, 
at (www.koutschan.de/data/diag/).

Y Abdelaziz et alJ. Phys. A: Math. Theor. 51 (2018) 455201
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q1 = c1 c2 c3 (b1 b2 c1 c2 + b1 b3 c1 c3 + b2 b3 c2 c3) · a5

−
(

b2
1 b2

2 c2
1 c2

2 + b2
1 b2

3 c2
1 c2

3 + b2
2 b2

3 c2
2 c2

3 − 8 b1 b2 b3 c1 c2 c3 · (b1 c1 + b2 c2 + b3 c3)
)
· a4

− b1 b2 b3 ·
(

57 b1 b2 b3 c1 c2 c3

+ 8 · (b2
1 b2 c2

1 c2 + b2
1 b3 c2

1 c3 + b1 b2
2 c1 c2

2 + b1 b2
3 c1 c2

3 + b2
2 b3 c2

2 c3 + b2 b2
3 c2 c2

3)
)
· a3

+ 8 b2
1 b2

2 b2
3 · (b2

1 c2
1 + b2

2 c2
2 + b2

3 c2
3) · a2

+ 46 · b2
1 b2

2 b2
3 · (b1 b2 c1 c2 + b1 b3 c1 c3 + b2 b3 c2 c3) · a2

− 36 · b3
1 b3

2 b3
3 · (b1 c1 + b2 c2 + b3 c3) · a + 27 b4

1 b4
2 b4

3.

 

(19)

Having ‘guessed’ the exact result, one can easily verify directly that this exact pullbacked 
hypergeometric result is truly the solution of the large second order linear differential operator 
obtained using the ‘HolonomicFunctions’ program [28].

2.5. Simple symmetries of this seven-parameter result

The different pullbacks

P1 = −1728 · x3 · P5(x)
P2(x)3 ,

1728 · x3 · P5(x)
P4(x)2 , 1 − P4(x)2

P2(x)3 , (20)

turn out to be compatible with the symmetries

P1(λ · a, λ · b1, λ · b2, λ · b3, λ · c1, λ · c2, λ · c3, x)

= P1(a, b1, b2, b3, c1, c2, c3, x)
 (21)

and

P1

(
a, λ1 · b1, λ2 · b2, λ3 · b3, λ2 λ3 · c1, λ1 λ3 · c2, λ1 λ2 · c3,

x
λ1 λ2 λ3

)

= P1(a, b1, b2, b3, c1, c2, c3, x),
 

(22)

where λ, λ1, λ2 and λ3 are arbitrary complex numbers. A demonstration of these symmetry-
invariance relations (21) and (22) is sketched in appendix A.

2.6. A symmetric subcase τ → 3 τ : 2F1([1/3, 2/3], [1],P)

2.6.1. A few recalls on Maier’s paper. We know from Maier [23] that the modular equation 
associated with12 τ → 3τ  corresponds to the elimination of the z variable between the two 
rational pullbacks:

P1(z) =
123 · z3

(z + 27) · (z + 243)3 , P2(z) =
123 · z

(z + 27) · (z + 3)3 .

 

(23)

Following Maier [23] one can also write the identities:

(
9 ·

( z + 27
z + 243

))1/4
· 2F1

(
[

1
12

,
5

12
],

1728 z3

(z + 27) · (z + 243)3

)

=
(1

9
·
( z + 27

z + 3

))1/4
· 2F1

(
[

1
12

,
5
12

],
1728 z

(z + 27) · (z + 3)3

) 

(24)

12 τ denotes the ratio of the two periods of the elliptic functions that naturally emerge in the problem [22].

Y Abdelaziz et alJ. Phys. A: Math. Theor. 51 (2018) 455201
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= 2F1

(
[
1
3

,
2
3
], [1],

z
z + 27

)
. (25)

Having a hypergeometric function identity (24) with two rational pullbacks (23) related 
by a modular equation provides a good heuristic way to see that we have a modular form  
[22, 23]13.

2.6.2. The symmetric subcase. Taking the symmetric limit b1 = b2 = b3 = b and 
c1 = c2 = c3 = c in expression (13), we obtain the solution of the order-two linear differ-
ential operator annihilating the diagonal14 in the form

1
P2(x)1/4 · 2F1

(
[

1
12

,
5

12
], [1], 1 − P4(x)2

P2(x)3

)

=
1

P2(x)1/4 · 2F1

(
[

1
12

,
5
12

], [1], −1728 · x3 · P5(x)
P2(x)3

)
,

 

(26)

with

P2(x) = a · (24 · c3 · x2 − 24 · b · (a c − b2) · x + a3), (27)

P4(x) = 216 · c6 · x4 − 432 · b c3 · (a c − b2) · x3

+ 36 · (a3 c3 + 6 · a2 b2 c2 − 12 · a b4 c + 6 · b6) · x2

− 36 · a3 b · (a c − b2) · x + a6

 

(28)

and:

P5(x) = (27 c3 x2 − 27 b · (a c − b2) · x + a3) · (c3 x − b · (a c − b2))3.
 

(29)

In this symmetric case, one can write the pullback in (26) as follows:

−1728 · x3 · P5(x)
P2(x)3 =

123 · z3

(z + 27) · (z + 243)3 , (30)

where z reads:

z = − 93 · x · (c3 · x − b · (a c − b2))

27 · c3 · x2 − 27 · b · (a c − b2) · x + a3 . (31)

Injecting the expression (31) for z in P2(z) given by (23), one gets another pullback

P2(z) = −1728 · x · P̃5

P̃2(x)3
, (32)

with

P̃5(x) = (27 c3 x2 − 27 b · (a c − b2) · x + a3)3 · (c3 x − b · (a c − b2))
 

(33)

and:
P̃2(x) = a · (−216 · c3 · x2 + 216 · b · (a c − b2) · x + a3). (34)

13 Something that is obvious here since we are dealing with a 2F1([1/12, 5/12], [1], x) hypergeometric function 
which is known to be related to modular functions [22, 23] due to its relation with the Eisenstein series E4, but is 
less clear for other hypergeometric functions.
14 Called the ‘telescoper’ [30, 31].

Y Abdelaziz et alJ. Phys. A: Math. Theor. 51 (2018) 455201
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In this case the diagonal of the rational function can be written as a single hypergeometric 
function with two different pullbacks

1
P2(x)1/4 · 2F1

(
[

1
12

,
5

12
], [1], −1728 · x3 · P5(x)

P2(x)3

)

=
1

P̃2(x)1/4
· 2F1

(
[

1
12

,
5
12

], [1], −1728 · x · P̃5(x)
P̃2(x)3

)
,

 (35)

with the relation between the two pullbacks given by the modular equation associated  
[22, 23] with τ → 3 τ :

227 · 59 · Y3Z3 · (Y + Z) + 218 · 56 · Y2Z2 · (27 Y2 − 45 946 YZ + 27 Z2)

+ 29 · 53 · 35 · YZ · (Y + Z) · (Y2 + 241 433 YZ + Z2)

+ 729 · (Y4 + Z4) − 779 997 924 · (YZ3 + Y3Z) + 31 949 606 · 310 · Y2Z2

+ 29 · 311 · 31 · Y Z · (Y + Z) − 212 · 312 · YZ = 0.

2.6.3. Alternative expression for the symmetric subcase. Alternatively, we can obtain the 
exact expression of the diagonal using directly the ‘HolonomicFunctions’ program [28] for 
arbitrary parameters a, b and c to get an order-two linear differential operator annihilating that 
diagonal. Then, using ‘ hypergeometricsols’15 we obtain that the solution of this second order 
linear differential operator is given by

1
a
· 2F1

(
[
1
3

,
2
3
], [1], −27

a3 · x · (c3 x − b · (a c − b2))
)

,
 (36)

which looks, at first sight, different from (26) with (27) and (28). Yet this last expression (36) 
is compatible with the form (26) as a consequence of the identity:

(9 − 8 x
9

)1/4
· 2F1

(
[
1
3

,
2
3
], [1], x

)
= 2F1

(
[

1
12

,
5

12
],

64 x3 · (1 − x)
(9 − 8 x)3

)
.

 
(37)

The reduction of the (generic) 2F1([1/12, 5/12], [1],P) hypergeometric function to a 
2F1([1/3, 2/3], [1],P) form corresponds to a selected τ → 3 τ  modular equation  situation 
(23) well described in [23].

These results can also be expressed in terms of 2F1([1/3, 1/3], [1], P) pullbacked hyper-
geometric functions [23] using the identities

2F1

(
[
1
3

,
1
3
], [1], x) = (1 − x)−1/3 · 2F1

(
[
1
3

,
2
3
], [1], − x

1 − x
)

=
(
(1 − 9 x)3 · (1 − x)

)−1/12
· 2F1

(
[

1
12

,
5
12

], [1], − 64 x
(1 − 9 x)3 · (1 − x)

)
,

 
(38)

or:

2F1

(
[
1
3

,
1
3
], [1], − x

27
) =

(
1 +

x
27

)−1/3
· 2F1

(
[
1
3

,
2
3
], [1],

x
x + 27

)

=
( (x + 3)3 · (x + 27)

729

)−1/12
· 2F1

(
[

1
12

,
5
12

], [1],
1728 x

(x + 3)3 · (x + 27)

)
.

 
(39)

15 We use M van Hoeij ‘hypergeometricsols’ program [29] for many values of a, b and c, and then perform some 
guessing.
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2.7. A non-symmetric subcase τ → 4 τ : 2F1([1/2, 1/2], [1],P)

Taking the non-symmetric limit b1 = b2 = b3 = b and c1 = c2 = 0, c3 = b2/a in (13), the 
pullback in (26) reads:

P1 = −1728 · x3 · P5(x)
P2(x)3 =

1728 · a3 b12 · x4 · (16 b3 x + a3)

(16 b6 x2 + 16 a3 b3 x + a6)3 . (40)

This pullback can be seen as the first of the two Hauptmoduls

P1 =
1728 · z4 · (z + 16)

(z2 + 256 z + 4096)3 , P2 =
1728 · z · (z + 16)
(z2 + 16 z + 16)3 , (41)

provided z is given by16:

z =
256 b3 x

a3 or: z =
−256 b3 · x
a3 + 16 b3 x

. (42)

These exact expressions (42) of z in terms of x  give exact rational expressions of the second 
Hauptmodul P2 in terms of x:

P(1)
2 =

1728 · a12 b3 · x · (a3 + 16 b3 x)4

(4096 b6 x2 + 256 a3 b3 x + a6)3 or: (43)

P(2)
2 =

−1728 · a3 b3 · x · (a3 + 16 b3 x)4

(256 b6 x2 − 224 a3 b3 x + a6)3 . (44)

These two pullbacks (40), (43) and (44) (or P1 and P2 in (41)) are related by a modular  
equation corresponding17 to τ → 4 τ .

This subcase thus corresponds to the diagonal of the rational function being expressed in 
terms of a modular form associated to an identity on a hypergeometric function:

(16 b6 x2 + 16 a3 b3 x + a6)−1/4 · 2F1

(
[

1
12

,
5

12
], [1], P1

)

= (4096 b6 x2 + 256 a3 b3 x + a6)−1/4 · 2F1

(
[

1
12

,
5
12

], [1], P(1)
2

)

= (256 b6 x2 − 224 a3 x + a6)−1/4 · 2F1

(
[

1
12

,
5
12

], [1], P(2)
2

)

= 2F1

(
[
1
2

,
1
2
], [1], − 16 · b3

a3 · x
)

.
 

(45)

The last equality is a consequence of the identity:

2F1

(
[
1
2

,
1
2
], [1], − x

16

)

= 2 · (x2 + 16 x + 16)−1/4 · 2F1

(
[

1
12

,
5
12

], [1],
1728 · x · (x + 16)
(x2 + 16 x + 16)3

)
.

 

(46)

Similarly, the elimination of x between the pullback X = P1 (given by (40)) and Y = P(1)
2  

gives the same modular equation (representing τ → 4 τ ) as the elimination of x between the 

16 These two expressions are related by the involution z ↔ −16 z/(z + 16).
17 See page 20 in [22].
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pullback X = P1 (given by (40)) and Y = P(2)
2 , given in appendix B by equation (B.1). The 

elimination of x between the pullback X = P(1)
2  (given by (40)) and the pullback Y = P(2)

2  
also gives the same modular equation (B.1).

2.8. 2F1([1/4, 3/4], [1],P) subcases: walks in the quarter plane

The diagonal of the rational function

4
4 + 2 · (x + y + z) + 2 · x z + x y

, (47)

is given by the pullbacked hypergeometric function:

(
1 +

3
4
· x2

)−1/4
· 2F1

(
[

1
12

,
5

12
], [1],

27 x4 · (x2 + 1)
(3 x2 + 4)3

)

= 2F1

(
[
1
4

,
3
4
], [1], −x2),

 

(48)

which is reminiscent of the hypergeometric series number 5 and 15 in figure 10 of [32]. Such 
pullbacked hypergeometric function (48) corresponds to the rook walk problems [33–35].

Thus the diagonal of the rational function corresponding to the simple rescaling 
(x, y, z) −→ (±

√
−1 x, ±

√
−1 y, ±

√
−1 z) of (47) given by

R± =
4

4 ± 2
√
−1 · (x + y + z) − 2 · x z − x y

 (49)

or the diagonal of the rational function (R+ + R−)/2 reading

4 · (4 − xy − 2 xz)
y2x2 + 4 x2yz + 4 x2z2 + 4 x2 − 8 xz + 4 y2 + 8 yz + 4 z2 + 16

, (50)

becomes (as a consequence of identity (48)):

(
1 − 3

4
· x2

)−1/4
· 2F1

(
[

1
12

,
5

12
], [1],

27 x4 · (1 − x2)

(4 − 3 x2)3

)

= 2F1

(
[
1
4

,
3
4
], [1], x2

)
.

 
(51)

Though it is not explicitely mentioned in [23] it is worth pointing out that the 
2F1([1/4, 3/4], [1],P) hypergeometric functions can be seen as modular forms corre sponding 
to identities with two pullbacks related by a modular equation. For example the following 
identity:

2F1

(
[
1
4

,
3
4
], [1],

x2

(2 − x)2

)

=
( 2 − x

2 · (1 + x)

)1/2
· 2F1

(
[
1
4

,
3
4
], [1],

4 x
(1 + x)2

)
,

 

(52)

where the two rational pullbacks

A =
4 x

(1 + x)2 , B =
x2

(2 − x)2 , (53)
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are related by the asymmetric18 modular equation:

81 · A2 B2 − 18 A B · (8 B + A) + (A2 + 80 · A B + 64 B2) − 64 B = 0.
 

(54)

The modular equation (54) gives an expansion for B that can be seen as an algebraic series19 
in A:

B =
1
64

A2 +
5

256
A3 +

83
4096

A4 +
163
8192

A5 +
5013

262 144
A6 + · · ·

 

(55)

More details are given in appendix C.

2.9. The generic case: modular forms, pullbacked hypergeometric functions  
with just one rational pullback

The pullbacks of the 2F1 hypergeometric functions in the previous sections  can be seen as 
Hauptmoduls [23]. It is only in certain cases like in sections (2.6) or (2.7) that we encounter the 
situation underlined by Maier [23] of a representation of a modular form as a pullbacked hyper-
geometric function with two rational pullbacks, related by a modular equation of genus zero.

Examples of modular equations  of genus zero with rational pullbacks include for 
example reductions of the generic 2F1([1/12, 5/12], [1], P) hypergeometric function to 
particular hypergeometric functions like 2F1([1/2, 1/2], [1], P), 2F1([1/3, 2/3], [1], P), 
2F1([1/4, 3/4], [1], P), and also [25] 2F1([1/6, 5/6], [1], P) (see for instance [36]).

In the generic situation corresponding to (13) however, we have a single hypergeometric 
function with two pullbacks A and B

2F1

(
[

1
12

,
5

12
], [1], A

)
= G · 2F1

(
[

1
12

,
5

12
], [1], B

)
, (56)

with G an algebraic function of x, and where A and B are related by an algebraic modular 
equation, with one of the pullbacks a rational function given by (12) where P2(x) and P4(x) 
are given respectively by (16) and (17). The two pullbacks A and B are also related by a 
Schwarzian equation [22, 37, 38] that can be written in a symmetric way in A and B:

1
72

32 B2 − 41 B + 36
B2 · (B − 1)2 ·

(dB
dx

)2
+ {B, x}

=
1
72

32 A2 − 41 A + 36
A2 · (A − 1)2 ·

(dA
dx

)2
+ {A, x}.

 

(57)

One can rewrite the exact expression (13) in the form

1
P2(x)1/4 · 2F1

(
[

1
12

,
5

12
], [1], 1 − P4(x)2

P2(x)3

)

= B · 2F1

(
[

1
12

,
5
12

], [1], B
)

,
 

(58)

18 At first sight one expects the two pullbacks (53) in a relation like (54) to be on the same footing, the modular 
equation between these two pullbacks being symmetric: see for instance [22]. This paradox is explained in detail in 
appendix C
19 We discard the other root expansion B = 1 + A + 5

4 A2 + 25
16 A3 + 31

16 A4 + · · · since B(0) �= 0.
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where B is an algebraic function of x, and B is an algebraic pullback related to the rational 
pullback A = 1 − P4(x)2/P2(x)3 by a modular equation. In the generic case, only one of the 
two pullbacks (58) can be expressed as a rational function of x.

3. Nine and ten-parameter generalizations

Adding randomly terms in the denominator of (7) yields diagonals annihilated by minimal 
linear differential operators of order higher than two: this is what happens when quadratic 
terms like x2, y2 or z2 are added for example. This leads to irreducible telescopers [30, 31] (i.e. 
linear differential operators annihilating the diagonals) of orders higher than two, or to reduc-
ible telescopers [30] that factor into several irreducible factors, one of them being of order 
larger than two.

With the idea of keeping the linear differential operators annihilating the diagonal of order 
two, we were able to generalize the seven-parameter family (7) by carefully choosing the 
terms added to the quadratic terms in (7) and still keep the linear differential operator annihi-
lating the diagonal of order two.

3.1. Nine-parameter rational functions giving pullbacked 2F1 hypergeometric  
functions for their diagonals

Adding the two cubic terms x2 y  and y z2 to the denominator of (7)

1
a + b1 x + b2 y + b3 z + c1 y z + c2 x z + c3 x y + d x2 y + e y z2 ,

 

(59)

gives a linear differential operator annihilating the diagonal of (59) of order two20. After com-
puting the second order linear differential operator annihilating the diagonal of (59) for several 
values of the parameters with the ‘HolonomicFunctions’ program [28], then obtaining their 
pullbacked hypergeometric solutions using the maple command ‘hypergeometricsols’ [29], 
we find that the diagonal of the rational function (59) has the form

1
P4(x)1/4 · 2F1

(
[

1
12

,
5
12

], [1], 1 − P6(x)2

P4(x)3

)
,

 
(60)

where P4(x) and P6(x) are two polynomials of degree four and six respectively21:

P4(x) = p2 + 16 · d2 · e2 · x4

− 16 ·
(

3 · c2 · (c2
1 · d + c2

3 · e) + (b1 c1 + b3 c3 − 14 b2 c2) · d e
)
· x3

+ 8 · (3 a b3 c1 d + 3 a b1 c3 e − a2 d e − 6 b2 b2
3 d − 6 b2 b2

1 e) · x2,
 

(61)

and

20 The nine-parameter family (59) singles out x and y, but of course, similar families that single out x and z, or single 
out y and z exist, with similar results (that can be obtained permuting the three variables x, y and z).
21 The exact expressions (61) and (62) of these two polynomials P4(x) and P6(x) can be found as electronic material, 
at (www.koutschan.de/data/diag/).
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P6(x) = p4 − 12 · a4 d e · x2

+ 36 · a2
(

b3 · (a c1 − 2 b2 b3) · d + b1 · (a c3 − 2 b1 b2) · e
)
· x2

− 72 · a c1 · (a c1 c2 − 10 b2 b3 c2 + 2 b2
3 c3) · d · x3

− 72 · a c3 · (a c2 c3 − 10 b1 b2 c2 + 2 b2
1 c1) · e · x3

− 144 · b2 b2
3 · (b1 c1 + 4 b2 c2 − 2 b3 c3) · d · x3

− 144 · b2 b2
1 · (b3 c3 + 4 b2 c2 − 2 b1 c1) · e · x3

− 144 · a b1 b3 · (c2
1 · d + c2

3 · e) · x3

+ 24 · a (a b3 c3 + a b1 c1 − 20 a b2 c2 + 30 b1 b2 b3) · d · e · x3

+ 216 · (b2
3 c2

1 · d2 + b2
1 c2

3 · e2) · x4

− 144 · c2
1 c2 · (b3 c3 + 4 b2 c2 − 2 b1 c1) · d · x4

− 144 · c2
3 c2 · (b1 c1 + 4 b2 c2 − 2 b3 c3) · e · x4

+ 48 · a2 d2 · e2 · x4 + 96 · (b2
1 c2

1 + b2
3 c2

3 + 22 b2
2 c2

2) · d · e · x4

− 144 ·
(
(a b3 c1 + 4 b2 b2

3) · d + (a b1 c3 + 4 b2 b2
1) · e

)
· d · e · x4

+ 48 · (b1 b3 c1 c3 + 15 a c1 c2 c3 − 20 b1 b2 c1 c2 − 20 b2 b3 c2 c3) · d · e · x4

+ 96 · (b1 c1 + 22 b2 c2 + b3 c3) · d2 · e2 · x5

− 576 c2 · (c2
3 · e + c2

1 · d) · d e · x5

− 64 · d3 · e3 · x6,
 

(62)

where the polynomials p2 and p4 are the polynomials P2(x) and P4(x) of degree two and four in 
x given by (16) and (17) in section 2: p2 and p4 correspond to the d = e = 0 limit.

It is worth pointing out two facts, firstly that the d ↔ e symmetry corresponds to keeping 
c2 fixed, but changing c1 ↔ c3 (or equivalently y fixed, x ↔ z), secondly that the simple 
symmetry arguments displayed in section 2.5 for the seven-parameter family straightforwardly 
generalize for this nine-parameter family (see relations (A.6) and (A.7) in appendix A.3).

3.2. Ten-parameter rational functions giving pullbacked 2F1 hypergeometric functions for their 
diagonals

Adding the three cubic terms22 x2 y, y2 z and z2 x to the denominator of (7) we get the rational 
function:

R(x, y, z) =
1

a + b1 x + b2 y + b3 z + c1 y z + c2 x z + c3 x y + d1 x2 y + d2 y2 z + d3 z2 x
.

 

(63)Note that (63) is not a generalization of (59).
After computing the second order linear differential operator annihilating the diagonal of 

(63) for several values of the parameters with the ‘HolonomicFunctions’ program [28], then 
their pullbacked hypergeometric solutions using ‘hypergeometricsols’ [29], we find that the 
diagonal of the rational function (63) has the experimentally observed form:

22 An equivalent family of ten-parameter rational functions amounts to adding x y2, y z2 and z x2.
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1
P3(x)1/4 · 2F1

(
[

1
12

,
5
12

], [1], 1 − P6(x)2

P3(x)3

)
. (64)

Furthermore, the pullback in (64) is seen to be of the form:

1 − P6(x)2

P3(x)3 =
1728 x3 · P9

P3(x)3 . (65)

The polynomial P3(x) reads

P3(x) = p2 − 24 ·
(

9 · a · d1 d2 d3 − 6 · (b1 c3 · d2 d3 + b2 c1 · d1 d3 + b3 c2 · d1 d2)

+ 2 · (c2
1 c2 d1 + c1 c2

3 d3 + c2
2 c3 d2)

)
· x3

+ 24 ·
(

a · (b1 c2 d2 + b2 c3 d3 + b3 c1 d1) − 2 · (b2
1 b3 d2 + b1 b2

2 d3 + b2 b2
3 d1)

)
· x2,

 

(66)

where p2 is the polynomial P2(x) of degree two in x given by (16) in section 2: p2 corresponds 
to the d1 = d2 = d3 = 0 limit. The expression of the polynomial P6(x) is more involved. 
It reads23:

P6(x) = p4 + ∆6(x), (67)

where p4 is the polynomial P4(x) of degree four in x given by (17) in section 2. The expression 
of polynomial ∆6(x) of degree six in x is quite large and is given in appendix D.

A set of results and subcases (sections 3.2.2 and 3.2.3), were used to ‘guess’ the general 
exact expressions of the polynomials P3(x) and P6(x) in (64) for the ten-parameters family (63). 
From the subcase d3 = 0 of section 3.2.1 below, it is easy to see that one can deduce similar 
exact results for d1 = 0 or d2 = 0 by performing the cyclic transformation x → y → z → x 
corresponding to the transformation b1 → b2 → b3 → b1, c1 → c2 → c3 → c1, 
d1 → d2 → d3 → d1. So one can see P3 and P6(x) as the polynomials p2 and p4 given by 
(16) and (17) with corrections terms given, in appendix E, by (E.1) and (E.2) for d3 = 0. 
Similar corrections24 for d1 = 0 and d2 = 0, as well as correction terms having the form 
d1 d2 d3 × ( · · · ), and so on and so forth, these terms being the most difficult to obtain25.

Similarly to the previous section the symmetry arguments displayed in section 2.5 for the 
seven-parameter family also apply to this ten-parameter family (see (A.8) and (A.9) in appen-
dix A.3).

Remark. Do note that adding arbitrary sets of cubic terms yields telescopers [30, 31] of 
order larger than two: the corresponding diagonals are no longer pullbacked 2F1 hypergeo-
metric functions.

Let us just now focus on simpler subcases whose results are easier to obtain than in the 
general case (63).

3.2.1. Subcase of (63): a nine-parameter rational function. Instead of adding three cubic 
terms, let us add two cubic terms. This amounts to restricting the rational function (63) to the 
d3 = 0 subcase

23 The exact expressions (66) and (67) of these two polynomials P3(x) and P6(x) can be found as electronic material, 
at (www.koutschan.de/data/diag/).
24 Taking care of the double counting!
25 We already know some of these terms from (72) and (73) in section 3.2.2 below. Furthermore, the symmetry 
constraints (A.9) and (A.8) in appendix A.3, as well as other constraints corresponding to the symmetric subcase of 
section 3.2.3, give additional constraints on the kind of allowed final correction terms.
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1
a + b1 x + b2 y + b3 z + c1 y z + c2 x z + c3 x y + d1 x2 y + d2 y2 z

, (68)

which cannot be reduced to the nine parameter family (59) even if it looks similar. The diago-
nal of the rational function (68) has the experimentally observed form

1
P3(x)1/4 · 2F1

(
[

1
12

,
5
12

], [1], 1 − P5(x)2

P3(x)3

)
, (69)

where P3(x) and P5(x) are two polynomials of degree respectively three and five in x. 
Furthermore the pullback in (69) has the form:

1 − P5(x)2

P3(x)3 =
1728 x3 · P7

P3(x)3 . (70)

The two polynomials P3(x) and P5(x) are given in appendix E.

3.2.2. Cubic terms subcase of (63). Taking the limit b1 = b2 = b3 = c1 = c2 = c3 = 0 
in (63) we obtain:

R(x, y, z) =
1

a + d1 · x2 y + d2 · y2 z + d3 · z2 x
,

whose diagonal reads

2F1

(
[
1
3

,
2
3
], [1], −27 · d1 d2 d3

a3 · x3
)

=
(

1 − 216 · d1 d2 d3

a3 · x3
)−1/4

· 2F1

(
[

1
12

,
5
12

], [1], 1 − P6(x)2

P3(x)3

)
,

 

(71)

with:

P3(x) = −216 · a d1 d2 d3 · x3 + a4, (72)

P6(x) = −5832 · d2
1 d2

2 d2
3 · x6 + 540 · a3 d1 d2 d3 · x3 + a6. (73)

3.2.3. A symmetric subcase of (63). Taking the limit symmetric limit b1 = b2 = b3 = b, 
c1 = c2 = c3 = c, d1 = d2 = d3 = d in (63), the diagonal reads26

1
a − 6 d · x

· 2F1

(
[
1
3

,
2
3
], [1], P

)
, (74)

where the pullback P  reads:

P = −
27 x ·

(
a2 d − a b c + b3 + (c3 − 3 b c d − 3 a d2) · x + 9 d3 · x2

)

(a − 6 d · x)3 .

 

(75)

At first sight the hypergeometric result (74) with the pullback (75) does not seem to be in 
agreement with the hypergeometric result (71) of section 3.2.2. In fact these two results are in 
agreement as a consequence of the hypergeometric identity:

26 Trying to mix the two previous subcases by imposing b1 = b2 = b3 = b, c1 = c2 = c3 = c with d1, d2 , d3 not 
being equal, does not yield a 2F1([1/3, 2/3], [1],P) hypergeometric function.
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1
1 − 6 X

· 2F1

(
[
1
3

,
2
3
], [1], −27 · X · (1 − 3 X + 9 X2)

(1 − 6 X)3

)

= 2F1

(
[
1
3

,
2
3
], [1], −27 · X3

)
with: X =

d · x
a

.
 

(76)

This hypergeometric result (71) can also be rewritten in the form (64) where the two polyno-
mials P3(x) and P6(x) read respectively:

P3(x) = − 72 · d · (3 ad2 − 6 bcd + 2 c3) · x3 + 24 · (3 abc d + ac3 − 6 b3 d) · x2

− 24 · a b · (ac − b2) · x + a4,
 (77)

P6(x) = − 5832 · d6 · x6 + 3888 · c d3 · (3 b d − c2) · x5

− 216 · (18 abc d3 + 18 b3 d3 − 12 ac3d2 − 9 b2c2 d2 + 6 bc4 d − c6) · x4

+ 108 · (5 a3 d3 − 18 a2bc d2 − 2 a2c3 d + 12 ab2c2 d + 24 ab3 d2 − 4 a bc4

− 12 b4c d + 4 b3c3) · x3

+ 36 · (3 a3bc d − 6 a2b3 d + a3c3 + 6 a2b2c2 − 12 ab4c + 6 b6) · x2

− 36 · a3 b · (ac − b2) · x + a6.

 

(78)

4. Transformation symmetries of the diagonals of rational functions

The previous results can be expanded through symmetry considerations: performing mono-
mial transformations on each of the previous (seven, nine or ten-parameter) rational functions 
yields an infinite number of rational functions whose diagonals are pullbacked 2F1 hypergeo-
metric functions.

4.1. (x , y , z) → (xn, yn, zn) symmetries

We have a first remark: once we have an exact result for a diagonal, we immediately get 
another diagonal by changing (x, y, z) into (xn, yn, zn) for any positive integer n in the rational 
function. As a result we obtain a new expression for the diagonal changing x into xn.

A simple example amounts to revisiting the fact that the diagonal of (49) given above is the 
hypergeometric function (51). Changing (x, y, z) into (8 x2, 8 y2, 8 z2) in (49), one obtains the 
pullbacked 2F1 hypergeometric function number 5 or 15 in figure 10 of [32] (see also [33–35])

2F1

(
[
1
4

,
3
4
], [1], 64 x4), (79)

can be seen as the diagonal of

2
2 + 8

√
−1 · (x2 + y2 + z2) − 64 x2 z2 − 32 · x2 y2

, (80)

which is tantamount to saying that the transformation (x, y, z) → (xn, yn, zn) is a symmetry.

4.2. Monomial transformations on rational functions

More generally, let us consider the monomial transformation

(x, y, z) −→ M(x, y, z) = (xM , yM , zM)

=
(

xA1 · yA2 · zA3 , xB1 · yB2 · zB3 , xC1 · yC2 · zC3

)
,

 (81)
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where the Ai’s, Bi’s and Ci’s are positive integers such that A1 = A2 = A3 is excluded (as 
well as B1 = B2 = B3 as well as C1 = C2 = C3), where the determinant of the 3 × 3 
matrix




A1 B1 C1

A2 B2 C2

A3 B3 C3


 , (82)

is not equal to zero27, and where:

A1 + B1 + C1 = A2 + B2 + C2 = A3 + B3 + C3. (83)

We will denote by n the integer in these three equal28 sums (83): n = Ai + Bi + Ci. The con-
dition (83) is introduced in order to force the product29 of xM yM zM  to be an integer power of 
the product of x y z : xM yM zM = (x y z)n.

If we take a rational function R(x, y, z) in three variables and perform a monomial trans-
formation (81) (x, y, z) → M(x, y, z), on the rational function R(x, y, z), we get another 
rational function that we denote by R̃ = R(M(x, y, z)). Now the diagonal of R̃ is the diago-
nal of R(x, y, z) where we have changed x into xn:

Φ(x) = Diag
(
R
(

x, y, z
))

, Diag
(
R̃
(

x, y, z
))

= Φ(xn). (84)

A demonstration of this result is sketched in appendix F.
From the fact that the diagonal of the rational function

1
1 + x + y + z + 3 · (x y + y z + x z)

, (85)

is the hypergeometric function

2F1

(
[
1
3

,
2
3
], [1], 27 x · (2 − 27 x)

)
, (86)

one deduces for example that the diagonal of the rational function (85) transformed by the 
monomial transformation (x, y, z) −→ (z, x2 y, y z)  

1
1 + y z + x2 y + 3 · (y z2 + x2 y z + x2 y2 z)

, (87)

is the pullbacked hypergeometric function

2F1

(
[
1
3

,
2
3
], [1], 27 x2 · (2 − 27 x2)

)
, (88)

which is (86) where x → x2.
To illustrate the point further, from the fact that the diagonal of the rational function

1
1 + x + y + z + 3 x y + 5 y z + 7 x z

, (89)

27 We want the rational function R̃ = R(M(x, y, z)) deduced from the monomial transformation (81) to remain a 
rational function of three variables and not of two, or one, variables.
28 For n = 1 the 3 × 3 matrix (82) is stochastic and transformation (81) is a birational transformation.
29 Recall that taking the diagonal of a rational function of three variables extracts, in the multi-Taylor expansion (5), 
only the terms that are nth power of the product x y z .
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is the hypergeometric function

1
(2712 x2 − 96 x + 1)1/4

× 2F1

(
[

1
12

,
5
12

], [1], 1 − (2381 400 x4 − 181 440 x3 + 7524 x2 − 144 x + 1)2

(2712 x2 − 96 x + 1)3

)
,

 
(90)

one deduces immediately that the diagonal of the rational function (89) transformed by the 
monomial transformation (x, y, z) → (x z, x2 y, y2 z2)

1
1 + x z + x2 y + y2 z2 + 3 x2 y3 + 5 x y2 z3 + 7 x3 y z

, (91)

is the hypergeometric function

1
(2712 x6 − 96 x3 + 1)1/4

× 2F1

(
[

1
12

,
5
12

], [1], 1 − (2381 400 x12 − 181 440 x9 + 7524 x6 − 144 x3 + 1)2

(2712 x6 − 96 x3 + 1)3

)
,

 

(92)

which is nothing but (90) where x has been changed into x3.

4.3. More symmetries on diagonals

Other transformation symmetries of the diagonals include the function dependent rescaling 
transformation

(x, y, z) −→
(

F(x y z) · x, F(x y z) · y, F(x y z) · z
)

, (93)

where F(x y z) is a rational function30 of the product of the three variables x , y and z. Under 
such a transformation the previous diagonal ∆(x) becomes ∆(x · F(x)3).

To illustrate the point take

(x, y, z) −→
(

x · F, y · F, z · F
)

, with: (94)

F =
1 + 2 x y z

1 + 3 x y z + 5 x2 y2 z2 = Φ(x y z), (95)

where: Φ(x) =
1 + 2 x

1 + 3 x + 5 x2 , (96)

the rational function

1
1 + x + y + z + y z + x z + x y

, (97)

whose diagonal is 2F1([1/3, 2/3], [1], −27 x2), becomes the rational function 
P(x, y, z)/Q(x, y, z), where the numerator P(x, y, z) and the denominator Q(x, y, z), read 
respectively:

P(x, y, z) = (1 + 3 x y z + 5 x2 y2 z2)2, (98)

30 More generally one can imagine that F(x y z) is the series expansion of an algebraic function.
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Q(x, y, z) = 25 x4y4z4 + 10 · (x4y3z3 + x3y4z3 + x3y3z4) + 30 x3y3z3

+ 4 · (x3y3z2 + x3y2z3 + x2y3z3) + 11 · (x3y2z2 + x2y3z2 + x2y2z3)

+ 19 x2y2z2 + 4 · (x2y2z + x2yz2 + xy2z2) + 5 · (x2yz + xy2z + xyz2)

+ 6 xyz + xy + xz + yz + x + y + z + 1.
 

(99)

The diagonal of this last rational function is equal to:

2F1

(
[
1
3

,
2
3
], [1], −27 ·

(
x · Φ(x)3

)2)

= 2F1

(
[
1
3

,
2
3
], [1], −27 x2 ·

( 1 + 2 x
1 + 3 x + 5 x2

)6)
.

 

(100)

Let us give another example: let us consider again the rational function (89) whose diago-
nal is (90), and let us consider the same function-rescaling transformation (94) with (95). One 
finds that the diagonal of the rational function

1
1 + F · x + F · y + F · z + 3 · F2 · x y + 5 · F2 · y z + 7 · F2 · x z

,

 

(101)

is the hypergeometric function

1
(2712 x2 Φ(x)6 − 96 x Φ(x)3 + 1)1/4 × 2F1

(
[

1
12

,
5

12
], [1], 1 −H

)
, (102)

where the pullback 1 −H reads:

1 − (2381 400 x4 Φ(x)12 − 181 440 x3 Φ(x)9 + 7524 x2 Φ(x)6 − 144 xΦ(x)3 + 1)2

(2712 x2 Φ(x)6 − 96 xΦ(x)3 + 1)3 .

The pullbacked hypergeometric function (102) is nothing but (90) where x has been changed 
into xΦ(x)3. A demonstration of these results is sketched in appendix G.

Thus for each rational function belonging to one of the seven, eight, nine or ten parameter 
families of rational functions yielding a pullbacked 2F1 hypergeometric function, one can 
deduce from the function dependent rescaling transformations (93) and the monomial trans-
formations (81) as well as through the combination of these two transformations an infinite 
number of other rational functions, having denominators with a higher degree than three, 
yielding pullbacked 2F1 hypergeometric functions related to modular forms for their diagonals.

5. Conclusion

We found here that a seven-parameter rational function of three variables with a numera-
tor equal to one and a polynomial denominator of degree two at most, can be expressed as 
a pullbacked 2F1 hypergeometric function. We then generalized that result to nine and ten 
parameters, by adding specific cubic terms. We focused on subcases where the diagonals of 
the corresponding rational functions are pullbacked 2F1 hypergeometric function with two 
possible rational function pullbacks algebraically related by modular equations, thus obtain-
ing the result that the diagonal is a modular form31.

We have finally seen that monomial transformations, as well as a function rescaling of 
the three (resp. N) variables, are symmetries of the diagonals of rational functions of three 

31 Differently from the usual definition of modular forms in the τ variables.
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(resp. N) variables. Consequently, each of our previous families of rational functions, once 
transformed by these symmetries, yields an infinite number of families of rational functions 
of three variables (of higher degree) whose diagonals are also pullbacked 2F1 hypergeometric 
functions, related to modular forms.

Since diagonals of rational functions emerge naturally in integrable lattice statistical 
mechanics and enumerative combinatorics, exploring the kind of exact results we obtain 
for diagonals of rational functions (modular forms, Calabi–Yau operators, pullbacked nFn−1 
hypergeometric functions, ...) is an important work to be performed to provide results and 
tools in integrable lattice statistical mechanics and enumerative combinatorics.
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Appendix A. Simple symmetries of the diagonal of the rational function (7)

Let us recall the pullbacks (20) in section 2.5, that we denote P1.

A.1. Overall parameter symmetry

The seven parameters are defined up to an overall parameter (they must be 
seen as homogeneous variables). Changing (a, b1, b2, b3, c1, c2, c3) into 
(λ · a, λ · b1, λ · b2, λ · b3, λ · c1, λ · c2, λ · c3) the rational function R given by (7) and its 
diagonal Diag(R) are changed into R/λ and Diag(R)/λ. It is thus clear that the previous pull-
backs (20), which totally ‘encode’ the exact expression of the diagonal as a pullbacked hyper-
geometric function, must be invariant under this transformation. This is actually the case:

P1(λ · a, λ · b1, λ · b2, λ · b3, λ · c1, λ · c2, λ · c3, x)

= P1(a, b1, b2, b3, c1, c2, c3, x).
 

(A.1)

This result corresponds to the fact that P2(x) (resp. P4(x)) is a homogeneous polynomial in the 
seven parameters a, b1, · · · , c1, · · · of degree two (resp. four ).

A.2. Variable rescaling symmetry

On the other hand, the rescaling of the three variables (x, y, z) in (7), (x, y, z) → 
(λ1 · x, λ2 · y, λ3 · z) is a change of variables that is compatible with the operation of taking 
the diagonal of the rational function R.

When taking the diagonal and performing this change of variables, the monomials in the 
multi-Taylor expansion of (7) transform as:
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am, n, p · xm yn z p −→ am, n, p · λm
1 · λn

2 · λ
p
3 · xm yn z p. (A.2)

Taking the diagonal yields

am, m, m · xm −→ am, m, m · (λ1 λ2 λ3)
m · xm. (A.3)

Therefore it amounts to changing x → λ1 λ2 λ3 · x. With that rescaling (x, y, z) → 
(λ1 · x, λ2 · y, λ3 · z) the diagonal of the rational function remains invariant if one changes 
the seven parameters as follows:

(a, b1, b2, b3, c1, c2, c3) −→
(a, λ1 · b1, λ2 · b2, λ3 · b3, λ2 λ3 · c1, λ1 λ3 · c2, λ1 λ2 · c3).

 
(A.4)

One deduces that the pullbacks (20) verify:

P1

(
a, λ1 · b1, λ2 · b2, λ3 · b3, λ2 λ3 · c1, λ1 λ3 · c2, λ1 λ2 · c3,

x
λ1 λ2 λ3

)

= P1(a, b1, b2, b3, c1, c2, c3, x).
 

(A.5)

A.3. Generalization to nine and ten-parameter families

The previous arguments can also be generalized for the nine and ten-parameter families ana-
lysed in sections 3.1 and 3.2.

 •  The pullback H in (60) verifies (as it should)

H
(

a, λ1 · b1, λ2 · b2, λ3 · b3, λ2 λ3 · c1, λ1 λ3 · c2, λ1 λ2 · c3,

λ2
1 λ2 · d, λ2

3 λ2 · e,
x

λ1 λ2 λ3

)

= H(a, b1, b2, b3, c1, c2, c3, d, e, x),

 

(A.6)

and:

H
(
λ · a, λ · b1, λ · b2, λ · b3, λ · c1, λ · c2, λ · c3, λ · d, λ · e, x)

= H(a, b1, b2, b3, c1, c2, c3, d, e, x).
 

(A.7)

 •  The H pullback (65) in (64) verifies (as it should):

H
(

a, λ1 · b1, λ2 · b2, λ3 · b3, λ2 λ3 · c1, λ1 λ3 · c2, λ1 λ2 · c3,

λ2
1 λ2 · d1, λ2

2 λ3 · d2, λ2
3 λ1 · d3,

x
λ1 λ2 λ3

)

= H(a, b1, b2, b3, c1, c2, c3, d1, d2, d3, x),

 

(A.8)

and:

H
(
λ · a, λ · b1, λ · b2, λ · b3, λ · c1, λ · c2, λ · c3, λ · d1, λ · d2, λ · d3, x)

= H(a, b1, b2, b3, c1, c2, c3, d1, d2, d3, x).
 (A.9)
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Appendix B. Modular equation for the non-symmetric τ → 4 τ  subcase: 
2F1([1/2, 1/2], [1],P)

The pullback X = P1 (given by (40)) and the pullback Y = P(2)
2  given by (44) are related by 

the modular equation (representing τ → 4 τ ):

8259 · X6 Y6 − 389 · 116 · 516 · 310 · 26 · X5 Y5 · (X + Y)

+ 113 · 512 · 37 · 24 · X4 Y4 ·
(

26 148 290 096 · (X2 + Y2) − 15 599 685 235 · X Y
)

− 105 955 481 959 · 510 · 37 · 215 · X3 Y3 · (X + Y) · (X2 + Y2)

+ 503 027 637 092 599 · 510 · 37 · 26 · X4 Y4 · (X + Y)

+ 56 · 34 · 216 · X2 Y2 ·
(

1634 268 131 · (X4 + Y4) + 1788 502 080 642 816 · X2 Y2

+ 848 096 080 668 355 · (X3 Y + X Y3)
)

− 54 · 34 · 222 · X Y · (X + Y) ·
(

389 · (X4 + Y4) + 41 863 592 956 503 · X2 Y2

− 54 605 727 143 · (X3 Y + X Y3)
)

+ 224 ·
(

X6 + Y6 + 561 444 609 · (X5 Y + X Y5)

+ 1425 220 456 750 080 · (X4 Y2 + X2 Y4) + 2729 942 049 541 120 · X3 Y3
)

− 5 · 37 · 234 · X Y · (X + Y) · (391 X2 − 12 495 392 X Y + 391 Y2)

+ 31 · 37 · 240 · X Y · (X + 2 Y) · (2 X + Y) − 39 · 242 · X Y · (X + Y) = 0.

 

(B.1)

Instead of identities on 2F1([1/12, 5/12], [1], P) hypergeometric functions like (45), one 
can consider directly identities on 2F1([1/2, 1/2], [1], P) hypergeometric functions. One has 
for instance the following identity:

2F1

(
[
1
2

,
1
2
], [1],

8 x · (1 + x2)

(1 + x)4

)
= (1 + x)2 · 2F1

(
[
1
2

,
1
2
], [1], x4

)
. (B.2)

Denoting

A =
8 x · (1 + x2)

(1 + x)4 , B = x4, (B.3)

the two pullbacks in (B.2), one has the following asymmetric modular equation  (of the 
τ → 4 τ  type [22]) between these two pullbacks (B.3):

A4B4 − 4 A4B3 + 6 A3B2 · (A + 128 B) − 4 A2B · (A2 − 640 AB + 1216 B2)

+ A · (A3 + 768 A2B + 5632 AB2 + 8192 B3) − 256 B · (19 A2 + 64 AB + 16 B2)

+ 8192 B · (A + B) − 4096 B = 0.

 

(B.4)

Note that changing B → 1 − B the previous algebraic equation becomes a symmetric modu-
lar equation:

A4 B4 − 768 A3 B3 + 4864 (A3 B2 + A2 B3) − 8960 A2 B2 − 8192 (A3 B + A B3)

+ 4096 (A3 + B3) + 8192 (A2 B + A B2) − 4096 (A2 + B2) = 0.
 

(B.5)
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As far as representations of τ → 4 τ  isogenies, the modular equations (B.4) and (B.5) are 
clearly much simpler than (B.1).

Appendix C. 2F1([1/4, 3/4], [1],P) hypergeometric as modular forms

C.1. 2F1([1/4, 3/4], [1],P) identities

Let us focus on the 2F1([1/4, 3/4], [1],P) hypergeometric function:

2F1

(
[
1
4

,
3
4
], [1], x

)
= (1 + 3 x)−1/4 · 2F1

(
[

1
12

,
5
12

],
27 x · (1 − x)2

(1 + 3 x)3

)
.

 

(C.1)

The emergence of 2F1([1/4, 3/4], [1],P) hypergeometric functions in physics, walk problems 
in the quarter of a plane [33–35] in enumerative combinatorics, or in interesting subcases 
of diagonals (see section 2.8), raises the question if 2F1([1/4, 3/4], [1],P) should be seen as 
associated to the isogenies [22] τ → 2 τ  or τ → 4 τ . The identity

2F1

(
[
1
4

,
3
4
], [1], 64 x2

)
= (1 + 8 x)−1/2 · 2F1

(
[
1
2

,
1
2
], [1],

16 x
1 + 8 x

)
,

 
(C.2)

or equivalently

2F1

(
[
1
4

,
3
4
], [1],

( x
2 − x

)2)
=

(2 − x
2

)1/2
· 2F1

(
[
1
2

,
1
2
], [1], x

)
, (C.3)

seems to relate 2F1([1/4, 3/4], [1],P) to 2F1([1/2, 1/2], [1], x), and thus seems to relate 
2F1([1/4, 3/4], [1],P) rather τ → 4 τ . Yet things are more subtle.

Let us see how 2F1([1/4, 3/4], [1],P) can be described as a modular form corresponding to 
pullbacked 2F1([1/4, 3/4], [1],P) hypergeometric functions with two different rational pull-
backs. For instance, one deduces from (B.2) combined with (C.3), several identities on the 
hypergeometric function 2F1([1/4, 3/4], [1],P) like

2F1

(
[
1
4

,
3
4
], [1],

x2

(2 − x)2

)

=
( 2 − x

2 · (1 − 2 x)

)1/2
· 2F1

(
[
1
4

,
3
4
], [1], − 4 · x · (1 − x)

(1 − 2 x)2

)
,

 

(C.4)

or

2F1

(
[
1
4

,
3
4
], [1],

x2

(2 − x)2

)

=
( 2 − x

2 · (1 + x)

)1/2
· 2F1

(
[
1
4

,
3
4
], [1],

4 x
(1 + x)2

) 

(C.5)

and thus:

2F1

(
[
1
4

,
3
4
], [1],

4 x
(1 + x)2

)

=
( 1 + x

1 − 2 x

)1/2
· 2F1

(
[
1
4

,
3
4
], [1], − 4 · x · (1 − x)

(1 − 2 x)2

)
.

 

(C.6)
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C.2. Schwarzian equations

Recalling the viewpoint developed in our previous paper [22] these identities can be seen to 
be of the form

2F1

(
[
1
4

,
3
4
], [1], B

)
= G · 2F1

(
[
1
4

,
3
4
], [1], A

)
,

where G is some algebraic factor.
The important result of [22] is that after elimination of the algebraic factor G one finds that 

the two pullbacks A and B verify the following Schwarzian equation:

−1
8

3 A2 − 3 A + 4

A2 (A − 1)2 +
1
8

3 B2 − 3 B + 4

B2 (B − 1)2 ·
(dB

dA

)2
+ {B, A} = 0,

 (C.7)
where {B, A} denotes the Schwarzian derivative.

Do note that 2F1([1/4, 3/4], [1],P) is a selected hypergeometric function since the rational 
function in the Schwarzian derivative (C.7)

W(A) = −1
8

3 A2 − 3 A + 4
A2 · (A − 1)2 , (C.8)

is invariant under the A → 1 − A transformation: W(A) = W(1 − A).
This Schwarzian equation  can be written in a more symmetric way between A and B, 

namely:

1
8

3 B2 − 3 B + 4

B2 (B − 1)2 ·
(dB

dx

)2
+ {B, x}

=
1
8

3 A2 − 3 A + 4

A2 (A − 1)2 ·
(dA

dx

)2
+ {A, x}.

 

(C.9)

Let us denote ρ(x) the rational function of the LHS or the RHS of equality (C.9). For the two 
identities (C.4) and (52), this rational function is (of course32) the same rational function, 
namely

ρ(x) =
1
2
· x2 − x + 1

x · (x − 1)2 . (C.10)

Let us consider the first two identities (C.4) and (52), denoting by A and B the corre-
sponding pullbacks:

A = − 4 · x · (1 − x)
(1 − 2 x)2 , or:

4 x
(1 + x)2 , B =

x2

(2 − x)2 .
 

(C.11)

These two pullbacks are related by the asymmetric modular equation:

81 · A2 B2 − 18 A B · (8 B + A) + (A2 + 80 · A B + 64 B2) − 64 B = 0 
(C.12)

giving the following expansion for B seen as an algebraic series33 in A:

B =
1

64
A2 +

5
256

A3 +
83

4096
A4 +

163
8192

A5 +
5013

262 144
A6 + · · ·

 
(C.13)

32 Since these identities share one pullback.
33 We discard the other root expansion B = 1 + A + 5

4 A2 + 25
16 A3 + 31

16 A4 + · · ·
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Such an algebraic series is clearly34 a τ → 2 τ  (or q → q2 in the nome q) isogeny [22].
The modular curve (C.12) is unpleasantly asymmetric: the two pullbacks are not on 

the same footing. Note however, that using the A ↔ 1 − A symmetry (see (C.8)) on the 
Schwarzian equation (C.9), and changing A → 1 − A in the asymmetric modular curve (54), 
one gets the symmetric modular curve:

81 · A2 B2 − 18 · (A2 B + A B2) + A2 − 44 A B + B2

− 2 · (A + B) + 1 = 0.
 

(C.14)

Changing B → 1 − B in the asymmetric modular curve (54), one also gets another symmet-
ric modular curve:

81 · A2 B2 − 144 · (A2 B + A B2)

+ 208 A B + 64 · (A2 + B2 − A − B) = 0.
 

(C.15)

The two pullbacks for (C.15) read:

A =
4 x

(1 + x)2 , B =
4 · (1 − x)
(2 − x)2 . (C.16)

The price to pay to restore the symmetry between the two pullbacks (C.16) is that the corre-
sponding pullbacks do not yield hypergeometric identities expandable for x small.

Finally, the identity (C.6) corresponds to a symmetric relation between these two-pullbacks 
which reads:

81 · C2D2 − 144 · (C2 D + CD2) + 16 · (4 C2 + 13 C D + 4 D2)

− 64 · (C + D) = 0.
 (C.17)

The corresponding series expansion

D = −C − 5
4

C2 − 25 C3

16
− 31 C4

16
− 305 C5

128
− 2979 C6

1024
− 14 457 C7

4096

− 17 445 C8

4096
− 167 615 C9

32 768
− 801 941 C10

131 072
− 3822 989 C11

524 288
+ · · ·

 

(C.18)

is an involutive series.

Appendix D. Exact expression of polynomial P6 for the ten-parameter rational 
function (63)

The diagonal of the ten-parameters rational function (63) is the pullbacked hypergeometric 
function

1
P3(x)1/4 · 2F1

(
[

1
12

,
5
12

], [1], 1 − P6(x)2

P3(x)3

)
,

 (D.1)
where P3(x) is given by (66) and P6(x) is a polynomial of degree six in x of the form

P6(x) = p4 + ∆6(x), (D.2)

where p4 is the polynomial P4(x) given by (17) in section 2, and where ∆6(x) is the following 
polynomial of degree six in x:

34 From (C.13) see [22].
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∆6(x) = − 5832 · d2
1 d2

2 d2
3 · x6

+ 3888 · d1 d2 d3 · (b1 c2 d2 + b2 c3 d3 + b3 c1 d1) · x5

− 864 · (c3
1 d2

1 d3 + c3
2 d1 d2

2 + c3
3 d2 d2

3) · x5

− 1296 · c1 c2 c3 d1 d2 d3 · x5

− 1296 · b1 b2 b3 d1 d2 d3 · x4

− 1296 · a · d1 d2 d3 (b1 c1 + b2 c2 + b3 c3) · x4

− 1296 · (b1 b2 c2 c3 d2 d3 + b1 b3 c1 c2 d1 d2 + b2 b3 c1 c3 d1 d3) · x4

+ 864 · (c2
1 c3 d1 d3 + c1 c2

2 d1 d2 + c2 c2
3 d2 d3) · a · x4

− 864 · (b3
1 d2

2 d3 + b3
2 d1 d2

3 + b3
3 d2

1 d2) · x4

+ 864 ·
(

b2
1 c1 c3 d2 d3 + b1 b2 c2

1 d1 d3 + b1 b3 c2
3 d2 d3

+ b2
2 c1 c2 d1 d3 + b2 b3 c2

2 d1 d2 + b2
3 c2 c3 d1 d2

)
· x4

+ 216 · (b2
1 c2

2 d2
2 + b2

2 c2
3 d2

3 + b2
3 c2

1 d2
1) · x4

+ 288 · (b1 c3
1 c2 d1 + b2 c3

2 c3 d2 + b3 c1 c3
3 d3) · x4

− 576 · (b1 c2
1 c2

3 d3 + b2 c2
1 c2

2 d1 + b3 c2
2 c2

3 d2) · x4

− 144 · c1 c2 c3 · (b1 c2 d2 + b2 c3 d3 + b3 c1 d1) · x4

+ 540 · d1 d2 d3 a3 · x3

− 648 · (b1 c3 d2 d3 + b2 c1 d1 d3 + b3 c2 d1 d2) · a2 · x3

− 72 · (c2
1 c2 d1 + c1 c2

3 d3 + c2
2 c3 d2) · a2 · x3

+ 288 · (b3
1 b3 c1 d2 + b1 b3

2 c2 d3 + b2 b3
3 c3 d1) · x3

− 576 · (b2
1 b2

2 c1 d3 + b2
1 b2

3 c3 d2 + b2
2 b2

3 c2 d1) · x3

− 144 · b1 b2 b3 (b1 c2 d2 + b2 c3 d3 + b3 c1 d1) · x3

+ 864 · (b2
1 b2 d2 d3 + b1 b2

3 d1 d2 + b2
2 b3 d1 d3) · a · x3

− 144 ·
(

b2
1 c1 c2 d2 + b1 b2 c2

2 d2 + b1 b3 c2
1 d1

+ b2
2 c2 c3 d3 + b2 b3 c2

3 d3 + b2
3 c1 c3 d1

)
· a · x3

+ 720 · (b1 b2 c1 c3 d3 + b1 b3 c2 c3 d2 + b2 b3 c1 c2 d1) · a · x3

+ 36 · a3 · (b1 c2 d2 + b2 c3 d3 + b3 c1 d1) · x2

− 72 · a2 · (b2
1 b3 d2 + b1 b2

2 d3 + b2 b2
3 d1) · x2.

 
(D.3)

Appendix E. Polynomials P3(x) and P5(x) for the nine-parameter rational  
function (63)

The two polynomials P3(x) and P5(x) encoding the pullback of the pullbacked hypergeometric 
function (69) for the nine-parameter rational function (63) in section 3.2.1, read
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P3(x) = p2 + 48 · c2 · (3 b3 d1 d2 − c2
1 d1 − c2 c3 d2) · x3

+ 24 · (a b1 c2 d2 + a b3 c1 d1 − 2 b2
1 b3 d2 − 2 b2 b2

3 d1) · x2,
 

(E.1)

and

P5(x) = p4 − 864 · c3
2 d1 d2

2 · x5

+ 864 · (a c1 c2
2 d1 d2 + b2 b3 c2

2 d1 d2 + b2
3 c2 c3 d1 d2 − b3

3 d2
1 d2) · x4

− 576 · (b2 c2
1 c2

2 d1 + b3 c2
2 c2

3 d2) · x4

+ 288 · (b1 c3
1 c2 d1 + b2 c3

2 c3 d2) · x4

− 144 · (b1 c1 c2
2 c3 d2 + b3 c2

1 c2 c3 d1) · x4

+ 216 · (b2
1 c2

2 d2
2 + b2

3 c2
1 d2

1 − 6 b1 b3 c1 c2 d1 d2) · x4

− 72 · (9 a2 b3 c2 d1 d2 + a2 c2
1 c2 d1 + a2 c2

2 c3 d2) · x3

− 144 · a · (b2
1 c1 c2 d2 + b1 b2 c2

2 d2 + b1 b3 c2
1 d1 + b2

3 c1 c3 d1) · x3

− 144 · (b2
1 b2 b3 c2 d2 + b1 b2 b2

3 c1 d1) · x3

+ 720 · (a b1 b3 c2 c3 d2 + a b2 b3 c1 c2 d1) · x3

− 576 · (b2
1 b2

3 c3 d2 + b2
2 b2

3 c2 d1) · x3

+ 288 · (b3
1 b3 c1 d2 + b2 b3

3 c3 d1 + 3 a b1 b2
3 d1 d2) · x3

+ 36 · a2 · (a b1 c2 d2 + a b3 c1 d1 − 2 b2
1 b3 d2 − 2 b2 b2

3 d1) · x2,

 

(E.2)

where the polynomials p2 and p4 are the polynomials P2(x) and P4(x) of degree two and four in 
x given by (16) and (17) in section 2: p2 and p4 correspond to the d1 = d2 = 0 limit.

Appendix F. Monomial symmetries on diagonals

Let us sketch the demonstration of the monomial symmetry results of section (81), with the 
condition that the determinant of (82) is not zero and the conditions (83) are verified. We will 
denote by n the integer in the three equal sums (83): n = Ai + Bi + Ci. The diagonal of the 
rational function of three variables R is defined through its multi-Taylor expansion (for small 
x, y and z):

R
(

x, y, z
)

=

∞∑
m1 = 0

∞∑
m2 = 0

∞∑
m3 = 0

Rm1, ..., m3 · xm1 · ym2 · zm3 , (F.1)

as the series in one variable x:

Φ(x) = Diag
(
R
(

x, y, z
))

=

∞∑
m = 0

Rm, m, m · xm. (F.2)

The monomial transformation (81) changes the multi-Taylor expansion (F.1) into
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R̃
(

x, y, z
)

=

∞∑
M1 = 0

∞∑
M2 = 0

∞∑
M3 = 0

R̃M1, M2 M3 · xM1 · yM2 · zM3 =

∞∑
m1 = 0

∞∑
m2 = 0

∞∑
m3 = 0

Rm1, m2 m3 ·
(

xA1 yA2 zA3

)m1
(

xB1 yB2 zB3

)m2
(

xC1 yC2 zC3

)m3

=

∞∑
m1 = 0

∞∑
m2 = 0

∞∑
m3 = 0

Rm1, m2 m3 · xM1 · yM2 · zM3

where:

M1 = A1 · m1 + B1 · m2 + C1 · m3, (F.3)

M2 = A2 · m1 + B2 · m2 + C2 · m3, (F.4)

M3 = A3 · m1 + B3 · m2 + C3 · m3. (F.5)

Taking the diagonal amounts to forcing the exponents m1, m2 and m3 to be equal. It is easy to see 
that when condition (83) is verified, m1 = m2 = m3 yields M1 = M2 = M3. Conversely if the 
determinant of (82) is not zero it is straightforward to see that the conditions M1 = M2 = M3 
yield m1 = m2 = m3.

Then if one knows an exact expression for the diagonal of a rational function, the diagonal 
of this rational function changed by the monomial transformation (81) reads

Diag
(
R̃
(

x, y, z
))

=

∞∑
M = 0

R̃M, M, M · xM =

∞∑
m = 0

Rm, m, m · xn· m = Φ(xn),

 

(F.6)

and is thus equal to the previous exact expression Φ(x), where we have changed x → xn, where 
n is the integer n = A1 + B1 + C1 = A2 + B2 + C2 = A3 + B3 + C3. These monomial 
symmetries for diagonal of rational functions are not specific of rational functions of three 
variables: they can be straightforwardly generalized to an arbitrary number of variables.

Appendix G. Rescaling symmetries on diagonals

We sketch the demonstration of the result in section 4.3. One recalls that the diagonal of the 
rational function of three variables R is defined through its multi-Taylor expansion (for small 
x, y and z)

R
(

x, y, z
)

=

∞∑
m1 = 0

∞∑
m2 = 0

∞∑
m3 = 0

Rm1, ..., m3 · xm1 · ym2 · zm3 , (G.1)

as the series in one variable x:

Φ(x) = Diag
(
R
(

x, y, z
))

=

∞∑
m = 0

Rm, m, m · xm. (G.2)

The (function rescaling) transformation (93) transforms the multi-Taylor expansion (G.1) into:

R
(

x, y, z
)
=

∞∑
m1 = 0

∞∑
m2 = 0

∞∑
m3 = 0

Rm1, ..., m3 · xm1 · ym2 · zm3 · F(x y z)m1 +m2 +m3 .
 

(G.3)
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We assume that the function F(x) has some simple Taylor series expansion. Each time taking 
the diagonal of (G.3) forces the exponents m1, m2 and m3 to be equal in the term xm1 · ym2 · zm3 
of the multi-Taylor expansion (G.3), one gets a factor F(x y z)m1 +m2 +m3 = F(x y z)3 m. 
Consequently, the diagonal of (G.3) becomes:

Diag
(
R̃
(

x, y, z
))

=

∞∑
m = 0

Rm, m, m · xn · F(x)3 n

= Diag
(
R
(

x, y, z
))(

x · F(x)3
)

.

 

(G.4)

Clearly, these function-dependent rescaling symmetries for diagonals of rational functions are 
not specific of rational functions of three variables: they can be straightforwardly generalized 
to an arbitrary number of variables.

ORCID iDs

C Koutschan  https://orcid.org/0000-0003-1135-3082
J-M Maillard  https://orcid.org/0000-0002-8233-8501

References

	 [1]	 Bostan  A, Boukraa  S, Christol  G, Hassani  S and Maillard  J-M 2013 Ising n-fold integrals as 
diagonals of rational functions and integrality of series expansions J. Phys. A: Math. Theor. 
46 185202

	 [2]	 Bostan  A, Boukraa  S, Christol  G, Hassani  S and Maillard  J-M 2012 Ising n-fold integrals as 
diagonals of rational functions and integrality of series expansions: integrality versus modularity 
(arXiv:1211.6031)

	 [3]	 Zenine N, Boukraa S, Hassani S and Maillard J-M 2005 The Fuchsian differential equation of the 
square lattice Ising model χ(3) susceptibility J. Phys. A: Math. Gen. 37 9651–68

	 [4]	 Bostan A, Boukraa S, Guttmann A J, Hassani S, Jensen I, Maillard J-M and Zenine N 2009 High 
order Fuchsian equations  for the square lattice Ising model: χ̃(5) J. Phys. A: Math. Theor. 
42 275209

	 [5]	 Boukraa S, Hassani S, Jensen I, Maillard J-M and Zenine N 2010 High-order Fuchsian equations for 
the square lattice Ising model: χ(6) J. Phys. A: Math. Theor. 43 115201

	 [6]	 Boukraa S, Hassani S, Maillard J-M and Zenine N 2007 Singularities of n-fold integrals of the Ising 
class and the theory of elliptic curves J. Phys. A: Math. Theor. 40 11713–48

	 [7]	 Guttmann A J 2010 Lattice Green’s functions in all dimensions J. Phys. A: Math. Theor. 43 305205
	 [8]	 Glasser M L and Guttmann A J 1994 Lattice Green function (at 0) for the 4D hypercubic lattice  

J. Phys. A: Math. Gen. 27 7011–4
	 [9]	 Boukraa  S, Hassani  S, Maillard  J-M and Weil  J-A 2014 Differential algebra on lattice Green 

functions and Calabi–Yau operators J. Phys. A: Math. Theor. 48 095203
	[10]	 Zenine N, Hassani S and Maillard J-M 2015 Lattice Green functions: the seven-dimensional face-

centred cubic lattice J. Phys. A: Math. Theor. 48 035205
	[11]	 Hassani S, Koutschan C, Maillard J-M and Zenine N 2016 Lattice Green functions: the d-dimensional 

face-centred cubic lattice, d = 8, 9, 10, 11, 12 J. Phys. A: Math. Theor. 49 164003
	[12]	 Lipshitz L and van der Poorten A J 1990 Rational functions, diagonals, automata and arithmetic 

Number Theory (Banff, AB, 1988) (Berlin: de Gruyter) pp 339–58
	[13]	 Lipshitz L 1988 The diagonal of a D-finite power series is D-finite J. Algebr. 113 373–8
	[14]	 Christol G 1984 Diagonales de fractions rationnelles et équations différentielles Study Group on 

Ultrametric Analysis, 10th Year: 1982/83, No. 2, Exp. No. 18 (Paris: Institute Henri Poincaré) 
pp 1–10

	[15]	 Christol G 1985 Diagonales de fractions rationnelles et équations de Picard–Fuchs Study Group on 
Ultrametric Analysis, 12th Year, 1984/85, No.1, Exp.No.13 (Paris: Secrétariat Math.) pp 1–12

Y Abdelaziz et alJ. Phys. A: Math. Theor. 51 (2018) 455201

https://orcid.org/0000-0003-1135-3082
https://orcid.org/0000-0003-1135-3082
https://orcid.org/0000-0002-8233-8501
https://orcid.org/0000-0002-8233-8501
https://doi.org/10.1088/1751-8113/46/18/185202
https://doi.org/10.1088/1751-8113/46/18/185202
http://arxiv.org/abs/1211.6031
https://doi.org/10.1088/0305-4470/37/41/004
https://doi.org/10.1088/0305-4470/37/41/004
https://doi.org/10.1088/0305-4470/37/41/004
https://doi.org/10.1088/1751-8113/42/27/275209
https://doi.org/10.1088/1751-8113/42/27/275209
https://doi.org/10.1088/1751-8113/43/11/115201
https://doi.org/10.1088/1751-8113/43/11/115201
https://doi.org/10.1088/1751-8113/40/39/003
https://doi.org/10.1088/1751-8113/40/39/003
https://doi.org/10.1088/1751-8113/40/39/003
https://doi.org/10.1088/1751-8113/43/30/305205
https://doi.org/10.1088/1751-8113/43/30/305205
https://doi.org/10.1088/0305-4470/27/21/016
https://doi.org/10.1088/0305-4470/27/21/016
https://doi.org/10.1088/0305-4470/27/21/016
https://doi.org/10.1088/1751-8113/47/9/095203
https://doi.org/10.1088/1751-8113/47/9/095203
https://doi.org/10.1088/1751-8113/48/3/035205
https://doi.org/10.1088/1751-8113/48/3/035205
https://doi.org/10.1088/1751-8113/49/16/164003
https://doi.org/10.1088/1751-8113/49/16/164003
https://doi.org/10.1016/0021-8693(88)90166-4
https://doi.org/10.1016/0021-8693(88)90166-4
https://doi.org/10.1016/0021-8693(88)90166-4


30

	[16]	 Christol G 1988 Diagonales de fractions rationnelles Séminaire de Théorie des Nombres, Paris 
1986–87 (Progress in Mathematics vol 75) (Boston, MA: Birkhäuser) pp 65–90

	[17]	 Christol  G 1990 Globally bounded solutions of differential equations Analytic Number Theory 
(Tokyo, 1988) (Lecture Notes in Mathematics vol 1434) (Berlin: Springer) pp 45–64

	[18]	 Assis M, Boukraa S, Hassani S, van Hoeij M, Maillard J-M and McCoy B M 2012 Diagonal Ising 
susceptibility: elliptic integrals, modular forms and Calabi–Yau equations J. Phys. A: Math. 
Theor. 45 075205

	[19]	 Bostan A, Boukraa S, Hassani S, van Hoeij M, Maillard J-M, Weil J-A and Zenine N J 2011 The 
Ising model: from elliptic curves to modular forms and Calabi–Yau equations J. Phys. A: Math. 
Theor. 44 045204

	[20]	 Assis M, van Hoeij M and Maillard J-M 2016 The perimeter generating functions of three-choice, 
imperfect, and one-punctured staircase polygons J. Phys. A: Math. Theor. 49 214002

	[21]	 Bostan A, Boukraa S, Maillard J-M and Weil J-A 2015 Diagonal of rational functions and selected 
differential Galois groups J. Phys. A: Math. Theor. 48 504001

	[22]	 Abdelaziz Y and Maillard J-M 2016 Modular forms, Schwarzian conditions, and symmetries of 
differential equations in physics J. Phys. A: Math. Theor. 49 215203

	[23]	 Maier R S 2009 On rationally parametrized modular equations J. Ramanujan Math. Soc. 24 1–73
	[24]	 Stiller  P  F 1988 Classical automorphic forms and hypergeometric functions J. Number Theory 

28 219–32
	[25]	 Shen  L  C 2013 A note on Ramanujan’s identities involving the hypergeometric function 

2F1(1/6, 5/6; 1, z) Ramanujan J. 30 211–22
	[26]	 Furstenberg H 1967 Algebraic functions over finite fields J. Algebr. 7 271–7
	[27]	 Denef J and Lipshitz L 1987 Algebraic power series and diagonals J. Number Theory 26 46–67
	[28]	 HolonomicFunctions Package version 1.7.1 (9 October 2013) (written by Christoph Koutschan, 

Copyright 2007-2013, Research Institute for Symbolic Computation (RISC), Johannes Kepler 
University, Linz, Austria)

	[29]	 Mark van Hoeij hypergeometricsols (https://www.math.fsu.edu/~hoeij/papers.html)
	[30]	 Bostan A, Lairez P and Salvy B 2013 Creative telescoping for rational functions using the Griffiths–

Dwork method Proc. ISSAC’13 (New York: ACM) pp 93–100
	[31]	 Chen S, Kauers M and Singer M F 2012 Telescopers for rational and algebraic functions via residues 

ISSAC ‘12 Proc. 37th Int. Symp. Symbolic Algebraic Comput. (New York: ACM) pp 130–7
	[32]	 Bostan  A 2017 Calcul Formel pour la Combinatoire des Marches Habilitation à Diriger des 

Recherches (15 December) Université de Paris
	[33]	 Bostan A, Chyzak F, van Hoej M and Pech L 2011 Explicit formula for the generating series of 

Diagonal 3D rook paths Sém. Lothar. Comb. 66 27
	[34]	 Bostan A, Chyzak F, van Hoeij M and Pech L 2017 Explicit formula for the generating functions 

of walks with small steps in the quarter plane Eur. J. Comb. 61 242–75
	[35]	 Bostan A, Chyzak F, van Hoeij M and Pech L 2011 Explicit formula for the generating series of 

diagonal 3D rook paths Sém. Lotar. Comb. 66 27
	[36]	 Garvan  F  G 1995 Ramanujan’s theories of elliptic functions to alternative bases—a symbolic 

excursion J. Symb. Comput. 20 517–36
	[37]	 Abdelaziz Y and Maillard J-M 2017 Schwarzian conditions for linear differential operators with 

selected differential Galois groups J. Phys. A: Math. Theor. 50 465201
	[38]	 Ovsienko V and Tabachnikov S 2009 What is ... the schwarzian derivative? Not. AMS 56 34–6

Y Abdelaziz et alJ. Phys. A: Math. Theor. 51 (2018) 455201

https://doi.org/10.1088/1751-8113/45/7/075205
https://doi.org/10.1088/1751-8113/45/7/075205
https://doi.org/10.1088/1751-8113/44/4/045204
https://doi.org/10.1088/1751-8113/44/4/045204
https://doi.org/10.1088/1751-8113/49/21/214002
https://doi.org/10.1088/1751-8113/49/21/214002
https://doi.org/10.1088/1751-8113/48/50/504001
https://doi.org/10.1088/1751-8113/48/50/504001
https://doi.org/10.1016/0022-314X(88)90067-4
https://doi.org/10.1016/0022-314X(88)90067-4
https://doi.org/10.1016/0022-314X(88)90067-4
https://doi.org/10.1007/s11139-011-9360-8
https://doi.org/10.1007/s11139-011-9360-8
https://doi.org/10.1007/s11139-011-9360-8
https://doi.org/10.1016/0021-8693(67)90061-0
https://doi.org/10.1016/0021-8693(67)90061-0
https://doi.org/10.1016/0021-8693(67)90061-0
https://doi.org/10.1016/0022-314X(87)90095-3
https://doi.org/10.1016/0022-314X(87)90095-3
https://doi.org/10.1016/0022-314X(87)90095-3
https://www.math.fsu.edu/~hoeij/papers.html
https://doi.org/10.1016/j.ejc.2016.10.010
https://doi.org/10.1016/j.ejc.2016.10.010
https://doi.org/10.1016/j.ejc.2016.10.010
https://doi.org/10.1006/jsco.1995.1063
https://doi.org/10.1006/jsco.1995.1063
https://doi.org/10.1006/jsco.1995.1063
https://doi.org/10.1088/1751-8121/aa8efd
https://doi.org/10.1088/1751-8121/aa8efd

	Diagonals of rational functions, pullbacked  hypergeometric functions and modular forms
	Abstract

	Diagonals of rational functions, pullbacked  hypergeometric functions and modular forms
	Abstract
	1. Introduction
	2. Diagonals of rational functions of three variables depending on seven parameters
	2.1. Recalls on diagonals of rational functions
	2.2. A seven-parameter family of rational functions of three variables
	2.3. The diagonal of the seven-parameter family of rational functions: the general form
	2.4. Exact expression of the diagonal for arbitrary parameters a, b1, ..., c1, ...
	2.5. Simple symmetries of this seven-parameter result
	2.6. A symmetric subcase : ￼
	2.6.1. A few recalls on Maier’s paper. 
	2.6.2. The symmetric subcase. 
	2.6.3. Alternative expression for the symmetric subcase. 

	2.7. A non-symmetric subcase : ￼
	2.8.  subcases: walks in the quarter plane
	2.9. The generic case: modular forms, pullbacked hypergeometric functions 
with just one rational pullback

	3. Nine and ten-parameter generalizations
	3.1. Nine-parameter rational functions giving pullbacked  hypergeometric 
functions for their diagonals
	3.2. Ten-parameter rational functions giving pullbacked  hypergeometric functions for their diagonals
	3.2.1. Subcase of (63): a nine-parameter rational function. 
	3.2.2. Cubic terms subcase of (63). 
	3.2.3. A symmetric subcase of (63). 


	4. Transformation symmetries of the diagonals of rational functions
	4.1.  symmetries
	4.2. Monomial transformations on rational functions
	4.3. More symmetries on diagonals

	5. Conclusion
	Acknowledgments
	Appendix A. Simple symmetries of the diagonal of the rational function (7)
	A.1. Overall parameter symmetry
	A.2. Variable rescaling symmetry
	A.3. Generalization to nine and ten-parameter families
	Appendix B. Modular equation for the non-symmetric  subcase: ￼
	Appendix C.  hypergeometric as modular forms
	C.1.  identities
	C.2. Schwarzian equations
	Appendix D. Exact expression of polynomial  for the ten-parameter rational function (63)
	Appendix E. Polynomials P3(x) and P5(x) for the nine-parameter rational 
function (63)
	Appendix F. Monomial symmetries on diagonals
	Appendix G. Rescaling symmetries on diagonals
	ORCID iDs
	References


