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Abstract-The symmetry groups, generated by the inversion relations of lattice models of statis- 
tical mechanics, are analysed for vertex models and for the standard scalar Potts model with two and 
three site interactions on triangular lattices. These groups are generated by three inversion relations 
and are noticeably generically very large ones: hyperbolic groups. Various situations for which the 
representations of these groups degenerate into smaller ones, hopefully compatible with integrability, 
are considered. For instance, the group becomes smaller for q-state Potts models for particular values 
of q, the so-called Tutte-Beraha numbers. For this model, algebraic varieties, including the known 
ferromagnetic critical variety, happen to be invariant under such large groups of symmetries. This 
analysis provides nice birational representations of hyperbolic Coxeter groups. Remarkable varieties 
breaking the symmetry of the lattice are seen to occur specifically for the Tutte-Beraha numbers. A 
detailed analysis of these Potts models is performed for q = 3. In particular, the algebraic varieties 
corresponding to conditions for the symmetry group to be finite order are carefully examined. Finally, 
specifically for the ‘PutteBeraha numbers, the introduction of algebraic group invariants is discussed 
in detail for q = 3 in order to get closed expressions for the spontaneous magnetization of the edge 
Potts models. 

Keywords-TutteBeraha numbers, Standard scalar Potts model, Yang-Baxter equations, Bax- 
terisation, Birational representations of hyperbolic Coxeter groups. 

1. INTRODUCTION 

In previous papers [1,2] it has been shown that there exist nontrivial, nonlinear discrete symme- 

tries acting on the parameter space of lattice models of statistical mechanics generated by the 

socalled inversion relations [3-61. These nonlinear groups of symmetries appeared as powerful 

tools to study integrable models in lattice statistical mechanics, as well as to find the critical 

varieties of their phase diagrams [7]. These symmetry groups can also be seen as symmetries of 

the Yang-Baxter equations (or star-triangle equations, when dealing with spin edge models) and 

their higher dimensional generalizations. This provides a solution for the so-called “Baxterisa- 

tion” problem [8]. 

It is important to note that these groups exist as (discrete) symmetry groups of lattice models 

even when one is no longer restricted to an integrable framework [g-11]. 
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From this point of view, the straight but tedious, analysis of a three-dimensional model through 

transfer matrix formalism, or any other classical method of lattice statistical mechanics, is re_ 

placed by an analysis of the transformations corresponding to the symmetries. These symmetries 

act in the parameter space, and therefore, at first sight, are less sensitive to the dimension of the 

lattice. 

However, in the cases, integrable or not, known in the literature, a drastic difference seems 

to appear between two-dimensional and three-dimensional models, suggesting an explanation of 

the “obstruction” for three-dimensional integrability associated with generic three-dimensional 

symmetry groups, and also suggesting an algebraic definition of the notion of dimension of the 

model. In this framework the dimension of the lattice re-emerges through the “size” of the 
(infinite discrete) symmetry group. As far as two-dimensional models on square lattices are 

concerned, the discrete symmetry groups known in the literature were either finite groups [12,13] 

or groups isomorphic to products of Z, up to a semidirect product by a finite group (9,13,14]. On 

the other hand, for lattice models of dimension three, these symmetry groups are much larger: 

they are generically free groups with (at least) three generators. With such symmetry groups, 

the very existence of solutions of the tetrahedron equations’ having a “generic three-dimensional 

symmetry” seems problematic [14]: the only possibility for solutions of the tetrahedron equations 

are probably cases where the representations of such “large” groups degenerate into products of Z 

or even into finite groups [l&19]. Actually, a recent solution of Korepanov [ZO] of the tetrahedron 

equations confirms this point of view: these solutions actually correspond to a case for which the 

discrete symmetry group degenerates into a finite order group of order 32. 

It will be shown here, that the analysis of the symmetry group of models on triangular lattices 

“‘weakens” this opposition between dimension two and dimension three. We will analyse vertex 

model on the triangular lattice, as well as the standard scalar q-state Potts model with two- and 

three-spin interaction also on the triangular lattice [21,22]. Generically, their symmetry groups 

are free groups with two generators. One recovers a situation similar to the one encountered in 

dimension three: these models on triangular lattices thus provide examples giving hints for the 
analysis of such large symmetry groups in dimension three. 

However, these hyperbolic Coxeter groups of symmetries can actually degenerate into more 

“reasonable” groups, leaving room for integrability in the case of Ill&e-Bemha numbers2. 

We will consider the consequences of these symmetries, with a special emphasis on criticality 
conditions. We will pay particular attention to a (self-dual) critical variety given by Wu [21,24], 

on the two- and three-site interaction Potts model on the triangular lattice, which we will revisit 

here. 

Particular attention is devoted to the three-state Potts model. In this respect it will be shown 

that symmetry group invariants occurring specifically for the Butte-Beraha numbers, seem to be 

useful to “decipher the complexity” of the (resummed low-temperature) expansions of various 

physical quantities and in particular, the spontaneous magnetization. 
We hope such analysis will open a new class of lattice models for which a quite large set of 

exact calculations can be performed without having any “Yang-Baxter integrability”3. 

2. RECALLS ON SYMMETRIES OF LATTICE MODELS 

Let us recall the symmetry group generated by the inversion relations [3,5,6] for lattices of 

coordination number six, first, on the cubic three-dimensional vertex model [18,19] and then on 

the triangular lattice. 

‘Generalizations of the Yang-Baxter equations in dimension three [9,15-171. 
2The Tutte-Beraha numbers are particular numbers occurring in the analysis of chromatic polynomial, [23]. 
3Such models do exist: for instance, disorder solutions [25,26] provide some examples of “computable” models 
that are not Yang-Baxter-integrable. However, such disorder solutions correspond to dimensional reductions of the 
model. We are seeking here for two-dimensional (or higher-dimensional) models with a genuine two-dimensional 
complexity. 
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2.1. Inversion Relations and the Group l?so 

Let, us consider vertex model on a three-dimensional cubic lattice of size M x M. With each 

bond, is associated a variable with q possible states. A Boltzmann weight, zu(i, j, Ic, 1, m, n) is 

assigned to each vertex configuration [27], and can be represented pictorially by: 

17 
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i R 1 (/ j / A: 

The q6 homogeneous weights w(i, j, Ic, 1, m, n) are first arranged in a q3 x q3 matrix R of entries: 

R ijk 
1TWl = w(i, j, k, 1, m, n). 

One may [19] introduce an involution I which transforms R into IR according to: 

(2.1) 

where X is an arbitrary multiplicative factor. This relation can be represented pictorially: 

The inversion transformation I amounts to taking the inverse of the q3 x q3 matrix R. One 

also introduces the partial transpositions tl, t2, and ts with: 

(2.3) 

and similar definitions for t2 and t3. 

For three-dimensional vertex models, one has four such involutions acting as symmetries of 

the R-matrix [19]: 

I2 = I, I3 = t&t& I4 = t21t3tl, II = t31t1t2. (2.4) 

These four involutions generate an infinite discrete group r’s0 [19]. Let us note that the full 

transposition is nothing but the product t = tl . tz . t3. 

Considering the parameter space as a projective space (the entries of the R-matrix are homo- 

geneous parameters), the elements of the group r3D have a nonlinear representation in terms of 

birational tmnsfomations. This group of symmetry of the parameter space of the model is very 

large. This is, in fact, a hyperbolic Coxeter group [28-331. 

REMARK. Coming back to integrability, it has been shown that the tetrahedron equations (gen- 

eralization in three dimensions of the Yang-Baxter equations [10,15,16,34]) do have an infinite 
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group of symmetry generated by four involutions Ki, Kz, Ks, K4 [19]. They satisfy various re- 

lations, for instance (KIK~K~K~)~ = Zd, where Zd denotes the identity transformation. This 

group of symmetry of the tetrahedron equation is quite “large”, since the number of elements of 

length smaller than 1 is of exponential growth with respect to 1, unlike the symmetry group of 

the Yang-Baxter equations which identifies with the afhne Coxeter group A:) [18,19,29]. 

In contrast the infinite discrete symmetry group of the square lattice is generated by two 
involutions (inversion relations) and therefore, is isomorphic to the infinite dihedral group. Let 

us introduce I and J, the two inverse transformations on the square lattice vertex model (191. A 

Boltzmann weight w(i, j, k, 1) is assigned to each square vertex configuration [27]: 

j 

--l-- 

i R x: 
(2.5) 

I 1 

The q4 homogeneous weights w(i, j, k, E) are first arranged in a q2 x q2 matrix R: 

Ri = w(i, j, k, 1). 

We introduce (see [1,18,19]) the inverse 1 by: 

and the other inverse J by: 

CR:; . (JR):; = p. 6;s; = ~(JR)$ . RX!. 

a,B ff,B 

Similarly to the situation occurring for the cubic lattice, I and J are two involutions related 

by a partial transposition (denoted tl in [35]) of the indices: J = tiItr. Namely, tl reads: 
(t&$) = R’ej 21 . 

2.2. Inversion Relations of Triangular Vertex Models 

For the triangular lattice the vertex Boltzmann weight [21] also reads w(i, j, k, 1, m, n), and can 

be represented by: 

k 111 

i R 1 x j II 

Similarly to the cubic model [18,19], the weights may be arranged in an q3 x q3 matrix. However, 

for the triangular model there are only three inversion trunsfornaations, II, Is, Is, which actually 

coincide with three among the four of the cubic lattice (2.4). The fourth transformation 14 

corresponds to a nonplanar picture, which is meaningless for the triangular lattice. Let us denote 

r trians ss the symmetry group generated by 11,12,13. As will be shown in the following, using the 

equivalence between vertex and spin representation for this model [21], this group also generically 

has an exponential growth. 
Let us recall the results obtained by Baxter, Temperley and Ashley on the triangular vertex 

and spin models [21]. They noticed that the integrable case discovered by Kelland for a triangular 

vertex model (a 20-vertex model [36]), actually corresponds to the following situation: the vertex 
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Boltzmann weight can alternatively be seen as either a left-hand side or a right-hand side of a 

Yang-Baxter equation (more generally, this refers to the Z-invariance concept [37]). 

In the framework of this very model, they brought out the correspondence such a vertex model 

and the standard scalar q-state Potts model for anisotropic triangular lattices with two- and three- 

site interaction (only on up-pointing triangles) through the Lieb-Temperley algebm [21,38]. In 

terms of the two and three-site interaction spin model, these integrability conditions correspond 

to have no three spin interaction and also to be at the transition temperature [21]. 

There clearly exists here a drastic symmetry difference between the square and the cubic 

lattice, ss far as the analysis of the group symmetries generated by the inversion relations is 

concerned. This difference stems from the fact that the number of involutions generating this 

very group is larger than two for the cubic lattice, which yields hyperbolic groups rather than the 

infinite dihedral group. The’ analysis of the symmetries on triangular models can be seen as a 

testing ground to study such hyperbolic groups, since the number of involutions generating this 

very group is larger than two. In the following sections, we will concentrate on spin models on 

triangular lattices and, more specifically, standard scalar Potts models [lo]. 

3. TRIANGULAR SPIN MODEL 

3.1. Notations for the Spin Model 

Let us now consider the standard scalar q-state Potts model on a triangular lattice with nearest 

neighbor interaction and three-spin interaction only on the up-pointing triangles: 

2 

The partition function of the models reads: 

The first three products denote the product over the edge two-side interaction Boltzmann weights 

along the three directions of the triangular model, and the last product denotes the product of 

all up-pointing triangles of the three-site interaction Boltzmann weights. The sum is taken over 

all spin configurations. 

In this framework one can now introduce the following notations: 

y = ~%1%2~3 - (Xl + 22 + 23) + 2, where x = eK and xp= eKi, i = 1,2,3. (3.2) 

Of course for q = 2, the model degenerates into the nearest neighbor interaction triangular Ising 

model since the three-site interaction becomes irrelevant. Therefore one will not consider this 

q = 2 case in following (even if most of the results one will get are also valid in this very case). 
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3.2. Duality Transformation 

Let us recall that a duality transformation does exist on this model [21,24]. With notations (3.2) 
this duality, denoted D, reads 

xi - 1 
x~-+xf=l+q- 

Y ’ 

D: 
x ~ x* = xf + x; + x$ - 2 + Q2/Y 

x;x;x; 7 

q2 y+y*=--. 
Y 

(3.3) 

This duality is associated with a rotation of 180’ of the corresponding vertex model on a triangular 
lattice through the correspondence detailed in [21]. It should not be confused with the Kramers- 
Wannier for Potts models [39-411: Kramers-Wannier duality maps the triangular lattice onto 
the honeycomb lattice. In fact duality (3.3) can be seen as the product of the Kramers-Wannier 
duality together with a star-triangle relation. D is an involution. 

In the isotropic limit x1 = 22 = x3 = u, it gives: 

(q 3)u + q us2 - + 2 (u3x - 3u + 2)2 (u3x - - (u,x) 3u + 2 + 3qu - 3q + --) q2) 

u3x-3u+2 

’ 

(722 - 3u + 2 + qu - q)3 

For q = 3 it gives physical points only if u < 1 (antiferromagnetic edge coupling constants) and 
if the ferromagnetic condition u3x - 1 2 0 is satisfied or if u > 1 (ferromagnetic edge coupling 
constants) and if condition u3z - 1 > 3. (u - 1) is satisfied. 

Introducing well suited homogeneous variables, duality transformation (3.3) can be represented 
as a linear transformation Dh (see Section 4.5), which satisfies relation: 0: = q2Zd, where Zd 
denotes the identity transformation. The hyperplanes stable by Dh correspond to eigenforms 
associated with eigenvalues fq. The two self-dual varieties symmetric under permutations of 1, 

2, and 3 can be written, respectively, as follows [21,24]: 

y = -q and y =q. 

Actually y = q can be seen as the eigenform associated with eigenvalue -q and reads: 

xX1X2X3 -(XI +X2 +X3)+ 2-q =O. (3.4) 

Hyperplane (3.4) is a critical variety in some ferromagnetic region [24], whereas y = -q has no 
such property. Let us notice that hyperplane (3.4) is the only variety that is stable point by point 

by duality D. 
Note, that the well-known case of no three-site interaction, (x = l), is not stable under D. 

Namely, variety x = 1 becomes: 

(X1X2+5253 +X3X1 -Xl -X2-X3 -XX1X2X3+1).y+qe(X1 -1)(x2 - 1)(z3 -l)=O. (3.5) 

3.3. Disorder Solutions and Their Dual 

Disorder varieties are algebraic varieties for which dimensional reductions occur for vertex 
or spin models, thus enabling the exact calculation of physical quantities such as the partition 
function per site, an infinite number of correlation functions . . . [25,42]. A straightforward 
calculation, using a “disorder criterion” explained in [26], yields the following disorder conditions: 

xX1X2X3 -(XI +X2+X3)+ 2-q+q *5i=O, i = 1,2,3. (3.6) 
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When there is no three-sites interaction (z = 1) one recovers the known disorder conditions of 

the two side nearest neighbor triangular Potts model [26,43]. 

These disorder conditions are “high-temperature” varieties. It is tempting to use duality (4.14) 

in order to single out some “low” temperature varieties. Unfortunately, when one transforms these 

disorder solutions by duality transformation (3.3), one gets: 

~152~3 - (x1+ 22 f z3) + 2 - q + q * xi -+ 
q2 * xi 

~2~3~1~ - (x1 + 22 + X3) + 2’ 
(3.7) 

This is related to the fact that these disorder conditions are nothing but he vanishing4 condit#ions 

of the zf’s. 

For z = 1 the Kramers-Wannier dual [39] of these disorder varieties are algebraic varieties, 

on which the low-temperature expansions of the partition function per site (and many other 

quantities . . .) simplify drastically to become the expansions of rational expressions [13]. Let 

us call these last varieties “order varieties”. These ‘<order varieties” are singled out: the:y do 

provide formal constraints5 on the low-temperature expansions of the model. Let us introgduce 

low-temperature variables A, B, and C: 

For instance, on the anisotropic triangular edge Potts model, relation: 

A+BC+(q-2).ABC=O, (3.9) 

is a condition on which the low-temperature expansion of the partition function reduces to the 

(low-temperature) expansion of the partition function of an elementary triangular cell [13]. It is 

remarkable that these “order conditions” can actually be generalized to the (edge) checkerboard 

Potts model in a magnetic field6, thus providing nontrivial (formal) constraints on the (low- 

temperature resummed) expansion of the model [13]. Actually introducing the “order condition” 

(see 113)): 

D+ABC.z+(q-2).ABCD.z=0, (3.10) 

one can show that the partition function per site is equal to a very simple expression when re- 
stricted to (3.10) and that the spontaneous magnetization restricted to (3.10) is actually equal 

to 1. 

3.4. Inversion Relations 

The inversion relations [7,25] for the two- and three-site interaction spin model can be repre- 

sented pictorially as follows: 

a = 0’ 
= Y 

. . 

4As~it should [25], these three disorder varieties have no intersection with the ferromagnetic critical variety (3.4). 
6Most of the time these “order” conditions are not in the physical domain. 

6The fugacity is denoted z. 
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CW((y,B,Y).1(2U)(B,(y’,Y) =~*&I,,~* 
P 

(3.11) 

The Boltzmann weight ur(cr, p, 7) of model (3.1) is invariant under a common shift of each spin 

(Y, @, and y. Therefore, 7 can be fixed in a partiaular color, namely zero. Thus, the Boltzmann 

weight can be represented by a q x q matrix (CX being the column index, and /3 the row one), with 

entries W(CX, fi, 0). Equation (3.11) thus becomes the following matricial relation: 

W . I(W) = X -Id,, (3.12) 

where Zd, denotes the q x q identity matrix, and the q x q matrix Boltzmann weight W reads: 

w= 

2215223 x2 x2 . . . . . . x2 

x3 Xl 1 1 . . . 1 

53 1 21 1 . . . 1 

1 1 xi *+. i 
. . 
. . f. *. . . . . 1 

x3 1 1 . . . 1 51 

Using a “i&-i Fourier transformation” [40,41], this q x q matrix can be block-diagonahzed into one 

2 x 2 block and a (q - 2) x (q - 2) matrix proportional to the identity matrix, (zr - 1) x Zd,_z. 

One can easily obtain the matrix inverse I(W). Note that I(W) is of the same form as W, 
x, 21, x2, x3, being changed to the following bimtional transformation I: 

(251 - 1)2(x1 + q - 2) 

Z + 1(x) = (xx? + xz1(q - 3) - q +2)(x1 - 1)’ 

x1 + - 
xx~+xxl(q-3)-q+2 

=2-q-x1+ 
x1(x - 1) 

I: 
2x1 - 1 xix-1 ’ 

(3.13) 

I(s) can also be written: 

I(x)= 
z: * (Xl + q - 2) * (x - 1)2 + 2x1 . (51 - 1) * (z1+ q - 2) * (z - 1) + (21 - 1)2(X1 + q - 2) 

x1(21 + q - 3)(x1 - 1) * (z - 1) + (x1 - 1)2(x1 + q - 2) 

Obviously permutations of indices 1, 2, and 3 are also symmetries of the model. Introducing p23, 
the permutation of zs and x3, and similarly p3i and ~12, one can define the three following 

transformations: 

11 = PaI = Ip23, 12 = p31P121P12 = P121P12P31, 13 = P12P31b31 = P31b31P12, 

corresponding to the three7 inversion transformations of the model [44]. 

‘This existence of three involutions singles out the triangular lattice among the bidimensional models, from the 
symmetry group anfblysis point of view. 
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4. THE SYMMETRY GROUP 

Inversion I, permutations of zi,z~,zs, and duality relation D (defined by(3.3)) generate a 

symmetry group of the parameter space of the model, denoted rupt in the following. 

At this point it is worth noticing that duality transformation D, does actually commute with I, 

and also with Sa, the group of permutations of xi, x2, x3, and therefore, the whole group generated 

by I and Ss. This commutation property enables us to see rupt as a hyperbolic Coxeter group 
generated by two infinite order transformations, up to the semidirect product by a finite group. 

These generically infinite order transformations read: 

J1 = I&, J2 = 11133, J3 = 1211. (4.1) 

By definition the Ji’s satisfy relation: 

53 J2 J1 = Zdentity. (4.2) 

Two of these Ji’s generate runt, up to the semidirect product by a finite group. 

Let us recall that, for generic values of q when x = 1, Iupt is isomorphic to Z x Z, up to 

a semidirect product by a finite group and degenerates into a finite group for Tutte-Bertha 
numbers [23] (q = 2 - 2cos(&/iV)). In fact, for IC = 1, the Ji’s do commute and the elements of 

group rupt read: 

y = J1”‘J;zI~l, where cri = 0,l. (4.3) 

Generically, ni and n2 are relative integers. For q, a Tutte-Beraha number associated with N, 

n1 and n2 run into (0,. . . , N - l}, the group runt being therefore isomorphic to the product 

ZN x ZN x &. 

In order to analyse the general case (x # l), let US introduce the 3-cycle c = ~31~12, and let us 

write the Ji’s in terms of c and of a single one (generically) infinite order transformation, na,mely 

(CI)? 
J1 = COCK, J2 = CHIC, J3 = (cI)~. (4.4) 

4.1. Transformation (~1)’ 

For the sake of simplicity, let us consider transformation (cI)~ as a homogeneozls transfor- 

mation, introducing xc = XX~X~X~ and a fifth homogenization variable t. One can then define 

a homogeneous inverse Ih (corresponding to (3.13)) an c h, which written as a homogeneous d I 

transformation, reads: 

CIh : (xo,x1,x2,x3,t) + ( -51 - (q - 2)t, x3, -(q - 2)xo;;T;x3 - x0,x2, 
Xot-X223 

> x1-t . 

One notices that us = zr + xz + (q - 2)t and ~3 = x3 - xc are just permuted by transformation 

cIh: 113 +-+ 713. With these new variables, one also has: 

Ck(~l, x3rt) + (X3,%3 -x1 - (q - qt,Fot), where Fc = 
Xot-X2X3 

t(xl - t) . 

Transformation (cI~)~ then reads: 

(cI/~>~:(ua, ~3,xl,x3,t) + (u3,7~3,~3 -XI - (q - 2)t,u3 -x3 - (q - Wot,FoFlt), 

where Fl = Fc(clh) is the same expression as Fo, where the xi’s have been replaced by their 

images by cIh. 
Introducing q*, the roots of the second order equation z2 + (q - 2)~ + 1 = 0 and introducing the 

successive iterates of FO by transformation clh (namely: F,+l = F,(cIh)), one can write down 

the general expression of transformation (cI~)~~ (see [45]). 

Let us note that for q corresponding to a Ilttte-Beraha number, the q$ are Nth-root of unity [7]. 
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4.2. Tutte-Beraha Numbers 

Let us recall that, when there is no three site interaction (that is z = 1), there do exist 

particular values of q, the so-called Tutte-Bemha numbers 123,461, for which transformations Ji’s, 
or equivalently transformation (cI~)~, become finite order ones 17,441. 

Amazingly, this situation still holds for the generic case (with x # 1). 

One can establish [45] for q = 2 - 2 cos(lc?r/N), (a Butte-Bemha number), that transformation 

(c&)2N reduces an identity, that is equivalently: 

Jy = Zd, with i = 1,2,3. (4.5) 

REMARK. Such Coxeter groups can be seen as the fundamental group of a surface of genus g 

minus Ic points [33]. Here there is a genus zero Riemann surface minus three points. At this step, 

the Coxeter group, one has to deal with, is reminiscent of the Schwarz’s triangular groups8. Con- 

sidering a geodesic triangle of angles ?r/ni, 7rTr/n2, n-Ins, and considering Si, Ss, Ss the symmetries 

with respect to the edges of the triangle, and defining the “rotations”: 

Ri = s2s3, R2 = S3491, R3 = S1S2, (4.6) 

the Ri’s verify: 

R”’ = Zd, with i = 1,2,3, and RlR2R3 = Zd. (4.7) 

In the study of these triangular groups, three different cases have to be distinguished: depending 

on l/n1 + l/n2 + l/n3 greater, lower or equal to 1. 

Because of the ternary symmetry of our triangular Potts model, one has here nr = ns = ns = N. 

The only EucZidean case is N = 3, while the other values of N yield hyperbolic triangles and 

hyperbolic geometries, N = 2 corresponds to q = 2, which is the Ising subspace of the model. In 

this case the three-site interaction becomes irrelevant. Thus, the first interesting case is N = 3, 

that is, q = 3 (or q = 1). 

4.3. The “Euclidean Case”: q = 3 or q = 1 

In this section we will restrict ourselves to N = 3, that is q = 3 or q = 1. In this case Jf = Zd. 

A “straight” analysis of this group, on the Ji’s, is performed in Appendix A. In fact, in this 

specific N = 3 case, it is better suited to introduce the transformations: 

Gi = p12Jl?‘31, G2 = P23 JZPl2, G3 = P31 J3P23. (4.8) 

By introducing these transformations, it is easier to show that, for N = 3, Pupt is no longer a 

group with an “exponential growth”, but reduces down to Z x Z up to a semidirect product by a 

finite group (like the affine Coxeter group A!) [18]). 

First, one notices that the Gi’s do satisfy a relation similar to relation (4.2): 

G3G2Gi = Zd. (4.9) 

Let us first study the group 8, generated by Gi, Gs, and Gs. The Gi’s can be written in terms 

of transformation I and of the three-cycle c: 

Gi = c21c21c2 7 G2 = Ic21c, G3 = cIc21. (4.10) 

Using (~1)~ = Zdentity, GiGs reads: 

GlG2 = c21c21c21c21c = c~(cI)-~c~ = CHICK = IcIc2 

= G2G1. 
(4.11) 

8Such groups have been obtained from the analysis of the ratios of solutions of second-order differential equations 
ramified in three points. 
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From relations (4.11) and (4.9), it is clear that a generic 

g = G;‘Gz2, (4.12) 

where n1 and n2 are relative integers, which explicitly means that 0 is isomorphic to Z x Z. 

r upt can be seen to be generated by I and c, up to some semidirect product by a finite group. 

From relation (4.10), one gets at once: 

cIcI = G;lc2, cIc21 = Gs, c2 ICI = G, ‘, c21c21 = Glc, 

IcIc = G$c2, IcIc2 = G;l, Ic21C = Gz, Ic21c2 = G2c. 

Thus, rupt is isomorphic to Z -+ Z up to a semidirect product by a finite group. 

4.4. Numerical Analysis 

These infinite order transformations, represented as birational transformations, act as (sym- 

metry) transformations in the parameter space of the model. In the 5 = 1 subcase, it has already 

been noticed [47] that, for 0 < q < 4, the infinite set of points of the orbits of the discrete 

group of birational transformations is dense in an algebraic curve, while in the other case, they 

accumulate to fixed points. One has a similar situation for x # 1. Therefore, in this section we 

restrict here our study to 0 < q < 4. 

To complete the analysis of the (infinite discrete) symmetry group, one has to study its (gener- 

ically infinite order) generators (the Ji’s). We draw here their orbits in the four dimendonal 

parameter space (CP4) of the model. From relation (4.4), it is clear that the iterations of the Ji’s 

amount to performing the iteration of transformation (~1)~. For generic values of q (of course dif- 

ferent from Tutte-Beraha numbers, see Section 4.2), the iteration of (~1)~ yields cumes. Figure 1 

shows such a curve obtained for q = 3.5 (which is not a Tutte-Beraha number). 

I 

Figure 1. Two-dimensional projection of an orbit of transformation (cI)~, for p = 3.5. 

For %tte-Beraha numbers, since the Ji’s are finite-order transformations, one has to consider 

other elements of the group. As far as the Euclidean case is concerned (q = 3 or q = l), let us 

recall that the Gi’s are the commuting generators of the symmetry group isomorphic to Z x Z. 
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Two-dimensional projections of two orbits corresponding, respectively, to the iters 
tions of transformations G2 and GJ, for q = 3. 

(c) Orbit generated by transformations G2 and Gs, for q = 3: this surface is the 
product of the two curves of Figures 2a and 2b. 

Figure 2. 

Figure 2a illustrates the iteration of Gs for q = 3. Remarkably, curves are obtained once again. 

Of course, iterating Ga for q = 3 also yields curves, as can be seen of Figure 2b. Considering 

one orbit of the symmetry group generated by the Gi’s one gets, as it should be, a surface which 

can clearly be seen on Figure 2c as the product of curves like Figures 2a and 2b. This last figure 

gives a nice illustration of the Z x Z structure of the group. 
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Figure 3. Two-dimensional projection of an orbit of transformation Gz for q = 0.5. 

Figure 4. Two-dimensional projections of two orbits corresponding, respectively, to 
the iterations of transformation J1 Jz for a Tutte-Beraha number (q = 2+x6). 

Amazingly, the Gi’s which no longer commute when q is no longer equal to 1 or 3, do yield 
curves, as can be seen on Figure 3 which represents the iteration of G2 for q = 0.5 (not a 
Tutte-Beraha number). 

All these results are remarkable: if one considers the iteration of more involved elements of the 
group, one generically gets quite “chaotic” figures (except of course for 4 = 3 or q = 1). Figure 4 
shows such a quite “chaotic” orbit corresponding to the iteration of Jr Ji for a Tutte-Beraha 

number (q == 2 + a). 

These last figures and the study of many other orbits not given here, give a good hint of the 
“complexity” of these (infinite) hyperbolic Coxeter groups. They are generically of “exponential 
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growth”, even when additional relations occur (see relation (4.5)). This numerical study indicates 

that for generic values of q, the generators of the symmetry group (the Ji’s) seem integrable since 

their iterations yield curves apparently in the whole parameter space. Moreover, the Gi’s seem 

to satisfy the same property for any value of q, though they emerged from the analysis of the 

Euclidean case (q = 3 or q = 1). 

A way to verify this assumption, is to give the algebraic equations of these curves. For this 

purpose, in the next section, we will seek algebraic varieties invariant under the Ji’s and the Gi’s. 

4.5. Group Invariants and Well-Suited Variables 

Let us first take into account that there exist three (homogeneous) polynomials, of degree, 

respectively, 1, 2, and 3, invariant under permutation of x1, x2, and x3, and covariant under 

transformation I (see (3.13)). These three polynomials read: 

Dl = Xl +x2 +X3 - X0 + (q - 2)-t, 

D2 = t(Xl +X2 +X3 +X0 - t) - 2122 - X2X3 - X3X1, 

D3 = t2Xo -X1X2X3. 

Let us consider the cofactors (under the action of I) of Dr, Dz, and D3: 

Cl - I(a) - Xl - 1 

(XXI - 1) * X2X3’ 

C, = I(Ds) xx: + qzx1 - 2zq + 1 - q -=- 
Dl D2 (2x1 - 1)2 - X2X3 ’ 

and 

c3 = W3) -=- (21 - 1)(2X: + (q - 2)x21 + 1 - q) 

03 xix; . (xx1 - 1)s * 

One notes that the cofactor of 03 is the product of the respective cofactors of D1 and Ds. 

As a consequence, one directly gets an invariant under the whole group generated by I and the 

permutations of x1,x2 and x3: 

A = DI . D2 
-. 

03 
(4.13) 

This provides, for arbitrary q, a canonical foliation of the parameter space (@I’d) by codimension 

one algebraic varieties (namely cubits). 
Let us recall that duality transformation D, defined in Section 3.2, is also a symmetry of the 

model, which commutes9 with transformation I and with permutations of 1, 2, and 3. Let us 

notice that duality D can actually be represented as a linear transformation when written in 

terms of homogeneous variables: 

I 
X0 + X0 + (q - 1) * (21 +x2 + x3 + (q - 2)& 

21 + (cl - 1) * Xl + 20 - x2 - X3 - (q - 2)t, 

Dh: X2 + (Q - 1) * X2 + x0 - x1 - X3 - (q - 2)t, 

23 --) (4 - 1) * X3 -I- x0 - x2 - 51 - (q - 2)& 

t + 20 - 21 - x2 - x3 + 2t. 

(4.14) 

Considering the previous covariant polynomials, one sees that D1 and Ds simply transform under 

the duality transformation: 

(01, D2) - (-q. Dl,q2.D2). (4.15) 

The duality acts in a slightly more involved way on Da: 

D3 - 0; = q2. (q. D3 - DI . D2). (4.16) 

OThie is related to the fact that duality (4.14) correeponds to a weak-gmph transbrmation [48]: therefore, it has 
a linear representation and commutes with the inversion relations. 
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Therefore, as far as the other covariant polynomials are concerned, one can barter D3 for a 

homogeneous polynomial, namely: 

D3d = 2q. D3 - 0103. (4.17) 

On this new “self-dual” covariant the duality gives: 

(4.18) 

Algebraic varieties D1, D3, and D3d do have covariance properties with respect to the whole 
group rupt (including duality (4.14)), which is (generically) a hyperbolic group. From the point of 

view of effective algebraic geometry, this provides examples of algebraic varieties with very large 
(discrete) groups of (birational) automorphisms. 

4.5.1. Curves generated by the Ji’s or the Gi’s 

It has been seen in Section 4.4 that the iterations of the Ji’S yield, for arbitrary q, curves in 
the whole parameter space. In order to prove that these curves are actually algebraic, one has 

to exhibit two other algebraic invariants for these very transformations. From relations (4.14), 

it is clear that the study can be limited to transformation (~1)~. One can show that the two 

polynomials. 

El = Xi +- X2 - X3 + X0 + (q - 2)t, -& = t(zl + ~2 - 23 - ICO - t) - ~1~2 + X2X3 + X3X1, 

are actually covariant under the action of (~1)~. These expressions happen to have, respectively, 

the same cofactors (under transformation (~1)~) as D1 and D3. This immediately provides two 

additional algebraic invariants under (~1)~: 

A,=g, A,=$. (4.19) 

Curves like Figure 1 are thus given as intersections of cubits, quadrics, and hyperplanes, namely: 

A = 6, A, = 61, A2 = 62, (4.20) 

where the S’s denote arbitrary constants. 

Considering the previous covariant polynomials, one notices that five of them are “eigen- 

polynomials” of the duality transformation (4.14). In addition to the previous two covariants D1 
and D3 (see (4.13)), one gets: 

(El, E2) - (q&, q2E2). (4.21) 

Algebraic curves, with an infinite number of (birational) automorphisms are either ellipi:ic (or 

rational) curves [49]. Amazingly, by eliminating X0 and X3 from relations (4.20) one gets (as 

expressed in inhomogeneous variables): 

(61 + 1). (62 + 1). ( 5122 - 1) = (461626. (21 + 22 - 2) + (& - 1) . (b2 - 1)) . (x1 + x2 + 4 - 2) 

which proves that these curves are actually rational curwes. 

Let us now consider the Gi’s (or equivalently the (~1h)~~’ s). The previous numerical analysis 

indicated remarkable occurrence of curves, when iterating the Gi’s for any value of q. Let us, for 

instance, consider G3. One notices that polynomials: 

Fi = X3, F4 = (Xi23 + X2X3 - X3t -- Xot) . (X152 + (4 - +ot - (4 - 2)20X3), 
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are actually covariant under the action of Gs. The values of the cofactors of these Fd’s yield two 
Gs-invariants: 

(4.22) 

Figures like Figures 2a, 2b, or 3 are thus algebraic (elliptic) curves given by intersections of 
cub&, hyperplanes, and quarks. 

Duality transformation (4.14) also acts on polynomials Fi’s. One can barter them for new 
“self-dual” homogeneous polynomials, namely: 

Fld=2q.x3-D1, F4d = 2q * F4 - (q2 - 3q + 1) a (& - 2302) * Dl. 

4.5.2. The “Euclidean cases”: q = 3 and q = 1 

Let us recall that for q = 3 (or q = l), these Gi’s do commute and that: GaG2Gi = Zd. It 
has been seen that each of the Gi’s generates algebraic elliptic curves. Therefore, for q = 3 (and 

Q = l), the orbits of the group generated by the Gi’s yield algebmic surfaces which are products 
of two elliptic cwves, as clearly seen on Figure 2~. Since this surface is stable under the group Ss 
of permutations of xi, 22, and 23, it is natural to give its equation without referring to two of 
the Gi’s, that is, without having any direction singled out. 

Actually, for q = 3, there exists an additional polynomial: 

(4.23) 

symmetric under permutations of 21, 22, and x3 and covariant under I, from which one deduces, 
taking into account its cofactor, the (&-symmetric) invariant: 

A;+. (4.24) 

Invariant (4.24), together with invariant (4.13), thus give &-symmetric equations of these alge- 
braic surfaces. For q = 3 one thus has a foliation of the four-dimensional parameter space in 
algebraic surfaces given by (4.13) and (4.24). 

Similarly, for q = 1, a &-symmetric polynomial covariant under the action of I, namely 
D$ = xc * Ds, yields the following &-symmetric invariant: 

and the duality gives, on this last covariant: 0; + q2D& 
For q = 3, the duality acts in the following way on Dg: 

Dg+D;=9.(27.DrD;.D2), yielding: 05 --+ (Dz)* = 31°. Dg. 

For q = 3, one can thus substitute 05 for a self-dual covariant: 

DSd = 540s - 0;. D2. 

(4.25) 

This new self-dual covariant duality (4.14) yields: 

DEd - 3= * Ds~. (4.26) 
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4.5.3. Self-dual well-suited variables 

One would like to trade the foliation given by (4.13) for an equivalent, yet self-&al one. In 

terms of A, given by (4.13), the duality transformation (4.14) reads: 

A - -q 
A 

‘33 

and for q = :3 only, invariant Ai becomes: 

4 A; - -27.- 
27 - A; ’ 

From this one immediately gets a “pseudo” self-dual invariant, namely Adual given by: 

A 
A Dl .Dz 

dua’= 2.q_A = 2.q.Ds_D1.D2’ 

(4.27) 

(4.28) 

(4.29) 

Actually duality transformation (4.14) acts as follows on Adual: 

Adual - -Adual. (4.30) 

The critical ferromagnetic variety D1 = 0 reads Adual = 0. 

Similarly, for q = 3 only, one can introduce invariant A?’ such that duality relation (4.14) 

reads: 
dual A;=” + -AS . (.4.31) 

Invariant Afual reads: 

For q = 3 one would also like to exchange the 

faces given by (4.13) and (4.24), for a foliation 

conditions. 

0: . D2 

= 54D5-D;.D2’ 
(4.32) 

foliation of the parameter space in algebraic: SUT- 

corresponding to two explicitly self-dual algebraic 

Here, we introduce invariants denoted X and Y: 

1 03 
X=s=m 

D5 
and Y = -& = - 

5 D$ Dz’ 

and also the following “pseudo-self-dual” invariants: 

and Y= 

(4.33) 

(4.34) 

which transform, under the duality (4.14), as follows: (X,?) --) (-X,-Y). From the two 

“pseudo” self-dual invariants Agual and Adual (or (X,?)), one can easily get two explicitly self- 

dual invariants. 

4.6. Two Remarkable Varieties: 2 = 1 and Its Dual 

Let us come back to the vanishing of the three-spin interaction that is z = 1, or Ds = 0. One 

notes that this variety is not self-dual. Variety z = 1 is well known (251 and plays a special 

role: the symmetry group l?“,,t is isomorphic to Z x Z (up to some semidirect product by a finite 

group) WI. 
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4.6.1. A remarkable variety: x = 1 

In this x = I-subcase (Da = 0), there exists a rational parametrization which amounts to 

introducing the well-suited variables [lo]: 

1 - t3 *I.& 
Xi = 

t 'Ui - t2' 
i = 1,2,3, where q = t2 + $ + 2. 

In the z = 1 and D1 = 0 subcase (critical condition for the edge Potts model) one can actually 

calculate exactly and very quickly the partition function per site, using the inversion trick and 

these well-suited variables [73. 

In this CC = 1-subcase an algebraic antiferromagnetic variety has been proposed by Martin and 

Maillard [SO] on the basis of the analysis of the discrete group generated by the inversion relations 

that is: 
Mq(X1, X2X3) = (q - 2) * X1X2X3 + 2 - (51x2 + X2X3 + 53x1) 

+ (q - 2) * (x1 +x2 +x3) + (q - 2)2 - 2 = 0. 
(4.36) 

With this rational parametrization, the antiferromagnetic relation (4.36) and the critical con- 

dition D1 = 0 read, respectively: 

(t” - 1)3 ’ (tuluzus + 1) = o and _ (t” - q2 * (tu1212u3 - 1) 

tyt - u1>(t - uz)(t - u3) t3(t - q)(t - ?.&)(t - u3) = 

o 

’ 

and the ratio: 
M&l, x2,33) I - t4 (tU1212U3 -f 1) 

Dl = t2 * (tu&aL3 - 1) * 

Algebraic expression D2 reads in the x = 1 limit: 

(4.37) 

D2 = (x3 - 1). (~2 - 1) s (XI - 1) s 
(P + 1)3 (tu1 - 1) ’ (t7.42 - 1) * (hi3 - 1) 

tyt-u~)‘(t-u2)‘(t-?&) . 

For q = 3 (that is t6 = -l), D5 also reduces to a very simple expression in the x = 1 limit, 

namely: 

D5 = -x1x2&3 - 1) ’ (x3 + 1) ’ (22 - 1) ’ (572 + 1) * (21 - 1) ’ (21 + 1) 

= (t4-1J3 (t%~-l) (t 32t2-1) (t3u3-1) (tzl~-l)(tu~+l)(tu~-l)(tzL~+l)(t~~-l)(tU3+1) 
- 

t9 * (t - u#(t - u#(t - u3)3 
I 

The ratio (4.37) is actually un invariant of the grvup IT’triang 171. In fact, this invariant can be 

replaced by other ones using the following remarkable identity: 

M;-qb(q-4).Df 

= 4 - (1 + (q - 2) - x1 i- x;) d (1 + (q - 2) - x2 + x;) - (l-I_ (q - 2) . x3 + x;) . (4.38) 

One can also, instead of the ratio (4.37), introduce the following algebraic invariant [7]: 

==( 

(q - 2, * X1X2X3 + (Xl22 + X2X3 $- 23x1) - 1 

X1X2 + X2X3 + X3X1) + (q - 2) * (21 + 52 + x3) + (q - 1) . (q _ 3) ’ 
(4*39) 

Equivalently one can introduce invariant: 

z2 = 
X1X2X3 - (X1 + X2 +x3) - (q - 2) X1X2X3 

(q - 2) * X1X2X3 + (X1X2 +X2X3 + 23x1) - I = 

- (Xl + X2 + X3) - (q - 2) 

-X1X2X3 ’ w(xl, X2, X3) ’ 

where 

> 
- (a - 2). (4.40) 

In the numerator of (4,40) one recognizes D1 for x = 1 and the denominator is nothing but the 

numerator where the zi’s are changed into the l/xi%. 
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4.6.2. Another remarkable variety: The dual of cc = 1 

Since duality (4.14) commutes with Fupt, the dual variety of x = 1 also corresponds to the 
degeneracy of rupt into a group isomorphic to Z x Z (up to some semidirect product by a finite 

group). This remarkable variety (3.5) also reads: 

0; = q2(qD3 - 010~) = 0, (4.41) 

or explicitly, 

(x:x;x;x” + ($x2 + zfz3 + 222x3 + x:,x; + 512; 

+ (4 - 3) * ((X1X2 + X1X3 + X2X3) - (Xl +X2 t 

In the isotropic limit x1 = 22 = 23 = u and, for q = 3, 

+ XIX;) - (x4 + x3 + xi) + 1) 

X3) + XlX2X3 + 1) = 0. 

this variety reads 

(4:.42) 

28 * x2 + u3 * (1 - 3212) . x + (1 - 6u2 + 6u3) = 0. 

There is also a rational parametrization of (4.42) as follows: 

(4.43) 

(4.44) xi = ni n4z ’ 722, 

d’ 
i = 1,2,3 and x = 

t . dl, . dzz - &z ’ 

with 

721 = (ulu2u3t - 1). (t4 - t2 + 1) - t4 UlU3 - u2u3 - t4u1u2 + t5u1 + tUs + tU2, 

n2 = (u1212ust - 1). (t4 - t2 + 1) - t4 u2U3 - u1u3 - t4U1U2 + t5U2 + tU3 + tul, 

723 = (ulu2ust - 1). (t4 - t2 + 1) - t4 U2U3 - UlU2 - t4U1u3 + t5U3 + tU2 + tUl, 

nit = t3 s ulU2u3 . (t2 - 2) + t2( Ulu2 + ulu3 + u2u3) - t3(U1 + 243 + 213) + 2t2 - 1, 

n2+ = ulU2U3 (t2 + t6 - 1) - t5( Ulu2 + ulU3 t U2U3) + t2(U1 + U2 + U3) + t. (P - t4 - 1:) , 

dl, = (u1u2u3t - 1) . (t4 - t2 + 1) - t4 U1U3 - u2U3 - t4U1u2 + t. (t4U1 + U2 + u3) , 

d2r = (u1u2u3t - 1) . (t4 - t2 + 1) - t4 U2U3 - UlU3 - t4U1U2 + t. (t4U2 + U3 + U1) , 

d3r = (u1uzust - 1) . (t4 - t2 + 1) - t4u2u3 - u1u2 - t4u1u3 + t . (t4u3 + u2 + q) . 

With this rational parametrization (4.44) inversion relation (4.13) takes a very simple form: 

(ul, U2, u3) - 
( 

t2 1 1 
->->- I 
211 t2 ’ u3 t2 ‘IL2 ) 

(4.45) 

and the polynomial expressions D1, D2,Ds read, respectively, 

D1 = (t4 - 1)2 ’ (; ’ Ulu2u3 - 1)) 

Dz = - (P + &tu: - l)(Ul - t)(tuz - l)(u2 - t)(tu3 - l)(u3 - t) 
and (4.46) 

D3 = - (t4 - 1)2 (P + l)(tw - l);;3d: t)(tu2 - l)(uz - t)(tu1 - I)(:1 - t)(t?Qu2212 - 11, 

t . d3 

with 

d = ~1212~3 * t5 - (2 ulu2us + u2 + U3 + u1)t3 + (%‘u3 + 2Ll’@ + ulu3 + 2)t2 - 1. 
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4.7. Additional Algebraic Invariant for z = 1. 

Additional Algebraic Invariants for Finite Group Subcases 

At first glance, there seems to exist an incompatibility between invariants (4.13), (4.24), and 

invariant (4.39) (or (4.40)) of the rational parametrization [7,10] introduced for z = 1 (no three- 

spin interactions). 

The previous occurrence of an additional invariant specific of z = 1 (see (4.39)) and of another 

one specific of q = 3 (see (4.24)), deserves some comments. Invariant (4.39) exists for arbitrary q 
when z = 1 and cannot, at first glance, be simply extended to z # 1. Similarly, invariant (4.24) 

only exists when q = 3. When restricted to q = 3, it may seem that there is an incompatibility 

between these various invariants when one considers the x = 1 limit. In fact, the answer to this 

paradox is the following: when q = 3 and x = 1 the discrete group degenerates into a finite group. 

The orbits of the group are no longer surfaces, or curves, but a finite set of points and one cun 

have us many (independent) “ulgebruzc ’ ” invariants us the dimension of the parameter space. In 

z = 1, q = 3 subcase, besides the x = 1 (Da = 0) condition, one has the two invariants A; and Z 

((4.13) and (4.39)) and (at least) a third invariant (see Appendices D and E.4 for more details). 

Actually, in this x = 1, q = 3 subcase, one has an additional covuriunt namely: 

pS = (2 + 22s + 32223 + 2x2 - xl + x1x2x3) ’ (32123 + x122x3 + 2x3 + 2x1 + 2 - 22) 

X (321x3 +X1 -i-2212223 +x3 •k li- X2)*(212223 l k32122+222+251 +2-X3) 

x (XI + 321x2 + 2x12223 + x3 + 1 + x2) . (XI + 1 + k~lz~x3 + 322x3 + x3 +x:2) (4.47) 

x (2x3 - 52 + zlxzzs - xi - 1). (2x2 - x3 - x1 - 1 •+ 51x223) 

X (X1X2X3+2X1 -x2 -x3 - 1). 

Note, that pg obtained, from the disorder condition, (3.6) taking the product of the images of 

this disorder condition under the group I’trians, which happens to be finite for q = 3. Note, that 

ps transforms as follows under the inversion relation: 

P9 pg--. x; . xg 
One has, therefore, an additional invariant in this q = 3 (x = 1) subcase: 

Invariant (4.49) is basically built as the product, over the discrete group, of the disorder con- 

ditions. Appendix C.l give calculations corresponding to a straight generalization of such an 

invariant in the x = 1 and q = 3 subcase, but for the checkerboard Potts model. One can also 

build another invariant from the product, over the discrete group, of the “order conditions” 
described in Section 3.3. These two invariants (product over the group of disorder conditions, 

product over the group of “order” conditions) can both be used. However, the invariant product 

over the group of “order” conditions is better suited for the analysis of low-temperuture expansions 
and the analysis of quantities of a “low-temperature” nature like the spontaneous magnetization 

(see Appendix D). 
From this new invariant, which does not exist lo for arbitrary q, one gets a new foliation of 

the parameter space in terms of the algebraic surfaces, I9 = constant. Invariants Z and Is 

can be shown to be algebraically independent. One can verify that the intersection of x = 1 

(i.e., 0s = 0), AS = constant, Z = constant, and 19 = constant gives a finite set of points 
corresponding to the orbits of the discrete symmetry group. 

loIn the x = 1 subcase the group becomes finite for the i%tte-Bemha numbers. When the group is finite, and 
only in this case, one can get additional invariants, similar to (4.9), built as product over the group of disorder 
(or “order”) varieties. 
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REMARK. If one can imagine, for q = 3 and z = 1, that the critical manifolds correspond to 

quite involved relations between these various invariants [51], at first glance, one expects the 

phase diagram of the model for q = 3 and x # 1, to depend only on invariant (4.13) and the 

phase diagram of the model for x = 1 and q # 3, to depend only on invariant (4.39). Therefore, 

a question naturally pops out, namely the “continuity” of the phase diagram [51] for q N 3 and 

x 2 1. We will address this question in parallel publications. 

5. REMARKABLE ALGEBRAIC VARIETIES 
AND MONTE-CARLO SIMULATIONS: 

TOWARDS CRITICAL MANIFOLDS 

Critical manifolds have to be compatible with all the symmetries of the lattice model: the 

discrete symmetries generated by the inversion relations, as well as the (continzlous) weak-graph 

(“gauge”) transformations [48]. The self-dual variety (3.4), that is D1 = 0, is already known as a 
critical variety of this very Potts model, for arbitrary q, in some ferromagnetic region [24]. This 

variety’l is, as it should be, stable under the whole hyperbolic Coxeter group [44]. In a rather 

general framework, one can write a critical manifold as follows: 

F (A~~~~,A~I) = 0 or 7 (X,Y) = 0, (5.1) 

where F (or 3) is any (transcendental) function such that: 

E’ (&ml, A:““) = F (-f&,,, -A?“) or F (_%,p) = 7 (-2, -1;). (5.2) 

In order to get some hint on the critical manifolds, one also has to take into account other e:xact 

results. For instance, there should not be any intersection between the disorder conditions12 and 

the critical manifolds or, if any, this should localize very precisely a tricritical manifold [52]. 

Several varieties pop out as natural conditions for criticality since they have been shown to be 

stable under the whole infinite Coxeter group, namely (besides D1 = 0) the self-dual varieties 

02 = 0, D:sd = 0 (that is, 6 . 03 - D1 . D2 = 0), and for q = 3 only, Dsd = 0 (that is, 

54. Dg - 0; f Dz = 0). Unfortunately, these “candidates” for criticality are ruled out by Monte- 

Carlo simulations [52]. 

5.1. D1 = 0 and a Tricritical Manifold 

Monte-Carlo simulations have been performed in the q = 3 isotropic limit, on 3 x L2 sites 

triangular lattices with both 2r/3-rotation invariance and translation invariance, for various 

values of L [52]. The Monte-Carlo calculations [52] show that DI = 0 is actually a critical 
variety, and that, on the algebraic variety D1 = 0, both first-order and second-order transitions 
occur. Therefore, there must exist a codimension-two tricritical submanifold which corresponds 

to the “frontier” between these two types of transitions on the codimension-one variety D1 = 0. 
Our objective is to get the equation of such a variety. 

It is clear, from the two invariants (4.13) and (4.24), that, when restricted to D1 = 0, the only 

expression invariant under the group which does not trivialize because of D1 = 0, is the rat,io: 

(5.3) 

The (2, ?.L) = (4,l) point (critical pure three-spin point) seems to be, in the case of the isomorphic 

mode, a tricritical point [52]: this yields the following value -l/2 for the new invariant ,Z,,,,, 

which singles out the algebraic variety: 

2.D;+D5.D;=0. (5.4) 

“The globally self-dual variety y = -q cannot be critical one since it is not stable under rupt. 
12The analysis of the action of the hyperbolic group on these varieties also has to be performed, in order to 
generalize the analysis already achieved in the z = 1 limit [ZS]. 
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Monte-Carlo calculations confirm that Di = 0 is actually a critical variety even for quite 

anisotropic points. However, the interpretation of the possible tricriticul behaviour of the in- 

tersection of Di = 0 and (5.4) is a more delicate question that will be addressed elsewhere. 

6. FINITE ORDER CONDITIONS 

6.1. G;’ = Identity for q = 3 

In a previous Section 5.1, it was indicated that the intersection of Dr = 0 together with 

variety (5.4) was a possible candidate for the equation of a critical manifold. We see here that 

this very intersection has a remarkable interpretation in terms of the discrete symmetry group. 

Let us recall (the generically infinite order) transformation Gr = c2 e 1. c. I (see (4.10)) which 

reads for the three-state model: 

G1(~1,~2,~3,Z) = (%S,ZZG,Z3G,~G), with 

XlG = 
x2 * (x1x - 1) . (1 - Xl f x3x51 - x3) 

(x3x4x - x:2 - 5x1 + 21 + 1 - x3) . (21 - 1) ’ 

x2G=-(1+ 

xgxcqx - zf + 1 - xi 

23x:x - xfx - xx1 + x1 - 23) . x3 ’ 

1 - xi + x3x21- x3 
x3G = - 

1+s3x~x-x~x-xx~+2~-x3’ 
and 

xG = 

(x,x:x - xcq,: - xx1 + x1 + 1 - x3)2 . (21 - 1+ 23x51 - x3) 

(1 - x:: - xg + x;x+) . (1 - xi + 23xX1 - 23) . gx - 1) * 

(6.1) 

In fact, by writing condition G, - 4 - Zdentity, one gets a dimension-one (self-dual) algebraic 

variety: 
2~D~+D5.D;-D~~D1.D2=0. (6.2) 

Under the duality transformations relation (6.2) gives: 

2~D~+D5.D;-D~~D1.D2-3g~(2~D~+D5~D~-D~~D1.D2), (6.3) 

In the isotropic timit relation (6.2) reads u = 1 together with: 

x4& - 6u1’x3 + u1’x4 - 3ugx3 + 9ugx2 + ugx4 + 8u8x2 - 3usx3 + 2u7x2 

-24xu7 + 12u6x + 2x2u6 + 20u5 - u5x - 5u5x2 - 28u4 + u4x2 + 5u4x 

-4u3x + x + 8u3 + u3x2 + 7u2 - 5u + 1 = 0, 

(6.4) 

which in the x = 1 limit, gives 
(u + 1)s * (u - 1)s = 0. 

6.2. Gr = Identity Varieties for q = 3 

For q = 3, Section 4.3 shows that the whole discrete group is finite if transformation Gi is 

actually of finite order. 
Let us study systematically these finite-order conditions. 
It should be noted that the conditions corresponding to Gi = Zdentity and G: = Identity 

do not yield codimension-one algebraic variety symmetric under the permutations of xi, x2,23. 

Therefore, the analysis of the algebraic varieties Gf = Identity starts with N > 3. 
All the (no three-spin) points x = 1 (that is 03 = 0) yield Gi = Zdentity. Conversely, 

Gt = Identity corresponds to 0s = 0 and its dual, D 1 . D2 - 3 .D3 = 0, or equivalently: 

X.(3.X-1)=0 or (6.X+1).(6.X-l) =O. (6.5) 
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This last condition, D1 + 02 - 3. Ds = 0, reads in terms of the xi’s: 

1 - (2122 + 22x3 + X3X1) - (XT + X; +x3) + 21X2X3X + X;X;X;X2 

fX3XY +X2X: + X;Xcl+ XZX3 +X2X; +x1x; - X$XiXc,X - X,XgXqx - 5;232:x = 0, 

which, in the isotropic caSe x1 = 52 = x3 = u, gives 

1 - 6u2 + u3r + z2u6 - 3xu5 + 6u3 = 0. 

(6.6) 

(6.7) 

The G; = Identity variety has been detailed in the previous section. Next is the G: = Identity 

variety which reads a self-dual codimension-one variety namely: 

-0; .D; + (Df + 0; . D3 - 7D1 .D; .D$ + 14. D; . 0;) . D5 

+D;.D;2.D;-5.D1.D2.D;+5.D~=0. 
(6.8) 

After a few calculations one can also find that condition Gy = Identity, written as Gf = G!,-3), 

yields the previous GT = Identity conditions, together with another algebraic variety: 

c,j = 2.0520; - D$D3. (100; - 5D3D2D1 + D$Df) . D5 + 0;. (D2D1 - D3) = 0, 

which can also be written in terms of the (pseudo-self) dual invariants X and Y (4.34): 

6s = 3456. p2 - 288. a% . (1 + 60X2) . p - (12X2 + 1) . (144X4 - 72X2 + 1) = 0. (6.9) 

One verifies immediately 

The Gr = Identity varieties seem, for arbitrary N (N 2 3), to be codimension-one algebraic 

varieties of the form: 

0 = PO(X) . YN + PI(X). YN-l + &(X) * YN-2 + P3(X) . YN-3 +. * ’ , (6.10) 

with PO(X) = PO(O) and Pi(X) = 0 for i = 1,. , . , N. For example, by introducing Y = I./At 

and X = l/A, condition G, N = Identity reads, respectively, for N = 3,4,6: 

c3 = x . (3. x - 1) = 0, C4=Y+2X3-X2=0, and 

C5=Y2-X.(14X2-7X+1).Y-X4+5x+5X2)=0, (6.11) 

Cs=2Y2-X*(10X2-5X+1)‘Y+X5’(1-X)=0, 

or in terms of X = l/6 - X and Y = l/54 - Y (see (4.34)): 

G3=(6*X-1)*(6*X+1), G4=-6.Y-X.(12X2-l), 

Gs = 1728. p2 - 288. af? (84X2 - 1) . p - 1 + 12X2 + 1872X4 - 8640X6, 

6s = 3456. p2 - 288 a r;r (1 + 60X2) . p - (12X2 + 1) + (144X4 - 72X2 + 1) . 

Let us give some additional examples. The codimension-one variety corresponding to G: = 

Zdentity is also self-dual and reads in terms of the two invariants X and Y: 

C~=O=Y4+(5X-1-1OX2)~X~Y3+(lllX2-36X+4-lllX3)~X3~Y2 

+ (13X - 291X4 + 194X5 + 192X3 - 69X2 -1)*x4.Y+(7x-1+7x3-14x2)~x9, 
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or equivalently, 

Gr = 0 = 2985984 Y4 - 497664. .% . (1 + 60. x2) . p3 

+ (1728 - 435456 . x2 + 30606336. _%’ - 331444224 . 2”) . E2 

+ 288x . (2011392X’ - 20736X’ - 6048X4 + 48X2 + 1) . ? 

+ (20901888X12 - 17418240X1’ - 2301696X’ - 7920X4 + 269568X6 + 120X2 - 1 
> 

. 

The codimension-one variety corresponding to G; = Identity is self-dual and reads: 

c8 = -Y4 + (2 - 14X + 28X2) . X * Y3 + (240X3 - 93X2 - 240X4 + 16X - 1) . X2. Y2 

= (12X - 195X4 - 58X2 + 130X5 + 144X3 - 1) . X4 . Y + (2X2 - 4X + 1) . X’o = 0, 

or equivalently, 

Gs = 0 = -4478976. p4 + 1492992 . a% . (84X2 - 1) . p3 

+ (10368 - 107495424Oa%’ - 746496. x2 + 31352832z4) . p2 

+ 432 + r; + ( 12z2 + 1) . (11232Oa%’ + 2736x4 - 156*2 + 1) . ? 

+3.(144X4+48x2-1 . 
) ( 

20736x8 - 34560%’ + 864z4 - 48z2 + 1 
) 

. 

The following (codimension-one) self-dual varieties CN = 0 are given in Appendix B for N = 

9 , . . . ,15. One can easily write down these conditions in terms of the “pseudo-self-dual” invariants 

X’, Y in order to make explicit the self-dual character of conditions CN = 0. 

The coefficients quickly become quite large, however one can get simpler expressions and coef- 

ficients by introducing: 

X+X=& E-P=&. (6.12) 

With these last invariants, conditions Gr and 6s are replaced by 

G, = Y4 - 2X. (5X2 + 1) . p3 + (1 - 21X2 + 123X4 - 111X’) . ei2 

+2X. 4X’2+97P-42R4+1-12Xs 
( ) 

.3 

- 1 + 10X2 - 55X4 + 156X6 - 111X8 - 70X1’ + 7X12, 

&=12X(7X2-1)‘Ii3 - 3Y4 + 12 (1 - 60X2” - 6X2 + 21X4) . ?2 

+6.X(65X6+19X4-13X2+1)(X2+1)+ 

+6(X4+4X2-1)-(X4+4X3-2X2+1)(X4-4X3-2X2+1). 

In the x = l-limit, which corresponds to Ds = 0, i.e., X = 0, the previous finite-order 

conditions CN = 0 (N = 3,. . . , 15) read YM = 0. All these equations Gr = Zdentity therefore 

degenerate into: 
‘1L. (1+ u) = 0, (6.13) 

in the isotropic limit when x = 1. Therefore, it seems likely that no x = 1 isotropic point (except 
u = 0 and u = -1) can belong to a finite-order condition Gr = Identity for N # 3. 

REMARK. All these relations are &-symmetric, therefore they identify with conditions GF = 

Identity and Gy = Identity, and are therefore suficient conditions for having a finite group. 
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6.3. Genus of the Finite-Order Conditions 

It is remarkable that all these finite order conditions are codimension-one varieties. They can 

all be written13 in terms of the two group invariants X and Y. These relations between X and Y 

(X or Y) cannot be obviously deduced from any further analysis of the discrete group generated 

by the inversion relations. Thus, several questions pop out. Where do the explicit equations of 

these curves come from? What is the nature of these curves? For instance, are these algebraic 

curves P(X, Y) = 0 elliptic curves? 

At least for Gp = Identity for N = 7 (or 8), one can get some hint concerning this last quest;ion 

since the polynomial is of degree four in Y: 

Ao.Y4+4.A1Y3+6A2.Y2+4A3.Y+A4=0, (6.14) 

where the Ai’s are polynomial in X. Introducing: 

g2 = AoAz, - 4A1A3 + 3A;, g3 = AoA2A4 + 2AlAzA3 - AoA; - A4Af - A;, 

and the discriminant: 

A = g; - 27g;, 

discriminant A reads for N = 7: 

44 . A(N = 7) = X15. (29376X6 - 29376X5 + 16200X4 - 5360X3 

+ 1003x2 - 97x + 4) . (3X - 1)‘s. 

These curves are not rational curves. Recognized in this discriminant are the two following 

rational cases X = l/3 and X = 0, namely 03 = 0 and its dual variety. In fact, using the 

Macaulay algebraic geometry computing system [54], one gets that condition C4 = 0 is a genus 

one curve, that C.5 = 0 is a genus ten curve and that Cs = 0 is a genus 78 curve. 

In the (X, Y)-plane most of these infinite sets of finite-order conditions are algebraic curves of 

genus greater than one, amazingly associated with a foliation of P4 in algebraic (elliptic) surfaces. 

6.4. Generalization for Arbitrary q 

These calculations can be generalized for arbitrary q. The (generically infinite order) birational 

formation Gi reads: 

XlG = E _ 
(xfx + x1qx - 3x12 - q + 2) .22. (1 - 21+ 21232 - X3) 

xcqx - (q - 2) * 212 + (q - 2) + XT232 + (q - 3) *X123X - (q - 2). X3). (X1 - ij’ 

%G 
x2G = -7 

DSG 
where 

N2G = (1 -- 3x3~ - x$x + 2X:X + X3QX) . Xf 

+ (-(q - 3) . x3 + (q - 3) - (q2 - 5q + 6) . x:x + (q2 - 5q + 6) . x3x) . x1 

+ (q2 - 4q + 4) . x; - (q2 - 5q + 6) . x3 - (q - 2), 

DzG = (51 - X:X - XlqX + q + 2X1X - 2 + XT232 + 21234X - 321232 - X3q + 2X3) X3, 

1 - 51 + x1232 - x3 
x3G = -- 

21 - xCqx - zlqx + q + 2x12 - 2 + xc:232 + xlx3qx - 321x32 - 234 + 2x3 ’ 

XG = 
NI, . N2g 

Di, . D29 ’ 
where 

NI, = (x,, - x:x - xt’lqx + q + 2~12 - 2 + x;x3z + xlx3qx - 3x1232 - x3q + 2X3)2, 

(6.15) 

13This is not surprising since one can show [53] that conditions Gi JV = Identity are automatically invariant by the 

discrete group generated by the inversion relations. 
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Nag = x1 - 1+ (q - 2) * 51232 - (q - 2). 53, 

D1, = -22~2~s - qx:xex + 2x:x3x + qxfxix - 5xlxiqx 

+ 6~1x32~ - 6~1x3~ + ziziq2z 

+ 521x3qx - x123qax - xf - 351x3 + 2153q + 3x1 - x1q - (q - 2)s. x; 

+ (q2 - 5q + 6) . x3 + (q - 2), 

D29 = (1 - x1 + ~~2~2 - x3). (xfx + xlqx - 3x12 - q + 2). 

(S.lS)(cont.) 

Writing down the G, N = Identity relations yields calculations that are too large. However, it 

is possible to get the solution for N = 3. 

coordinates again yields the two relations: 

Writing down the relations: Gi = G12 on the four 

q.D3-D1. 02 = 0 and Da = 0. (6.16) 

Conversely, one can easily see that Gi reduces, for x = 1, to an order-three transformation: 

(zr,z2,x3,1) - 
1+q.x3-2*x3 

x21- 
-1 1 

x3 > ‘xi-2+q’ . 
(6.17) 

Of course by duality, this is also the case for q ’ 03 - D1 . D2 = 0. 

REMARK. For the Tutte-Beraha numbers the group is finite for 03 = 0 (that is x = 1) and 

therefore restricted to its dual variety: q ’ D3 - D1 . Da = 0. Do other algebraic varieties exist, 

such that the group becomes finite for arbitrary values of q? Do other codimension-one (or 

codimension-two) algebraic varieties also exist such that the group becomes finite for the Tatte- 

Beraha numbers? The calculations become unfortunately quickly very large. 

REMARK. For x = 1, but for arbitrary q, it is known [lo] that the group is isomorphic (up to 

semidirect product with finite groups) to Z x Z. Therefore, to some extent, the x = 1 subcase 

can be compared to the q = 3 subcase: in both cases, the group is (up to a semidirect product) 

isomorphic to Z x Z. In the x = 1 subcase, one has to introduce the Ji’s in order to see it, 

these Ji’s being order three for q = 3 (and arbitrary z), while in the q = 3 subcase, it is necessary 

to introduce the Gi’s in order to see that the group isomorphic to Z x Z (see Section 4.3), 

these Gi’s being of order three when x = 1 (and arbitrary q). 

7. SYMMETRY GROUP INVARIANT APPROXIMANTS FOR 
SPONTANEOUS MAGNETIZATION 

The previous algebraic group invariants are certainly well-suited variables to analyze the “an- 

alytical complexity” of the various physical quantity one can encounter. However, most of the 

physical quantities depend, in a quite nontrivial way, of various “spectral” parameters [47]. In 

this respect, some “one-point functions” like, for instance, the spontaneous magnetization can be 

seen as remarkable group invariant expression which should not depend “too much” of various 

“spectral” parameters (whatever they are [49] . . . ). Of course we do not expect the spontaneous 

magnetization of the edge Potts model to be a closed algebraic expression (like for the Ising 

model: see 7.1 in the following). It can be seen as a “transcendental invariant” for the group. 

Taking advantage of the previous analysis which singles out a “canonical” invariant (namely A;) 

corresponding to x # 1 deformations of the edge Potts mode, one may ask the following ques- 

tion: is it possible, to write down the spontaneous magnetization as a (more or less involved) 

function of invariants like the group-invariants Ag, Z, and 19, (respectively, defined by (4.24), 

(4.39), (4.49))? Is it possible to write a closed expression of these invariants which could be a 

good approximation for the spontaneous magnetization? 

Let us consider the q = 3, x = 1 subcase of this model. This subcase can be seen as a 

testing ground for providing an example of exact calculation using the symmetries (and various 
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analyticity assumptions), but no Yang-Baxter structure. We use here the specificity of the Tutte- 
Beraha numbers and of the 5 = 1 (no three-spin interaction) case. The calculations are sketched 

in Appendices C, D, and E. 
Let us first recall the exact expression of modulus of the elliptic functions occurring in the 

elliptic parametrization of the checkerboard Ising model [49,55]: 

k2 = n 
ti . (1 - t%) . (1 + ti) . (t; + t; . t; t;) 

izl tt . (1 - t,‘) . (1 + t,*) . (t, + t, . t/$ tl) ’ 
(7.1) 

where the ti’s denote the usual high-temperature variable t, = th(Ki), and the t,“s denote their 
dual tT = (1 - ti)/(l + ti). It is clear on (7.1) that this valuable expression, which is a key 
ingredient to foliating the parameter space, parameterizing the model, finding the critical variety 

(namely k 2 q = 1) and to actually solve the model, could have been “guessed” from the various 
degeneracies of the model, namely Ki = 0, Ki = ix) and the disorder solutions, their (Kramers- 
Wannier) dual and the action of the discrete group generated by the inversion relations. Let 
us also recall the exact expression of the spontaneous magnetization of the checkerboard Ising 

model [55]: 

M = (1 - k2)“‘. (7.2) 

The spontaneous magnetization has a remarkably simple expression in terms of the algebraic 
invariant k’. When restricted to the critical condition, k2 = 1, it vanishes. Furthermore, when 
restricted to the “order” solutions (dual of the disorder solutions), namely t,' + tj' t; t; := 0, 

the spontaneous magnetization M becomes equal to 1. This can be checked formally on low 
temperature resummed expansions of the spontaneous magnetization [56,57]. Both quantities M 
and k2 do have the same symmetries (symmetry of the square, inversion relation symmetries, 

. .I. 

It is tempting to try to generalize this result to q-state edge Potts models, and, in particular, 
to the three-state standard scalar edge checkerboard Potts model [58], in order to get simple 
closed expressions (or approximations), for instance, for the spontaneous magnetization. The 
calculations are sketched in Appendix C.l for the checkerboard lattice because this very lattice 
provides a “nice” representation of the Kramers-Wannier duality, namely k --+ l/k. Unfortunately 
these calculations are too naive and yield an algebraic invariant which does not suite well with 
the resummed expansions (see Appendices C.2 and C.3). 

Actually we will see that the honeycomb lattice (dual of the triangular one) is better suited to 
address this question (see Appendix D). 

7.1. Algebraic Invariant for the Honeycomb Lattice 

Let us recall the low-temperature variables (3.8) and the well-known (ferromagnetic) critical 
variety of the three-state honeycomb Potts model [39]: 

choney = 
0 -l+(A+B+C)+2.(BA+CA+BC)+ABC=O. (7.3) 

The results are the following. Let us introduce the following (see Appendix D.2 for more 
details) group invariant for the honeycomb lattice: 

k Potts = (;&-) 7 where 

N Potts = 27(ABC + AA + BC)(BCA + B + CA)(ABC + C + BA)(ABC + A + B + 2BA t 1) 

x(ABC+C+B+2BC+1)(ABC+C+A+2CA+1)(A-C+B+BA+1) 

x(C+A-B+CA+l)(C-A+B+BC+l), and (7.4) 

v potts=1+(A+B+C)+2.(BC+CA+BA)-(A2+B2+C2) 
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- (A3 + B3 + C3) - (CA2 + B2A + C2A + BA’ + B2C + BC2) + 6ABc 

- 2 (A3~ + B3A + ARC + B~C + C~A + CUB) + 2. (BEAK + c2~2 + BEAK) 

- 3 (BC2A + 3B2CA + 3BCA2) 

- ABC. (3CA + 3BA + 3BC + 5A2 + 5B2 + 5C2) (7.4)(cont.) 

- PABC (CA’ + B2C + C2A + BC2 + B2A + BA2 + GABC) 

- 5A2B2C2(C + B + A) - 2. A2B2C2. (AC + BC + AB) - A3B3C3. 

Let us introduce a first upp~~&~~tian for the derivative of the (low temperature normalized) 
partition function, 2 . 6 In(A), namely: 

De, = (1 - k~otts)“~ - 1. (7.5) 

The (resummed low temperature [lo]) expansion of z . $ In(A) can be written as follows: 

z. $ In(A) = 2. 
A(C + BA)(B + CA) 

(1 - A2)2 

+ 2 A2. (A - 1) . (A2 - 4A - 1) 

(1 - A2)3 
*(B+C).BC+4. A4 (1 _ Aq3 ’ (B + c)3 

+2. (B+2CA)(C+BA)(A3-5A2+A-l)(A-l)3 .BC 

(1 - A2)4 

+4. (B+cA).(c+BA).A.(1+5A2+2A4) .(B+C)2 

(1 - A2)4 

+2 (3A5+4A4+3A3-A2-l)~(A-l)3.A.(B+cA).(c+BA) .BC 

(1 - A2)3 . (1 - A3)2 
(7.6) 

+ 4 A2 (2A5+4A4+5A3+5A2+2A+1+A6) (1 - A)(B + CA)(c + BA) 

(1 - A2)3. (1 - A3)2 
(B + C)2 

6A6 

+ (1 - A2)4 
* (B + C)4 + 2. 

(A - l)A4 . (A2 - 9A - 4) . BC 

(1 - A2)4 

(B + c)2 

_ 2. (A - l)2(A - 3)(A + l)A3 . B2C2 

(1 - A2)4 

+ 4. A2(C + BA)(B + CA)(4A - 5)(1 - A)2 . BC 

(1 - A2)4 

_ 4. A2(c + BAHB + CA) (2A3 + 7A) . (B + c>2 

(1 - A2)4 

A straightforward calculation enables us to write (7.6) in terms of De, as follows: 

where Rest has a remarkably simple expression for X = -3/2, namely: 

(7.7) 

R 
est 

= A.(l+A-4A2+A3+A4) .BC+ 2A3 

(1 - A3)2 
(l-As)2 ‘(B+C)2 

A. (1 - AS) 5.A3 2A3 
(7.6) 

= (1 _ A).(1 _ ,43)2 *BC - (1 _ ~3)s *BC+ (1 _ A3)2 '(B + c)2' 
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One should also note that invariant kp otts is built in such a way that it does vanish when one is 
restricted to the LLorder conditions” of the three-state edge Potts model on a honeycomb lattice, 

(A+BC+ABC = 0,. . . ). Furthermore, when one restricts oneself to the critical condition 

of the three-state edge Potts model on a honeycomb lattice, kp otts actually becomes equal to 1. 
Therefore, the closed expression (7.5) leads to the recovery of the critical (magnetic) exponent of 

the three-state Potts model [39], /? = l/9, on the critical variety CF = 0. 

Conversely, condition kPotts - 1 = 0 factorizes into this very critical condition together with 
three other algebraic varieties, namely: 

k Potts - 1 = 0 - cpey . 
( 
cpney . cpey . cpey 

> 

2 
= 0, with 

chow = 
0 -1+(A+B+C)+2.(BA+CA+BC)+ABC, 

C:O”eY=ABC2+2ABC+A+2CA+B+2BC-C2+1, 

Choney=ACB2+2BA+A+2ABC+1-B2+C+2BC+1, 2 

Choney = BCA’ - A2 + 2BA + B + 2CA + C + 2ABC + 1. 3 

(7.9) 

This factorization of condition k Potts - 1 = 0 is reminiscent of the factorization for the checker- 
board Ising model (see equation (C.16) in Appendix C.l). If formula (7.5) is taken for granted, 
one should expect a ,0 = 2/9-magnetic critical exponent [39] on these three new varieties (7.9). 

By performing a Kramers-Wannier duality [40,41], one deduces three remarkable varieties for 

the triangular lattice from the last three algebraic varieties. In terms of the variable Q’S one of 

these reads: 

~2~36 + %2~3Zl - XT t 22221 + 22123 + 1 + z3 + x2 = 0, or 

h1 + 2, ’ (~1~2~3 - (21 + X2 +X3) - 1) + 3. (21 + 1) . (1 + z2 + x3) = 0, 

which have a remarkably simple form in terms of the rational parameterization of the 2 = 1 

subcase of the Potts model (see (4.35)): 

u2 * u3 + t2 . UT = 0, with: t6 = -1. (7.10) 

Such varieties, remarkably simple in terms of the well-suited variables ui’s are specific oj the 
Tutte-Beraha numbers (see Appendix E.2). 

7.2. Comments on Invariant kpotts 

Since expression (7.4) seems to be particularly well-suited to “decipher” the resummed low- 

temperature expansions of the spontaneous magnetization of the three-state edge Potts model 

on the honeycomb lattice (see (7.8) and Appendix D.3), it is tempting to compare (7.5) to 

other expansions available in the literature, and in particular to the expansions on which the 
most extensive studies have been performed, namely isotropic low-temperature expansions [59,60]. 

Unfortunately for the three-state edge Potts model, only high-fieEd expansions are specifically 

dedicated to the honeycomb lattice [59]. From this expansion, the first coefficient of a low- 

temperature expansion can be deduced. The agreement between (7.5) and this deduced low- 

temperature expansion for the spontaneous magnetization is quite good (see Appendix D.4). 

The largest low-temperature expansions for the spontaneous magnetization have been obtained 
recently for the square lattice up to order A47 in [60]. By setting the limits C = 0 and B := A, 
one can easily get from (7.5), the equivalent of (7.5) for the isotropic three-state edge Potts model 
on the square lattice. For the square lattice, kpotts reads: 

k 
square_ 27.A4.(2A2+2A+1).(A+1)4 
Potts - 

(1 + 2A - 4A3 - 2A4)3 ’ 
(7.11) 
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The low-temperature expansion of the spontaneous magnetization of the three-state edge Potts 

model square lattice reads [60]: 

M square = 1 - i . z - i In(A) = 1 - 3A4 - 12A6 - 12A7 - 36A* - 108Ag 

- 210A” - 480A” - 1746A12 - 2340A13 - 10566A14 - 19500A15 - 53976Al’ 

- 152604A17 - 329424A” - 971304A” - 2403291A2’ - 5955576A21 - 16858584A22 

- 40337376A23 - 110301321A24 - 287061696A25 - 730223208A26 - 1985703720A27 

- 5070001716A28 - 13446444720A2’ - 35650214232A3’ - 92442918828A31 

- 247542929499A32 - 648347258796A33 - 1713912378552A34 - 4559593914288A3= 

- 11991311519034A36 - 31943103715128A37 - 84599939924118A38 

- 224265087762144A3’ - 597511883594619A4’ - 1584231404110704A41 

- 4220295103426356A42 - 11234571367790256A43 - 29892611571334848A44 

- 79763126301078204A45 - 212500082474434470A46 - 567062477783225940A47, 

and the expansion of (7.5) (but for (7.11)) yields: 

(1 - ktts square)l/g - 1 = -3A4 - 12A6 - 12A7 - 45A8 - 96Ag - 234A1’ - 576A11 - 1446A12 

- 3468A13 - 9108A14 - 22032A15 - 57774A16 - 144000A17 - 373800Al’ - 952128Al’ 

- 2466738A2’ - 6353328A21 - 16509432A22 - 42797448A23 - 111617214A24 - 290794368A25 

- 760795740A26 - 1990352736A27 - 5221859292A2* - 13707847944A2’ - 36056085192A3’ 

- 94917607680A31 - 250248685599A32 - 660357590880A33 - 1744686518304A34 

- 4613473905696A35 - 12211923142131A36 - 32351256927936A37 - 85779066068604A3’ 

- 227613073998444A3’ - 604434359093817A4’ - 1606203980794368A41 

- 4271216035201722A42 - 11365197818350656A43 - 30260209228058898A44 

- 80615490837540204A45 - 214886746688288580A46 - 573101698152234528A47. 

The difference between these two expressions reads: 

9As - 12Ag + 24A” + 96A” - 300A12 + 1128A13 - 1458A14 + 2532A” + 3798A16 

- 8604A17 + 44376A’* - 19176Al’ + 63447A2’ + 397752A21 - 349152A22 + 2460072A23 

+ 1315893A24 + 3732672A25 + . . . . 

The agreement between these two expansion is remarkable14. For instance, if one compares 

the coefficient of A22 A23, A24, A25, A3’, A46, and A47 the coefficients in these previous two 
expansions are actually equal up to 0.0207, 0.0609, 0.01;9, 0.0130, 0.0149, 0.0112, and 0.0105, 

respectively. 
The agreement between these two expansion is so good that it is tempting to imagine that 

the Kramers-Wannier dual of (7.4) is also well-suited to express the spontaneous magnetization 

of the three-state edge Potts model on the triangular lattice and that there may exist a single 
expression generalizing the previous two for the three-state edge Potts model on the checkerboad 
lattice. Unfortunately, the Kmmers- Wannier dual of (7.4) is not a well-suited expression for 

the (low-temperature) resummed expansion of the spontaneous magnetization of the three-state 

edge Potts model on the triangular lattice (see Appendix E.4). The reszlmmed expansion of the 

spontaneous magnetization of the three-state Potts model on the anisotropic triangular lattice 

corresponds to: 

2. $ In(A) = 
2A2C2 

(I- _42C2)2 *B2+ 

4A4C4 M4. A2C2 

(1 - A2C2)3 *B3 +2p _~3~3)2(1_ A2~2)4 *B4 +*‘* ’ 

141n particular when one recalis the problems encountered in the Pade analysis of the three-state Potts models. 
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M4 = 2A2 -I- 2C2 + 6A3C3 - 8A2C2 + A4C4 + 2C4A2 - 4A5C3 + 2A8C6 - 4A7C5 

+ 2A1’C8 - 4C5A3 + 2C8A6 - 4C7A5 + 2C”A’ - 2A7C6 - 2A6C7 

- 8A8C8 + 3A”C” - 2A4C3 - 2A3C4 + 2CA2 + 2C8Ag + 2C2A + 

Another invariant seems to dominate the expansion of the triangular lattice 

It should be quite close to the following invariant: 

Ytriang = - 
ABC. (1 + A). (1 + B) . (1 + C) 

(ABC + (BC + CA + BA) - 1)s’ 

- 2A6C6 + 8A5C5 

2CgA8 + 2A4C2. 

(see Appendix E .4). 

(7 12) 

In the case of the triangular three-state edge Potts mode, Monte-Carlo simulations have been 

performed l5 in order to see if the new varieties (7.10) could not be critical varieties. MonteCarlo 

calculations show that these varieties are not critical varieties with a magnetic critical exponent 

given by formula (7.5) ( namely p = 2/9), but it may be possible that these varieties could. be 

“special” in some way (see Appendix E.3). 

Furthermore, expression (7.11) for the square lattice, inherited from the one for the honeycomb 

lattice (see (7.4)) d oes not yield a simple representation of the Kramers-Wannier duality. The 

Kramers-Wannier dual of (7.11) reads: 

k 
square 
KW 

= (1 + 2A)2(2 + A)4 (5 + 2A + 2A2) (A - 1)4 

(10A - 1$12A2 + 4A3 + 2A4)3 ’ 
(7.13) 

Eliminating variable A between (7.11) and (7.13) yields a quite complicated (involutive) algebraic 

relation between k~~~~ and kzr (see Appendix D.3). 

These two facts suggest, for the checkerboard and square lattices, that one should introduce, 

instead of a single one, (at least) two invariants, one being dominant for the honeycomb limit and 

another for the triangular limit. A “nice” representation of Kramers-Wannier duality probably 

requires considering at least these two invariants. This could be consistent with the fact that 

varieties (7.10) are not p = 2/9-critical varieties. This also suggests that expressions like (7.4) 

are just approximations for the dominant singular part of the spontaneous magnetizationm and 

have to be improved. Finally, this suggests that, even for the honeycomb three-state Potts mode, 

one should be able to improve the previous results (see (7.4) and (7.7)) and get “improved” 

symmetry-invariant approximations for the spontaneous magnetization. 

7.3. Towards “Improved” Algebraic Invariants 

In order to “improve”the invariants let us remark that the resummed expansions of the various 

group invariants provide either simple 1 - A2, (respectively, 1 - AC) singularities, or on the 

contrary, quite involved singularities but not the Nth root singularities 1 - AN known to occur 

in the resummed expansions of the spontaneous magnetization of the three-state (or q-state) 

edge Potts models [lo]. Actually, though (7.5) enables us to retrieve the exact critical exponent 

,B = l/9, its (B, C small) expansion yields only 1 - A2 singularities for the honeycomb lattice. 

This could suggest that the 1 -AN singularities in the resummed expansions, are not related to the 
dominant singular part [13] of the spontaneous magnetization but to sub-dominant singularities. 

In order to understand the occurrence of these Nth root of unity, it is interesting to consider 

the resummed expansion of the partition function per site of the three-state Potts model on 

15We thank J.-C. Angl&a d’Auriac and H. Meyer for communicating these results prior to publications. 
16This situation is reminiscent of the susceptibility of the Ising model where the closed expression of Syozi and 
Naya [61,62] gives the dominant singular part of the susceptibility (see [13]). 
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rubber bands [6,63]. Such an example is given in Appendix F for the square lattice. The (low- 

temperature normalized) partition function per site, denoted A, is one of the three solutions of a 

polynomial equation: 

P(A) = A3 + c, * A2 + Cl * A + co = 0, where 

C, = Go + C,l + c&? + *. f ) 72 = 0, 1,2, 

where the Cnj’s are of order j in B. Let us introduce the (resummed low-temperature) expansion 

of A: 

A = 1 + 3. (q - 1). & - B2 + (q - 1) + 2 n=3 (1 -yY)n-I . B”. (7.14) 

One can actually understand, on this very example, that the occurrence of the singularity 1 - A3, 
is related to the following relation: 

3 + &I + 2 * c,, = (1 - A2) e (1 - A3) = -$‘(A), (B = 0). (7.15) 

Appendix F also enables to understand that singularity 1 - A3 does not occur for W2. Since 

we know that the 1 - A’” singularities occur in the resummed expansion of the spontaneous 

magnetization for all the v&es of the integer N [lo], this seems to suggest that the “polynomial” 

needed for a closed algebraic formula for the spontaneous magnetization is of “infinite” degree. 

8. CONCLUSION 

The discrete symmetry group generated by inversion relations has been analysed for the stan- 

dard scalar Potts model with two- and three-sites interactions on the triangular lattice [45]. The 

group generated by three involutions is seen to be generically a very large one (like a free group), 

namely hyperbolic groups. 
In this analysis a remarkable situation pops out for q-state Potts models for particular values 

of q, the so-called Butte-Bemha numbers [23,46]. For these values of q, some of the (generically 

infinite order) generators are of finite order. However, even with such additional relations on 

the generators, one still gets groups with an “exponential growth”, except for q = 3 (or q = 1). 

Additional relations on the generators can also occur on particular algebraic varieties, yielding a 

degeneracy of the group into products of Z. We have seen that x = 1 and its dual variety (4.41) 

are such varieties. It would be interesting to systematically seek more examples of such varieties. 

A detailed analysis of the q = 3 case has been performed. For q = 3 the finite-order con- 

ditions for which the group degenerates into a finite-order group are found to be codimension 

one varieties. In this q = 3 subcase, a rather systematic study of well-suited group symmetry 
invariants has been performed. It could be of some help to analyze the analytical structure of 

certain physical quantities like, for instance, the spontaneous magnetization. In particular, we 

have got a closed algebraic expression which is a quite good approximation of the spontaneous 

magnetization for the honeycomb lattice. 

As a byproduct, this analysis provides nice birational representations of hyperbolic Coxeter 
groups as well as providing algebraic varieties having such large groups of (bimtional) automor- 

phisms. It is clear to see that many calculations, performed on the hyperbolic Coxeter groups of 

symmetries of triangular Potts models, can simply be generalized to three- (or higher-) dimen- 

sional vertex models mutatis mutandis. This first analysis of hyperbolic Coxeter symmetry gmups 
for lattice models, including degeneracy subcwes, should help a better understanding of the sym- 
metries of three-dimensional models and provide tools to perform exact calculations based on the 

symmetry analysis of these higher-dimensional models. 
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APPENDIX A 
MORE RELATIONS ON THE GENERATORS 
OF THE HYPERBOLIC COXETER GROUPS 

The analysis of I’triang can be performed directly on the Ji’s. Let us now consider the Tutte- 
Beraha subcases. One has the following relations between the Ji’s: 

J,” = Zd, i = 1,2,3. (Al) 

One can easily deduce many other relations for the Tutte-Beraha numbers, for instance: 

J3 = JN-I JN-~, 
‘2 1 (14.2) 

Since 53 can be rewritten in terms of J1 and Jz, the Coxeter group can be seen as generated by 
J1 and Js [28]. Then, using relations (A.l) with i = 1 or i = 2, one obtains the form of a general 
element of the group: 

J”‘J”2 J”3 J”4 . . . J”k J”“+’ 
1 2 1 2 12 ) (A.3) 

where ni, nk+i = 0, 1, . . . , N-l;n,=1,2 ,,.., N-l,a=2,3 ,..., k. 
Generically, there is no further relation between the Ji’s thus I’ is a free group generated by 

two infinite generators (let us say, for example, JI and Jz). 
Introducing the well-suited transformations: 

Gi = JlJsJ2, G2 = JzJlJ3, G3 = 535251, (,4.4) 

one can show that N = 3 is singled out, I? reducing to Z x Z up to a semidirect product by a 
finite group. 

At first, let us study the group, G, generated by Gi,& and Gs. Relation (A.2) can also be 
written in the following way by using relation (A.2): 

JlJz = J3N-‘, J2J3 = JIN-‘, J3J1 = JzN-‘, (‘4.5) 

_ _ 
then GzGs reads: 

G2G3 = (525153)(J35251) = J2J1JiJgJ1. 

Notice that for N = 3, one can use relation (A.5) and obtain: 

G2C’3 = J2JfJiJl = JzJiJf = J3JFJzJ3 = 53525325153 = J~J~J~J~J~Js = G3G2. (A.6) 

Thus, the Gi’s actually commute if and only if N = 3. Furthermore, they do satisfy a relation 
of the same structure as (4.2): 

_ _ _ 
GiG2Ga = Zd. (.A.7) 

Let us now suppose that N = 3. A generic element of G reads: 

g = @1@“, (.A.8) 

where n1 and n2 are relative integers, which explicitly means that G is isomorphic to Z x Z. 
Let us now demonstrate that I’ is isomorphic to G, up to a semidirect product by a finite 

group. If y denotes a generic element of r, it can be written 

Y = (nTi,j,k> JF’ Jy2, 

where Ti,j,k = JiJjJk and (O~,CYZ) = (0,1,2). 

as follows: 

(A.9) 
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One can immediately replace, T1,2,3, 

T1,3,2 = GI, T2,1,3 = 62, l-3,2,1 = 63. 

relations between the G’i’s and Ji’s: 

_ _ 
JIG = GzJl, _ _ 
JIG = GsJI, I _ 
JIG = GJl, 

then y reads: 

J.-M. MAILLARD 

I’3,1,2, and T2,3,1 by the identity transformation, and 

Besides, one has some kind of “pseudo’‘-commutation 

_ _ _ _ 
J2G = GtJ2, J&I = GJ3, _ - - . 
J&z = GJz, J&z = GJ3, (A.lO) 

_ I _ I 
JzG = GI J2, JG’3 = G J3, 

In fact, all the Ti,j,k’S, where {i, j, Ic} = {1,2,3}, h ave already been replaced by “words” in terms 

of the G:i’s. Thus, using relation Ja = JZJ:, the only Ti,j,k’S, appearing in (8.11) are: 

T1,1,2 = Tl, T1,2,1 = ‘I’27 T2,1,1 = 9’3, T2,2,1 = T4, T2,1,2 = T5, T1,2,2 = Ts. 

However, it is easy to remark that these Ti’s satisfy the following relations: 

I _  _  - 

T2 = G3Tlr T3 = G2G3T1, T6 = GT4, T5 = G2GlT4r 

and besides 

Ti = GyZ12T4, T; = &;GzTl, TIT4 = T4T1 = Zd. 

Thus, I? is isomorphic to Z x Z up to a semidirect product by a finite group. 

APPENDIX B 

FINITE-ORDER CONDITIONS Gr = zDENTITY FOR Q = 3 

Let us give here a list of the codimension-one self-dual varieties corresponding to Gr = 
Identity. They read: 

C*=Cci*Y”=O, (B.12) 
i 

where the ci’s are polynomial expressions in X with (relative) integer coeficients. 
The codimension-one variety, corresponding to Gi = Zdentity, is self-dual and reads: 

c~=3.Y6-(6-36X+72X2).X.Y5+(4-46X+219X2-5O4X3+5O4X4).X2.Y4 

+ (679X3 - 1842X6 - 147X2 - 1842X4 - 1+ 2763X5 + 18X) . X3 . Y3 

+ (2394X4 - 1197X5 + 669X2 - 1803X3 - 123X + 9) . X7. Y2 

+ (401X3 - 896X4 + 16X + 414X7 - 1035X6 + 1239X5 - 1 - 108X2) . X8 . Y 

+(3X3-9X2+6X-1).X15=O, 

or equivalently: 

& = 15479341056. ?’ - 371504185344. X3 . Y5 

+ (2600529297408X’ - 11943936 + 46438023168X4 . Y4 

- 497664. X . (5 - 1248X2 + 54432X’ + 19097856X’) . p3 

+x2(X).P2+864X.X1(X).E+Xo(X)=o, 
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with 

X2 (X) = 5184 - 124416X2 - 48522240X4 - 8707129344X’ 

+ 2O2OO54OO78O8X1o + 1755758592X6 - 6176257081344X12, 

X1 X 
( ) 

= -112320X6 - 87340032X” + 188116992X12 + 11088X4 - 188X2 + 1 

+ 2472394752X14 - 3366144X8, 

xl) (2) = - 1 + 36X2 - 194586624X”’ + 20777472X’ + 15479341056Xr8 + 9792X4 

+ 3929554944X12 - 34828517376X16 - 822528X’ - 1934917632OX14. 

Introducing invariants (6.12), these last expressions become simpler namely: 

8s = 3. P” - 72p5X3 + 4. (126X6 + 27X4 - 1) . p4 

- 2X. (378X” + 5 - 104X2 + 921X’) . p3 

+ 3 
( 

196X6 - 65X4 - 399X12 + 1566X10 - 2X2 + 1 - 81X8 
> 

. p2 

+2X. (-47X2 - 487X8 + 231X4 + 3 - 195X’ + 207X14 - 1053X”O + 189X12) . $- 

+ 3X2 - 1 - 476X6 - 782X” + 1002X’ $- 1316Xi2 + 3X18 + 68X4 - 540X14 - 81X16. 

The codimension-one variety corresponding to G, lo = Identity is self-dual and reads: 

c~o=Y”+(3X-1-6X2).X.Y5+(255X2-85X-255X3+lO).X3.y4 

-t (-1185X4 - 300X2 + 800X3 + 60X + 790X5 - 5) . X4 . y3 

-t (4506X6 - 17X - 4013X5 + 2055X4 + 1 - 2253X7 + 136X2 - 660X3) . x5 . yt2 

+ (868X5 - 95X2 - 685X4 + 264X7 + 330X3 - 660X6 + 15X - 1) . x8 . y 

+(1-3x+x2) .x16=0, 

or equivalently 

cl0 = 5159780352 . p6 - 2579890176. a%. (12X2 + 1) . p5 

+ (14929920 - 1612431360X2 - 1315743989760X’ + 109645332480X4) e p4 

+ 2488320X . 
( 

12X2 + 1 
) ( 

. 136512X’ - 9648X4 + 156X2 - 1 3 p3 
> 

- 1728. 
( 

6727421952X12 + 5 - 792%’ - 35O85312OX1o - 2592000X6 

+ 62640X4 + 36391680X’ ) . p2 + 1152X. Xl (2) . (12X2 + 1) . ? 

+ (1728X6 + 1584X4 -60X2+l)*X2(X) =O, 

with 

Xl (A) = 98537472x12 + 28366848X” + 62208X8 - 152064% + 6192%’ - 120X2 + 1, 

= 2985984X12 - 124416OOX1o + 311040X’ - 158976X6 + 11376X4 - 216X2 + 1. 
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Again in terms of invariants (6.12) this reads: 

&,=~6-6X(X2+1)~~5+5(1-51X6-9X2+51X4).~4 

+10X~(X2+1)(79Xg-67X4+13X2-l).~3 

+ (-2253X12 - 1755X8 - 5 + 66X2 + 141oX’O + 1500P - 435X4 
> 

. p2 

+ 82. 
( 

33X12 + 114X10 + 3X8 - 88X6 +43X4 - 1022 + l ).(X2+1).P 

+ (X” + 11X4 -5X2+1 
) ( 

. X6-6X5-7X4-4X3+7X2+2X-l 
) 

x 
( 
X6+6X5-7X4+4X3+7X2-2X-l . 

> 

The codimension-one variety corresponding to G :’ = Identity is self-dual and reads (B.12) with: 

cm = -1, 

cg = 2n - 26X2 + 52X3, 

c8 = 1098X5 - 6X2 - 441X4 - 1098X6 + 82X3, 

c7 = 9462X’ + 9432X7 - 14193X8 + 4X3 - 3482X6 + 742X5 - 85X4, 

cs = 29X5 - 5800X’ - 10785X1’ + 10729X’ - 317X” - 2955X” + 5910X” + 1796~~ - X4, 

c5 = 450007xr2 - 36X7 - 8300X’ - 183756Xll - 701604X13 - 254088X15 + 635220X14 

+ 819X8 + 48942X1’, 

q = 96392X12 - 905355X17 - 1181576X15 + 9X8 - 238X’ - 315601Xr3 

+ 301785X18 - 2039OXll + 1306971Xr6 + 2852X1’ + 728509X14, 

c3 = 107428X14 - 416364X21 + 2469751X” - 359872X15 + 1457274X2’ - 24116Xr3 

+3951x12 - 1756987X17 +31X” + 915917Xr6 - 446X11 - X9 - 2406174X1’, 

c2 = 3921X17 - 23425X” - 376065X2’ + 221796X23 - 221400X2’ - 55449X24 

+ 362881X21 - 378X16 + 88794X” + 16X15, 

cl = 1834X1’ - 23859X26 + 71812X23 + 52821X25 - 279X” - Xl6 

+ 25X17 - 4867OX22 - 74438X24 + 53O2X27 + 23358X2r - 7891X2’, 

co = -x25 + llx26 - 44x27 + 77x28 - 55x2g + 11x30. 

The codimension-one variety corresponding to Gi2 = Identity (B.12) with: 

cs = -2, 

c7 = 6X - 38X2 + 76X3, 

cs = 1088X5 - 449X4 - 1088X6 + 88X3 - 7X2, 

c5 = 9310X’ - 79X4 + 9120X7 - 13965X* + 684X5 - 3278X6 + 4X3, 

q = 30x5 - 93939xlO - 406X6 - 15416X’ - 52838X12 + 48070X’ + 3164X7 

- X4 + 105676X11, 

c3 = 3076X’ - 81979X12 + 106594Xr3 - 13977X” - 421X8 + 41512X” - 86080X14 - X6 

+ 32X7 + 34432X15, 

c2 = 1692X1’ + 88472X15 + 24X9 - 53463X14 - 7428X12 + 70530X17 

- 1OO5O6X16 - 260X” + 23314Xr3 - X8 - 23510X”, 

Cl = 20x13 - 2849X2’ + 814X21 +5144X17 +848X15 - 173X14 - 2594Xm - Xl2 

- 6661XlS + 5544xlQ , 
qr = X22 + x24 - 4X23. 



Hyperbolic Coxeter Groups 205 

The codimension-one variety corresponding to Gf3 = Identity (B.12) with: 

Cl4 = 1, 

Cl3 = 22x2 - 4x - 44x3, 

cl2 = 6X2 -. 46X3 + 131X4 + 166X6 - 166X5, 

cl1 = 19166X’ + 16920X7 - 28749X’ - 9X4 - 4870X6 + 630X5 - 4X3, 

cl0 = -376735X1’ - 2061X6 - 102535X’ + 753470X” + 332081X’ - 662045X” + 89X5 

+ X4 + 19408X7, 

cg = 179240X’ - 5677671X12 - 84X6 - 7084940X14 + 2172X7 - 828356X1’ + 2618872X:” 

+ 2833976X15 - 25539X’ + 8163172X13, 

cx = 36X7 - 25841583X14 - 3595995X1’ + 42698208X15 - 1116X8 - 48502152Xl‘j 

- 14O616X’o + 11259027X13 + 84042OXll + 34213977X1’ - 11404659X1s + 16016X9? 

c7 = 62366Xll - 255092649X18 - 474376X1’ + 2669814X13 + 43023480Xz1 - 9X8 

- 150582180Xzo - 95144007X16 - 5741X1’ + 331X’ + 37645872X15 + 248402658X” 

- 11431638X14 + 181864551X17, 

cs = 468445155X’l - 375453015X2’ + 107275X13 - 48164520Xz4 + X9 f 884X’l 

- 16596807X16 + 54132501X17 + 273496776X1’ - 414599493X” + 192658080Xz3 

- 745487X14 - 138078891X18 - 11557X” - 43X” + 3984560X15, 

c5 = -4216X15 - 23246946X1’ + 9124O9755X24 - 685515X17 - 716767191Xz5 

- 7678O498X27 - 79736O4OOX23 + 120X14 - 23969373OX’l + 68625X16 

+ 505814490Xz2 + 85879152X2’ + 4691515X18 + 345512241X26, 

c4 = 479ocl14x2o - 160266120Xz3 - 19969205X’l + 64161465X” 

+ 311586450Xz4 - 10627X17 - 463526472X27 - 468914811Xz5 + 22887455Xz3’ - 16NX15 

+ 285221689X2’ - 114437275X” - 869740X1’ + 115599X18 + 539368809Xz6 + 604X16, 

CQ = xl6 -- 9546Xlg + 30033130Xz4 + 7O613O26X32 - 187554800X31 + 791X18 

- 12838732X33 

- 76069635Xz5 + 15733O983X26 - 41X17 + 36O982362X28 

- 388448166X” + 318744046X3’ - 265247394Xz7 - 9639880Xz3 + 80811X2’ 

+ 249o95ox22 - 51oo7ox21 7 

c2 = 1274o149x33 - 4697117X3’ - 527O66X36 + 84186Xz7 - 12970962X3’ - 456030Xz8 

+ 9220752X31 + 3162396X35 - 10326Xz6 - 8271495X34 + 1728297X2’ 

- 25 Y24 + 756Xz5 J 

cl = 17524X3’ + 98992;X33 - 3735xzs + x25 - 31Xz6 + 438Xz7 + 263504X31 + 21456X2’ 

- 87768X3’ - 1139O6X38 + 115549OX35 - 78O578X36 + 37O214X37 - 1242823X34 

- 589817X32, 

co = +182x40 + 13x42 - 91X41 - 156X3’ + 65X38 - 13X37 + X36. 

The codimension-one variety corresponding to Gi4 = Zdentity reads: 

Cl2 = 1, 

Cl1 = 33x2 - 5x - 66X3, 

cl0 = 2091X6 + 10X2 + 820X4 - 2091X5 - 146X3, 

cg = 51360X’ - 2295X5 - 10X3 - 33080X7 + 11575X6 - 34240X’ + 240X4, 

cs = 88200X8 - 548064X’l + 274032X12 + 495978X1’ + 5X4 + 2513X6 
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- 181X5 - 262710X’ - 18984X7, 

c7 = -76615X9 - 2808084X13 - 981498X’l + 11998X’ + 61X6 - X5 - 1176X’ - g53352X15 

+ 329343X1’ + 2027148X12 + 2383380X14, 

cs = 533918X12 - 4675440X15 - 3080X’ - 3253383X17 f 3128625X14 + 24ggOX’o - 8X7 

- 137046X’l - 1512021X13 + 231X8 + 1084461X18 $ 4872273X16, 

c5 = 9069711X16 - 17768520X17 - 248101X13 + X8 + 44870X12 - 6076X’lf 15511356X20 

- 25335870X” + 581X” + 1058345X14 + 25532766X18 - 3518896X15 - 35X9 

- 4431816X21, 

c4 = 8O316OOX23 - 9501450X2’ - 1330735X” + 4278750X” - 120X14 + 282775X17 

+ 14352285X21 + 3240X15 - 39345X16 - l4O64945X22 - 2OO79OOX24, 

q = 2264885X21 + 16X15 + 378374X27 + 239790X” + 58l688OX23 - 567O6OOX24 

+ 3856071X2’ 

- 17O2683X26 - 87OOOOX2o - 46285X” - 458X16 - 4268865X22 + 5949X17, 

c2 = 31X17 - Xl6 - 16561l5X24 - 329O65X22 + 25944OOX25 - 23132X2’ - 159531X30 

- 3167946X26 + 2921346X27 - 443X18 + 100465X21 + 3870X1’ + 797655X2’ 

- 1915618X2* + 83324OX23, 

cl = 28OX23 - l855X24 - 66535X3’ + 52220X2? + 34496X31 + X21 - 24395X26 + 87155X2’ 

- ll5l7X32 - 79950X2* - 25X22 + 2O94X33 + 8O85X25, 

c,, = +X28 - X33 - 6X35 + 5X34. 

The codimension-one variety corresponding to Gi5 = Zdentity reads: 

cl6 = -5, 

Cl5 = 290x3 - 145X2 + 25X, 

cl4 = 7125X5 - 3045X4 + 630X3 - 55X2 - 7125X6, 

cl3 = 9443X5 - 41741X6 - 1211X4 + 108766X’ + 109872X7 - 163149X8 + 70X3, 

cl2 = 97320X7 + 244868OX’l + 1323X5 - 56X4 + 1207988X’ - 14635X6 - 421235X’ 

- 1224340X12 - 2236919X”, 

cl1 = 678039X’ + 8680056X15 + 12452X7 - 111989X8 - 17991363X12 - 2l7OOl4OX’4 

+ 8592370X1’ + 25307166X13 - 853X6 + 28X5 - 2870244X1’, 

cl0 = 89817464X15 - 469562X” + 61854X’ + 301X7 - 95397318X= + 2520133X” 

- 9815259X12 - 5496X8 - 21548015X18 $ 64644045X17 + 28O8Ol7OX’3 

- 59OlOl3lX14 - 8X6, 

cg = 350898976X” - 12832X1’ + 1643388X13 + 992X’ - 13544232Xt5 + X7 + 2512O6lOgX2o 

- 45X8 + 73140264X16 - 71773174X21 - 541988X1’ + 104413X1’ - 388667984X1’ 

- 201684145X17 - 1229013X14, 

cs = 3563999094X2’ - 412X1’ + 8620833OXl’j - 2128340448X” - l988OO8992X23 

- 242475X13 + 958395375Xls - 4377674070X21 - X1’ - 16979532X15 - 329227860X” 

+ 37374O7239X22 + 14823X12 + 497OO2248X24 + 2442285X14, 

c7 = 105X12 - 549761l34X27 + 2473925lO3X26 - 4005X13 + 72131X14 - 813468Xf5 

- 3510271851X21 - 588891036X1’ - 5443O276O5X25 + 77l6287679X24’+ 168476936X18 

-t 596l3l68O3X22 - 782l1O69O8X23 + 6422415X16 - 37590360X17 + 1619651049Xzo, 

ce = l99O4754327X26 - 15X13 - 840610922X21 + 992243662X3’ + 11914238576X2’ 

- 12843X’“’ - 55750129X1’ + 240297445X2’ + 164818X16 + lO35O8O4X’8 
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+ 10743198954Xz4 - 1503457X17 - 18227502951Xz7 - 5631133635Xz3 

- 16487353161Xz5 + 2404443576X” - 4961218310Xzg + 635X14, 

c5 = 8778582X” - 27448399922X” + 199877136X” + 22417411968X3’ + 2159640588X”’ 

- 5388866436X” + 1072Xr6 - 1358539X” - 18778235985Xz7 - 13134426396X31 

- 89736483OX33 - 719793207Xz3 + 11118193815X26 $ 4935506565X3’ - 46125999X”1 

- 15754x17 + xl4 - 47X15 + 25572366009Xz8 + 167097X18, 

c4 = 1o775oox22 - 982X1’ - 125600532Xz5 -+ 187O397532X34 - 1O65255286X27 - 139693X” 

+ 5684483477X3’ - 6416078038X31 - 3818595163X33 + 13802Xzo + 318262O7X24 

- 607816272X3’ - 4017479622X2’ - 6539598Xz3 + 2293042980X2’ + 1O13O2712X36 

+ 5671486990X3’ + 45X18 + 404446392Xz6 - X17, 

c3 = 47841314X” - 43Xz1 + 859O26789X32 + 3452857X’” + 93396O82X38 - 664178X” 

+ 296245849X3’ - 14287286X2? - 11090Xz3 - 554173054X31 - 9693396O4X35 

+ 872X” + 632198614X36 - 13111O277X2g - 1O9989O449X33 - 3OO9O5O5OX37 

- 14368628X3’ + 99226Xz4 + X2’ f 1152423789X34, 

c2 = 1728951X41 + 31X2’ + 4761X31 + 8897265X3? + 9214176X3g - 246993X4’ 

- 5301420X3’j - 5200554X4’ - 10811551X3’ - 76325OX34 - 34588X3’ + 18748OX33 

- 474.X3’ - Xz8 + 23298O5X35, 

Cl = x31 -- 588O4X36 + 323OX45 - 3OO1X34 - 24225X44 - 234815X4’ f 410594X41 

+ 93258X43 - 514154X4’ + 381X33 $ 158O7X35 + 470232X3’ - 317671X3’ + 159O98mX37 

- 29x32, 

co = -8X47 + 14X46 - 7x45 + x44 + x48. 

In terms of the “pseudo-self-dual” variables X = l/6 - X and Y = l/54 - Y (see (4.34)), these 
finite order conditions, respectively, become: 

e,, oc -3. pl’ + T-t . (156%’ - 1) . pg + . . , 

e,, 0: -6. p8 + T?. (228X2 - 1) . p7 +. . . , 

i?,, 0; 3. ?14 - af. 
( 

132X2 + 1 
> 

. p13 f . . . , 

e14 c( 2. PI2 _ X . 
( 

132X2 _ 1 
> 

. PI1 + . . . , 

cl5 cx -6. i=’ + 2. 
( 
1+ 348X2 

> 
. p-l5 + . . . 

In the isotropic limit, these conditions yield fairly involved expressions. For instance, condition 
GT = Zdentity reads: 

uz4Lrg + (u24 - u21 + 3u22 - 12u23) 2s 

+ (63~” - 9uzo - 12uz3 + 3u1’ - 12uz1 + 4u18 - u15) x7 

+ (165~” + 54~” - 4u15 - 175~‘~ + 3u14 + 9u16 - 95u18 + ul’ - 42~“) x6 

+ (6~‘~ + 132~~’ - 620~” + 198uzo + 6~” - 15u14 

+ 267,~~~ - 13~~’ + 393u1’ - 108~‘~ - u”) x5 

+ (744u17 - 10632~‘~ + 600~” + 81~” - 45~” + 135~~~’ + 123u13 + 14~’ - 916u16) z4 

+ (60~” - 69ur2 + 210~‘~) z4 

+ (807u1’ + 789u17 + 3602~~’ - 352~’ + 78~‘~ - 2730~~~ - 63~’ + 27u7 - 279u” - 387~“) x3 

+ (-378~~’ + 1899u14 - 4~‘) z3 
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+ (633~’ - 2618~‘~ + 999u13 + 2154~~~ + u3 + 720~‘~ + 48u6 - 6u5 + 2607~~~ - 1242~‘) x2 

+ (-3u* - 3722~~~ - 186~~ + 579ul’) x2 

+ (1047~~ + 306~~’ - 1 + 2880~~~ - 94u3 + 6u+ 3495u’l - 4982u12 + 309u4 - 415~~) 5 

+ (-1618~’ - 294u5 - 624ur4 - 6~‘) z 

- 78u4 + 3 + 120~~ + 1578~’ + 996u5 - 3Ou- 1781~~ - 203~~ + 2880~~’ 

+ 912u7 + 224~~~ - 1248~‘~ - 3374~’ = 0 I 

which, within the x = 1 limit, gives: 

Another example is condition GT = Zdentity which reads: 

u5 f (u + 1) + x2 - u4 .(1+3+x+1 -2u-u2+4u3 =0, 

together with a polynomial relation of degree 16 in x, 42 in u which corresponds to the sum of 
310 monomials and Gj” = Zdentity reads: 

x3zLg - 3u8x2 + (u” - 8u5 + 3u4 - u2 + su”) * x + (1 - 3u + u2 + 7u3 - 9u4 + 2u5) = 0, 

together with a polynomial relation of degree 24 in x, 63 in u which corresponds to the sum of 
695 monomials. 

APPENDIX C 
TOWARDS ALGEBRAIC INVARIANTS FOR THE 

THREE-STATE CHECKERBOARD POTTS MODEL 

Cl. CHECKERBOARD MODELS 

Since, in the following, one considers low (or high) temperature expansions, let us introduce 
the low temperature variables: 

(C.13) 

The checkerboard Potts model (without magnetic field) is self-dual with respect to the Kramers- 
Wunnier duality [40,41,55] which reads 

A---+A*= 
1-A Xl - 1 

l+(q-l).A =xr+q-1’ 

The modulus of the elliptic function of the checkerboard Ising model: 

(C.14) 

4 
k2 = n ti - (1 - ti) - (1 + ti) * (t; + tJ - t; - t;) 

i=l t; ’ (1 -t;) ’ (1-t t;) ’ (ti + tj ' tk 'tl)' 

reads {after simplifications) in terms of the low-temperature variables: 

where 

N& = 16 - (A + BCD) - (B + ACD) . (C + BAD) s (D + BCA), and 

Dk=(-l-BC-AC-BA+CD+BD+AD+BCAD) 

x(BC-l+AC-BA+CD-BD-AD+BCAD) 

x(BC-l-AC+BA-CD+BD-AD+ABCD) 

x(-l-BC+AC+BA-CD-BD+AD+ABCD). 

(C.15) 
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Remarkably condition k2 - 1 = 0 factorizes the well-known critical condition of the m.odel 
(Frto = 0) together with three other varieties breaking the Cd,, symmetry of the square of the 
lattice: 

k2 -- 1 = 
F TtO . (F&2 . QCtO . ,yt”) 

Dk 
1 where 

F~to=ABCD-(AD+BD+CD+AC+BC+BA)+l, 

F yt”=ABCD+(AD+BD+CD+AC+BC+BA)+l-2.(AD+BC), (C:.16) 

F~to=ABCD+(AD+BD+CD+AC+BC+BA)+1-2.(AB+CD), 

F~to=ABCD+(AD+BD+CD+AC+BC+BA)+1-2~(AC+BD). 

It is important to note that the set of these three conditions Fyt“ = 0, (i = 1,2,3) is stable 
by the two inversion relations of the checkerboard Ising model, and that these three additional 
varieties are also critical. 

It is tempting to try to generalize a pattern like (C.15) to q-state Potts models. However, the 
analysis of the successive images of the disorder solutions under the (infinite) discrete group of 
birational transformations, generated by the inversion relations for the q-state edge checkerboard 
Potts model [25], shows that one gets an infinite number of such image varieties17. In order to 
avoid infinite product expressions for a tentative substitute of k2 (see (C.15)), it is necessary to 
restrict oneself to Tutte-Beraha numbers. Taking into account the remarkable properties of the 
Euclidean subcase q = 3 (see Section 4.3), the three-state standard scalar edge checkerboard Potts 
model, pops out as a good candidate for building the equivalent of the algebraic expression k2, 
and hopefully, get exact expressions for the spontaneous magnetization. 

Checkerboard Potts Model for q = 3 

Let us restrict to q = 3. Let us first of all, consider a polynomial Q which is the product of 
the four disorder conditions: 

Q = (ABCD + BCD + A). (ABCD + ACD + B) 

x (ABCD + BAD + C) . (ABCD + BCA + 0). 
(C.17) 

Denoting &I, Q2, Q12, Q21, and Q121 the algebraic expressions corresponding to the action of: 
11,12,II.I2,12.11,11.~2.11 with: 

II: (A,B,C,D) + 1,.-B 1 -D 
A (l+B)‘C’ (l+D) 

12: (A,B,C,D) + 

(C.18) 

(C.19) 

One can see that the product of the action of the whole group (generated by the two inversion 
relations of the checkerboard model) is actually equal to the product Qprod = Q . &I . Q2 - Q12 . 

Q21 . Q121. This new product happens to be a perfect square. If one introduces the square root 

of (&rod, it reads Gcheck = Ncheck/Dcheck where Ncheck and Dcheck read: 

N &e& = (ABCD + BCD + A). (ABCD + ACD + B) . (ABCD + BAD + C) 

x(ABCD+BCA+D).(BD+BAD+C+CD+BC+BCD) 

x(BD+BCD+A+AD+AB+BAD) 

x(AC+BCA+D+CD+AD+ACD) 

x (AC+ACD+B+BC+AB+BCA) 

x(BD-l+CD+AD+ACD+BCD+BAD+ABCD) 

x(BD-l+BC+AB+BCA+BCD+BAD+ABCD) 

x(AC-l+CD+ACD+BC+BCA+BCD+ABCD) 

x(AC-l+AD+ACD+AB+BCA+BAD+ABCD), 

(C.20) 

“With the “awkward position” that the partition function is a multivalued function with infinite valuation (26). 
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and 
D&k = A4B4C4D4 . (1 + A)4. (1 + @4 . (1 + c)4 . (1 + o)4. (C.21) 

Let us denote G* the (Kramers-Wannier) dual expression of Gcheck. In order to have a nice 
representation of the Kramers-Wannier duality [40,41,55] (like for the checkerboard Ising model: 
Ic2 + l/rC2), one can introduce the following ratio: 

NG= 
with G* = -, 

DG* 
(C.22) 

where the denominator DG- and the numerator NG*, respectively, read: 

DG* = (2 + A)4. (2 + B)4. (2 + C)4 . (2 + D)4 * (A - 1)4 

x (B - 1)4 . (C - 1)4 - (D - 1)4 - (1 + 2A)4. (1 + 2B)4 . (1 + 2C)4. (1 + 2D)4, and 

NG. =312.N~~N2.N3~N4.N;~N~.N7~N~.N9.N~~~N~~~N~z, 

with, for instance, 

Nr = -1 - 2BCD + ACD + BAD + BCA 

- 2CD - 2BD - 2BC f AD + AB + AC + SABCD. 

Algebraic expression g is invariant by the group genemted by the two inversions (C.18) and 
(C.19) of the checkerboard model. Note, that Q is not symmetric under the whole group S4 of 
permutation of (A, B, C, D) but only (as it should) under the symmetry group of the square CL,. 

Let us now consider the two polynomials: 

S= (1 -A) + (1 - B) . (1 - C) . (1 - D) and T = (1 + 2A). (1 + 2B). (1 + 2C). (1 + 2D), 

as well as the following polynomials: 

U=(l+A).(l+B).(l+C)+(l+D) and R=ABCD. 

Let us denote ST their product. The product corresponding to the action of (C.18) and (C.19) 
on ST, (namely the product PH = II . HI . Hz + I212 . II21 . Hl2l) happens to be exactly equal 
to PST = S4T4W4/U4/R4. Let us introduce, as a multiplicative correction term, Cc equal to 

PST13 24. Expression GG is, by construction, invariant under the group generated by the inversion 
relations. One now introduces, instead of Q, a new algebraic expression: 

(C.23) 

We get the remarkable property that the critical condition of the q = 3 checkerboard Potts model, 
namely [56,57]: 

21x22324 - (21 •/- 22 •k $3 -k X4) - (Z122 -b ZlZ3 i- 2124 •k 22x3 •k CC224 i- 2324) = 0, 

or 

l-(ABC+BCD+ABD+ACD)-(BA+CA+AD+BC+BD+DC)=O, (C.24) 

reads in terms of invariant 81: 
91 = 1. (C.25) 

Note that Q, on the contrary, is not equal to 1 on the critical condition (C.24). 
The algebraic expression & satisfies all the symmetries of the spontaneous magnetization (per- 

mutation symmetries of the three xi’s, inversion relation, duality . . . ). It vanishes on the disorder 
conditions (and its inverse vanishes on the “order” conditions) and becomes equal to 1 on the 
critical variety. It can thus be seen, as first glance, as a generalization of the Ising modulus of 
elliptic functions (C.15). 
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C.2. RESUMMED EXPANSIONS 
FORTHECHECKERBOARD 

POTTS MODEL 

The resummed expansion of the partition function of the checkerboard q-state Potts model, in 
the presence of a magnetic field, reads [10,25,56,57] (denoting r the fugacity): 

In(h) = (q - 1) . 
(BX + W) ( BX2 + DY”) 

2 + (q - l)(q -- 2) . 
2 

+ (4 - 1) (A 2z2 + C2z2 + 2A2C2z4) (LID + By + DX)2 
P. 

2 (1 - A2C2z4) 

+ (q - l)(q - 2) . ACr2 (A + C + 2A2C2t2) (BD + By + DX)2 

2 1 - A3C3z4 

+ (q - “1” - 2)2 . ACz (2BDXY + ACz (B2X2 + D”Y”)) 

(1 - A2C2z2) 

+ (q - u2 (A2C2z2 - 7) - A4C4z4 
-. 

2 (1 - A2C2~2)3 
* (I34 + D”) 

(C.26) 

(Q - I)* (8 + 4A2C2z2) A3C3r3. (B3D + BD3f 
--. 

2 (1 - A2C2z2)3 > 

(q - 1)” (5 + A2C2z2) (1+ 2A2C2z2) . A2C2z2B2D2 
-p. 

2 (1 - A~C*Z~)~ > 
+*a*, 

with 
x = ACz - (II + ABCt) ACz . (B + AD&) 

1 - A2C2z2 
and y = 

1 - A2C2z2 ’ 
(C.27) 

and where the A, B, C, D denote the low-temperature variables (C.13). Performing the derivative 
of (C.26) with respect to z, one gets: 

z. $ In(h) = (q - 1) e ACz 
(ACz - (B” + D2) (I+ A2C2z2) . BD) 

(1 - A2C2z2)2 

+ 2 * (q - 1) . (q - 2) . 
A4C4z4 

(1 - A2C%2)3 
’ p3 + 03) (C.28) 

+ (a - 1) * k7 - 2) * 
A2C2z2 . (1 + A2C2z2 + A3C3z3 + 3ACz) 

(1 - A2C2z2)3 
.BD-(B+D) 

+ c44 * (B* + D4) + ~13 . ( B3D + BD3) + c22 - B2D2 + . . . . 

The derivative of (C.28) is nothing (up to a multiplicative factor) but the magnetization minus 
one. Recalling the “order” conditions (see Section 3.3), let us introduce the product of the two 
“order conditions” (see [13]): 

P = (II + ABCz + (q - 2) + ABCDz) (B + ADCz + (q - 2). ABCDz) 

= (1 + A2C2z2) + BD + ACz . (B2 + D2) 

+ (q - 2) h ACz e (1 + ACa) e (B2D + BD2) 

+ (q - 2)2 . A2C2z2 - B2D2. 

(C.29) 

The “order conditions” are such that, restricted to them, the (low-temperature expansion of the) 
magnetization becomes formally equal to 1 [13]. Actually, at this order, one can verify for (C.28): 

z . -$ In(h) = P - H, (C.30) 
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where H, at this order, reads: 

H = (4 - l)ACz 
(A2C2z2 - 1)2 

+2.(q-l).(q-2).A3C3z3 

(1 - A2C2z2)3 
-(B+D) 

(C.31) 

+Hz.(B2+D2)+H3.BD+... . 

At this order, relation (C.30) corresponds to the following relation between ~13, ~44, ~22: 

1+ A4C4z4 

> 
'C44 - 

(1 + A2C2z2) 

A2C2z2 ACz 
. c13 _ (q - 1) . (q - 212A3C3z3 . (2ACz - 1) + c22 = o 

(1 - A2C2z2)2 

The expressions of Hz and Hs in terms of ~13, ~44, and ~22 read: 

H2 = c44 
ACt-’ 

H3 = c34 - 
(1 + A2C2z2) 1 

ACz 
. c44 _ 2(q - 2)2A4C4z4(1 + ACz)(q - 1) 

(1 - A~L?~z~)~ *ACz 

The expressions of ~13, ~44, and ~22 are quite involved, and therefore, will not be given here. 

C.3. REMARK ON THE IMAGE OF THE 
ORDER CONDITION BY THE INVERSION 

RELATIONS FOR CHECKERBOARD MODELS. 
RESUMMED EXPANSIONS VERSUS 

ALGEBRAIC INVARIANTS 

In the numerator of Q1 (see (C.20)), the image, by the inversion relations, of the four “order” 
conditions, read, respectively, 

BD+BCD+A+AD+BA+BAD=O and BD+BAD+C+CD+BC+BCD=O, 

together with six other algebraic varieties. Among these varieties the previous two are compatible 
with the (low-temperature) resummed expansions of the checkerboard model (namely B and D 
small). 

I 

BD - (1 + C) 

A=-(l+B).(l+D) 

BD.(l +A) 

and ‘=-(l+B).(l+D)* 
(C.32) 

In fact, when one substitutes (C.32) in the resummed expansion (C.28), for z = 1 and q = 3, 
one does not get zero (as one could expect from a naive interpretation of the automorphy property 
of (C.28)). In fact, if the spontaneous magnetization can be as a automorphic function of several 
cornplea: variables with respect to our discrete group of birational transformations [lo], it is a 
multivalued function [25] with a very complicated covering. Furthermore, if one considers the 

(anisotropic) triangular limit of invariant Q1, namely &7iriang, this expression is not invariant 
under the permutations of xl, x2, x3. 

One also remarks that the (B, D small) expansion of & is paradoxically more involved that 
the resummed expansion of the spontaneous magnetization (see (C.28)). In particular, the ra- 
tional expressions occurring in the resummed expansion of the spontaneous magnetization only 
have Nth roots of unity 1 - ANCN 
of 81 paradox&ally have much rno; 

while the rational expressions in the (B, D small) expansion 
complicated denominators. Unfortunately, all the “correct- 

ing” terms by which one can multiply 91, cannot easily change this situation, suppressing the 
“unpleasant” singularities in (C.22) and replacing them by “nice” Nth root singularities of (C.28). 

In fact, even an “improved” 61 is probably not sufficient enough to describe the resummed 
expansion of the spontaneous magnetization ((C.28) for z = 1 and q = 3). 

In the following we will try to clarify this point considering two limits of the checkerboard 
Potts model: the triangular model and, more particularly, namely the honeycomb model (and 
more precisely the algebraic invariant built from product, over the group, of “order” varieties), 
which seem to correspond to less analytically “subtle” situations. 
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APPENDIX D 

TOWARDS ALGEBRAIC INVARIANTS 
FOR THE HONEYCOMB POTTS MODEL 

D.l. SPONTANEOUS MAGNETIZATION FOR Q-STATE 
EDGE POTTS MODEL ON THE HONEYCOMB LATTICE 

In the Ising case, one has for the spontaneous magnetization of the honeycomb lattice: 

A4 = (1 - lcp, where Ic2 = 16. (1 + ABC) . (A + BC) . (B -I- AC) (C + AB) 
h 

(1-Az)2.(1-B2)2.(1-C2)2 ’ 

For arbitrary q, the relation between the spontaneous magnetization and the derivative with 
respect to z of In(h) reads: 

Z. % In(A) = 9 4 .(1-M) or M=l-- 
q-1 

.z. $ In(h). (D.33) 

Taking the C = 1 limit18 one gets the equivalent of expansion (C.28) for the three-state honey8comb 
Potts model: 

2.2 In(A) = (q - 1) t A.(C+BA)(B+CA) +2,(q__1),(q_2). A4.(B+C13 
(1 - A2)2 (1 - A2)3 

-I- (9 - 1). (P - 2) 
A’.(A-1).(A2-4A-l).BC.(B+C) 

(1 - A”)3 

+2.(q-l). 
A.(2A4+1+5A2).(B+CA).(c+~A).(~+C)2 

(1 - A2)4 

+(q_l), (A3-5A2+A-1).(A-1)3.(B+CA).(C+BA).BC 

(1 - A2)4 
(D.34) 

+ 2 (q - 1). (q - 2) 
A2 @A5 + 4A4 + 5A3 + 5A2 + 2A + 1 + A6) (E + CA) (C + BA) (B + (7)2 

(1 - A2)2. (1 - A3)2. (1 + A) 
- 

+ (9 - 1) (q - 2) 
(l+A2-3A5-4A4-3A3)+-A2).A.(B+CA).(C+~A).~C 

(1-A2)2.(1-A3)2.(l+A) 

2 A”.(B+C)4 
+ 3 (q - 1) . (q - 2) + (4 - 1) (q - 2)2 

A3.(A-l).(A-3).B2C2 
(1 _ A2)4 

(1 - A2)3 

+ (q - 1) (4 - 2)2 
A4~(A-1)~(A2-9A-4).(B+C)2.BC 

(1 - A2)4 

- (q - 1)2 
A2.(2A3+7A).(C+BA).(B+CA).(B+C)2 

(1 - A2)4 

- (q - 1)2 
A2.(5-4A).(A-1)2,(C+BA).(B+CA).B~ 

(1 - A2)4 

D.2. SEEKING FOR INVARIANTS 
FOR THE HONEYCOMB LATTICE 

Let us first recall the two invariants of the triangular lattice. Written in terms of the low- 
temperaturn watiables (C.13) invariants Y in (4.33) and (4.37) read: 

(1 + A)(1 + B)(l + C)BCA 
ytr’ang = - (BC + CA + BA - 1+ BCA)3 ’ 

and 

Mtriang = _ -l--2.(A+B+C)-(BC+CA+BA)+BCA 

BC+CA+BA-l+BCA 

‘*And replacing D by C. 

(D.35) 

(D.36) 
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Resummed expansion (D.34) has to be compared to the Kramers-Wannier dual of (D.35) and 
(D.36) together with an invariant originating from product of “order” varieties denoted Prod: 

Pro(y2.& with 

and 

PN =(BCA+A+BC)+(BCA+B+CA)+(BCA+C+BA) 

x (BCA+A+B+2BA+l).(BCA+C+B+2BC+l) 

x (BCA+C+A+2CA+l).(A-C+B+BA+l).(C+A-B+CA+l) 
(D.38) 

x(A-C-B-X-1). 

Let us introduce the ferromagnetic critical variety of the honeycomb lattice: 

chow = 
0 -1+2.(BC+CA+BA)+(A+B+C)+ABC=O. (D.39) 

One notes that Prod has a cc,“““““)-” singularity. One immediately verifies that Prod is invariant 
under the honeycomb inversion relation: 

(A,B,C) - -A 1 -c 
l+A’B’I+C > 

(D.40) 

One notes that this invariant cannot be obtained from the one on checkerboard Potts model 
(namely 61) since the honeycomb limit of this invariant gives an expression which is not Ss 
symmetric (see Appendix C.3). 

The Kramers-Wannier dual of (D.35) and (D.36) read, respectively, 

yhow = _ (C+2)~(2+~)~(A+2)~(A-1)~(C-1)~(~-1)~(1+2C)~(1+2B)~(1+2A) 

27.(C-1+A+B+2BC+2CA+2BA+BCA)3 
9 

Mh”“W’ _ 3.(BCA-1-A-B-C) 
- 

BCA-1+2(BC+CA+BA)+A+C+B’ 

Expression Yhoney is invariant under the honeycomb inversion relation (D.40), while Mhoney 
becomes - Mhoney . 

In the case of the (honeycomb) three-state Potts model, since the discrete group is finite, one 
can introduce many other invariants. For instance, by introducing: 

K 
ABC. (1 + A) - (1 + B) . (1 + C) 

ho”ey= (1+2A).(1+2B).(1+2C).(l-A).(l-B).(l-C).(A+2).(B+2).(C+2)’ 

one can easily verify that it also transforms like Phoney + -Phoney under the inversion relation 
of the honeycomb three-state Potts model (D.40). Of course one can also introduce many other 
invariants: 

(Mho”eY + 3) . (Mhow - 3) 

(Mho”“y )2 

= 
_4. (A+B+C+BC+CA+BA)(BCA-l+BC+CA+BA) 

(-1-A-B-C+BCA)2 , 

_ 3s . Khoney * 
yhoney A = 

(Mhoney)3 - 

(1 + A)(1 + B)(l + C)ABC = 

(ABC-l-A-C-B)3 
(A + l)2 - BC +a -a . 
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For B and C small, these invariants expand as follows: 

yhow == _ 4. (A + 2). (1 + 2A) 

27(A - 1)2 

+2(1+2A)(A+2)(A+l)(B+C) + 

3(A - 1)3 
*.. > 

@‘oW’ = 3 . _ l+A + 6.(1+A+A2)++C) +... , 
1-A (1 - A)2 

Khoney = 
A. (A + 1) 

4.(1+2A)(l-A)(A+2) ‘BC+“” 

(D.41) 

One then gets: 

2 . $ h(A) = Prod . 1 - 18 ‘&‘(B+C)+(I+A)2T;I_As)s”’ (D.42) 

where 

T2 =: -A2 . (18A5 - 99A4 - 218A3 - 373A2 - 254A - 135) . (B + C)2 

t (1 - A). (A + 1). (18A6 + 17A5 -- 3A4 - 54A3 - 69A2 - 53A - 18) . BC. 

It is necessary to introduce other (resummed expansion well-suited) polynomials. Another 
additional invariant is particularly interesting to introduce because it yields a nice (B, C small) 
expansion: 

& = (Phoney) 2 + 27 . yhoney _ I 
> 

1- 
3. (M honey)2 

=(-1-A-B-C+BCA)2(-1+A+4;1+C+2BC+2CA+2BA+ABC)’ 
with 

q1 = -9ABC - 2(BC + CA + BA) - 2B2C2 -- 2B2C - 2BC2 - 2C2A2 - 2CA2 - 2B2A2 

- 2BA2 - 2C2A - 3BCA2 3BC2A 3B2CA + 3(B2C2A - - + BC2A2 + B2CA2) 

+ 2A3BC + 2B3CA + 2ABC3 + 2BC2A3 + 2B2CA3 + 2B2C2A3 + 2B2C3A 

+ 2BC3A2 + 2A2C3B2 + 2B3C2A2 + 2B3C2A - 2B2A + 2B3CA2 + 9B2C2A2. 

&I expands as follows: 

&I = +&C+B)+ 
(A - 1) (2A3 + A2 - 5A - 2) . BG + 2A2(A + 5)(C + B)2 

(1 - A2)” (1 _ A2)2 .” 

An invariant which expands like (see the right-hand side of (D.42)): 

1 - 18 . & 9 (B + C) + ... , 

and which can cancel the (Cghoney)-3 singularity of prod, is for instance: 

Q3 = (1 + 3. &I)-~ 

= (-1-A-B-C+BCA)6(-1+A+B+C+2(BC+CA+BA)+BCA)3 
4: 1 

where q3 reads: 

q3 = -1 - 2(BC + CA + BA) - 2 (B2C2 + C2A2 + B2A2) + BC2 + B2C 

+CA2+BA2+C2A+B2A-(A+B+C)+(A2+B2+C2)+A3+B3+C3 

+ 3B2C2A + 3BC2A2 + 3B2CA2 + 12B2C2A2 

+ 5 (A~BC + B~CA + C3BA) + 2BC2A3 (D.43) 

+ 2B2C3A + 2BC3A2 + 5 (B2C2A3 + B2C3A2 + B3C2A2) + 2B3C2A + 2B2CA,3 

+ 2B3CA2 + 2B3C + 2B3A + 2C3B + 2C3A + 2A3C + 2A3B + 2B3C3A2 

+ 2B2C3A3 + 2B3C2A3 + B3C3A3 - 6ABC + 3ABC. (A + B + C). 
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The expansion of Q3 is remarkably simple: 

Q3 = 1 + 18. & *(C+B)+ 
9 (2A3 + 22A2). (C + B)2 

(1 - A2)2 

+S(A-1).(2A3+A2-5A-2).BC+ 

(1 - A2)2 
a**. 

One thus exchanges Prod for a new invariant, denoted L,t: 

(D.44) 

Amazingly, one verifies that Lwt is such that, restricted to the critical variety of the honeycomb 
lattice, namely (D.39), becomes equal to 2/27. 

Invariant, L,t expands as follows: 

L ad. = 
2A(B+CA)(C+BA) +...= 2A3(C+B)2 +2AaBC+A)2+... . 

(1 - A2)2 (1 - A2)2 (1 - A2)2 

In term of this new invariant hart, relation (D.42) reads: 

z.$ln(A) =L,t.(1+S2(L,t,~~,...)$...), 

where Ji denotes various well-suited invariants, and Ss is of order two in B and C. 
Recalling (D.33), one gets from (D.45): 

M - 1 = -i . z a $ In(h) = (1 - ICPotts)llg - 1 + f.. 

JCPotts = --- 
9 

4(kp,tts)2 + . . . 
81 

=-$L,,+... . 

(D.45) 

(D.46) 

The L,t = -2/27 limit corresponds to kpotts = 1. In order to get a simple expression for the 
spontaneous magnetization at criticality, one thus finally introduces: 

kh“neY = 27 
Potts 2 * L=Istt such that Cp = 0 + kg:: = 1. (D.47) 

Conversely, 
Choney . 

kE;;-l= ’ 

Choney . Choney . Choney 
2 

1 2 3 > 

433 
7 

with (see (7.9)): 

Choney = 
0 -1+2.(BC+CA+BA)+(A+B+C)+ABC, 

h”“ey=(BC-1)~A2+2~(B+C+BC)~A+(B+C)+1,.... C, 

(D.48) 

(D.49) 

One can actually verify that this set of three last additional varieties (D.49) (see also (7.9)) 
(which break the Ss symmetry of permutation of 21, ~2, and 5s) have simple covariance properties 
with respect to the inversion relation of the honeycomb model. 

These three “cousin varieties” of the critical variety CF = 0 are reminiscent of the situation 
one has in the case of the Ising honeycomb model (see also (C.16) for the checkerboard model). 
In the Ising case, condition ICE = 1 reads (using (D.33)): 

k;-I=-. 
FrtO . (FrtO . FytCto . QCt”) 

Tli” 
7 with 

Triv = (A - l)(l + A)(B - l)(B + l)(C - l)(l + C), 

Frto=ABC-(BC+AB+AC)-(A+B+C)+l, 

Fy“‘=(AB-l+A+B)X+l+(A+B)-BA, 

F~to=(BC-l+B+C).A+l+(B+C)-BC, 

Fyto = (AC - 1 + A + C) . B + 1 + (A + C) - AC. 

(D.50) 
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D.3. INVARIANT OF THE HONEYCOMB LATTICE 
VERSUS RESUMMED EXPANSIONS. FINE TUNING 

Let us recall Der: 

D,, = (1 - kPotts)‘/’ - 1. 

The expansion of this very expression, for B and C small, reads: 

(11.51) 

D = zA(C+BA)(B+CA) + . = 2A4-A)2 2A2 
er 

(l-A2)’ ’ ’ (1 _ A2)2 ’ BC+ (1 - A2)2 
. (B + cy + ‘. . . 

On the other side, z . $ In(A) has the following resummed low-temperature expansion for the 
three-state Potts model on the honeycomb lattice (see (D.34)): 

2. $ hi(A) = 
2A(C + BA)(B + CA) + 

(1 - A2)2 

2A2(A-l)(A’--A-l) .(B+C) BC 

(1 - A2)3 

4A2 
(D.52) 

+ (1 - A2)3 
. (C + B)3 + . . . , 

One verifies that: 

z. $ In(A) - D,, = 
2A. (1 - A)’ . BC -a2. A 

(1 - A2)2 ’ (1 - A3)‘. (1 + A)2’ 
(11.53) 

where ~2 reads: 

crz=A.(3A4+4A3+5A2+4A+3).(B2+C2) 

+ (2A6 + 3A + 9A2 + 10A3 + 9A4 + 3A5 + 2) . BC, 
(11.54) 

or equivalently at this order of the expansions (namely order two in B and C see (D.45)): 

z . -& In(A) = D,, . 1 - 
A.W2 

(1 + A)2. (1 - A3)2 
=D,,.(l+X.D,,+R,,t+...), (:D.55) 

with 

At this step, without additional information, there is some ambiguity in the determining of X. If 
one converts the two following quantities (where P and S denote, respectively, BC and B + C), 
to partial fraction form: 

A.W2 3s2 - 12P 3s2 - 12P 19s2 19s2 

- = - - - (1 + A)2 . (1 - A3)2 4(A + 1) 4(A + 1)2 36(A - 1) 36(A - 1)2 

6S2 - 18P + 2AS2 - 9PA 2S2 - 6P f 2AS2 - 6PA - 

9. (A2 + A + 1) 

+ 

3(A2+A+1)2 ’ 
and 

2.A. (C+BA).(B+CA) = S2 S2 ss-4P s2-4P 

(1 - A2)2 2(A - 1) + 2(A - 1)2 - 2(A + 1) + 2(A + 1)2’ 

two values of X pop out: X = -3/2 and X = -19/18. For the first value of X one gets a particularly 
simple expression for Rest, namely (7.8). 
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D.4. GROUP-INVARIANT VERSUS LOW-TEMPERATURE 
EXPANSIONS FOR THE HONEYCOMB LATTICE 

It is tempting to compare the expansion of (7.5) with the low-temperature expansion of the 
spontaneous magnetization in the case of the honeycomb E&ice. The isotropic limit of (7.4) 

k 
,,,,ney _ 27 . (A + 1)3 - A3 
Potts - (1 _ 3~2 _ ~3)3 ) and 

(1 - kpotts honey)1/g - 1 = 2A3 + 6A4 + 24A5 + 86A6 + 324A’ + 1224A’ 

+ 4722A’ + 18432Al’ +. . . . 

(D.56) 

One cannot find directly low-temperature expansion for the spontaneous magnetization of the 
three-state honeycomb lattice in the literature but rather high field expansions [59]. However, 
from these high field expansions, one can get (by derivation with respect to the magnetic field) 
an expansion for the spontaneous magnetization, namely: 

-i . (hfhoney - 1) = z. $ h(A) 

= 2A3 + 6A4 + 24A5 + 82A6 + 300A7 

+ 1176A’ + 4434A’ + 15720Al’ + . . . . 

(D.57) 

Taking into account the fact that (D.57) is basically a high field expansion [59] and not a low 
temperature one (only the first terms are correct), one remarks, however, a quite good agreement 
between these two expansions. 

D.5. COMMENTS ON K&;; FOR THE THREE-STATE HONEYCOMB 
POTTS MODEL 

The isotropic limit C = B = A, of the invariant of the honeycomb lattice (7.4), is simplelg: 

kho”eY = 
3A(A+ 1) 3 

Potts -A3 - 3A2 + 1 > 
= (hso)3- (D.58) 

Condition kpotts = 1 reads two conditions: 

kiso - 1 = 1 - 3A - 6A2 - A3 and (kiso)2 + kiso + 1 = (I+ A + A2)3. (D.59) 

The first condition kiso - 1 = 0 is the well-known critical condition of the isotropic honeycomb 
lattice in terms of the low-temperature variables. 

The Kramers-Wannier dual of (D.58) reads: 

khoneY = 3A* (A* + 1) _(1+2A)(2+A)(A-1) 
KW 

- (A*)3 - 3 (A*)2 + 1 3A-1+6A2+A3 
(D.60) 

Let us recall the rational parameterization (4.35). Invariant k&f:: has a rather involved form 
when written in terms of the ~1, ~2, ug variables. The simplest part is the denominator, which 
reads (02L1,U2,U9)3 with: 

D - 9 * (uf + u; + u; - UlwaU3 - 3U2U3U$t3 +9.(2&J; + 2U$4+2UjlU~+3U;U;Ur4)42 

- 9 * (2U; + 24 + 24 + 3UlU2U3) * t + 9 - (3U;U;U: - U&f - ?A&; - U$U;) . 

lQThis simple form for the isotropic limit of the model enablea us to write down very simply the unit circle 
lkPottsl = 1, namely IkiWI = 1. However, one should not expect the unit circle to play a key role for the honeycomb 
Potts model [64]. This used to happen for the Zsing model ss a consequence of the elliptic parameterization that 

we do raot expect here. 
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In the square limit C = 0, invariant kktl becomes: 

square _ 
kPotts - 

27A2B2(A + B + 2BA + l)(A + 1)2(B + 1)2(B - A - l)(B - A + 1) 

(--l-2BA+BA2+B2A-2B2A2+2B3A+2A3B-B-A+A2+B2+A3+B3)3‘ 
(D.61) 

It has been noted, in Section 7, that this expression, inherited from the one for the honeycomb 
lattice, does not yield a “nice” representation of the Kramers-Wannier duality (like for instance, 
k -+ k/(ct . k - 1)). In the isotropic case, (D.61) becomes (7.11) and the Kramers-Wannier dual 
of (7.11) is given by (7.13). 0 ne can eliminate A between these two expressions to get a relation 
between (7.11) and (7.13). Actually, the resultant yields (the square of): 

R = 23g . k6K6 - 141 . 233 . k5K5 . (K + k) 

+ 3. 226k4K4 . (4429 (k2 + K2) + 9366kK) 

-- 230 . k3K3. (K + k) . (210748. (k2 + K2) + 213467kK) 

+ 3. 213 + k2K2 . (48719. (IT4 + k4) - 24169286 . (k3K + kK3) - 47735079k2K2) 

- 3.2’ . kK. (K + k) . (5687. (k4 + K4) 

- 805800479 e (k3K + kK3) - 2859101424. k2K2) 

+ 2634567894. (kK5 + k5K) - 1398272669644k3K3 

- 448223873571. (k4K2 + k2K4) + 1331. (K6 + k6) 

+ 3. (K + k) ’ (141113. (k4 + K4) - 42754046948. (k3K + kK3) + 193362094422. k2K2) 

+ 98553471948k2K2 + 246865154424 + (kK3 + k3K) f 50285730 * (k” + K4) 

+ 27. (K + k) . (20524825. (k2 + K2) - 3221730802kK) 

+ 3. 21° . (124093734. kK + 16041625 (k2 -I-. K2)) - 215 . 54 ‘5037. (K + k) + 5’ 9 217. 

APPENDIX E 
TOWARDS ALGEBRAIC INVARIANTS 

FOR THE TRIANGULAR LATTICE 

E.l. THE TRIANGULAR LATTICE: SINGLED OUT ALGEBRAIC VARIETIES 

From the critical variety and the three additional varieties for the honeycomb lattice (see (7.9)) 
one can deduce (using the Kramers-Wannier duality) the critical variety and three singled out 
varieties for the triangular lattice: 

l-ABC-(BC+AC+BA)=O, and 

1+2A-BC+2AC+2BA+BCA2+13A2+CA2=0, 

1+2C+2BC+2AC-BA+C2A+BC2A+BC2=o, 

1+2B+2BC-AC+2BA+B2A+B2CA+B2C=0, 

or, in terms of the Q’S: 

5122x3 - (51 f 22 + 23) - 1 = 0, and 
triang _ 

Cl - D.@3ZT + kc223zl - z$ + 22221 + 22123 + 1 + 23 + x2 

+ (xl + 2) ’ (222321 - 1 - 21 - 22 - 53) + 3(x1 + l)(l + X3 + X2) = 0, 

ciang = (X2 +2)*(X2X3X1 - 1 -Xl -X2-X3)+ 3*(X2+1)(x1+X3 + 1) = 0, 

c3 
triang = (X3 + 2). ( X2X3X1 - 1 -Xl -X2 -X3)+ 3. (X3+1).(21 +X2 + I)= 0. 

(13.62) 

(E.63) 

In the isotropic limit Ctriang = 0 becomes (1-t u + u2)2 = 0. In the anisotropic square limit (E.63) 
yields: 

c yiang = 2251 + 42221 - Z: + 2Si + 2 + X2, 
triang 

c2 =x;x~+4x2x~--Z;+2~2+2+x~, (E.64) 

gang = 51x2 + x1 f x2. 
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E.2. TUTTEBERAHA NUMBERS 

For the Ising model, the additional varieties for the triangular and honeycomb lattices read, 
respectively, 

AB-AC+BC+l=O or usur+uz.t=O, with 

t4 = -1 and ~2~3 - t3. u1 = 0, with t4 = -1. 

More generally, considering the inversion relation of the triangular lattice: 

(ul, u2, U3) - 
t2 1 1 
--- 7 
Ul ’ t2 *U2’t2.U3 

(E.65) 

and a variety of the form: 
261 . ?J4 . Ug + cr. 261 M=O , (E.66) 

it is straightforward to see that (E.66) is invariant by the three inversion relations (E.65) if: 

t4.M = 1 and a2 . t2 . t2.M = 1, that is (I = ftMml. 

Of course this can easily be generalized to the checkerboard lattice. 
This makes clear that such varieties only occur for Tutte-Beraha numbers. 

(E.67) 

E.3. CRITICALITY OF THESE ADDITIONAL VARIETIES? 

Since, in the case of the Ising model, three other varieties similarzO to (E.63), occur in addition 
to the critical variety which also happen to be critical (see also Appendix C.l), it is natural to 
wonder if the additional varieties (E.63) could not be also critical varieties. If one takes for granted 
expression (7.5) to represent the dominant singular behaviour of the spontaneous magnetization, 
one expects the magnetic critical exponent /3, corresponding to these three new critical varieties 
Chone” (and alsO Criang ), to be ,0 = Z/9. If one assumes that the (well-known) relations for the 
critical (or tricritical) exponents of Potts models are still valid (see relations (5.23) in [39]), in 
particular: 

l-S.@ 
Q=m’ (E.68) 

one gets a thermal exponent: o = 5/3. In order to examine the critical character of the additional 
varieties (E.63), Monte-Carlo calculations have been performed on the anisotropic edge triangular 
Potts model. Unfortunately, Monte-Carlo calculations seem to indicate that the points of any of 
the three varieties (E.63) are not p = 2/9-critical points. Note however, that Cyiang = 0 in (E.64) 
is nothing but the antiferromagnetic critical condition of Baxter [65] for the square lattice in the 
q = 3 limit: 

(21 + 1) * (22 + 1) = 4 - q. (E.69) 

It is thus possible, in view (E.64) and (E.70), to imagine that these additional (&-symmetry 
breaking) varieties could however be critical varieties with other exponents. 

E.4. ALGEBRAIC INVARIANTS FOR THE TRIANGULAR LATTICE 

For the anisotropic triangular model we have (at least) four group-invariants: 

ABC. (1 + A)(1 + B)(l + C) 
’ = (1 + 2A)(l+ 2B)(l+ 2C)(l- A)(1 - B)(l - C)(A + 2)(B + 2)(C + 2)’ 

(E.70) 

which transforms into its opposite -X: under the inversion relation of the triangular lattice, 

M 
-l-2(A+B+C)-(BC+CA+BA)+ABC 

triang = - 
BC+CA+BA-l+BCA , (E.71) 

20Breaking in particular spontaneously the symmetry of the lattice. 
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which transforms into its opposite -Mtrians, under the inversion relation of the triangular lattice 

and: 

Gang = - 
ABC. (1 + A)(1 + B)(l + C) 

(BC+CA+BA-1+BCA)3’ 
(E1.72) 

and also (form (4.49) and Mtriang): 

Gtriang = - 
Ntriang 

27(BC + CA + BA - 1 + BCA)3(-1 - 2(A + B + C) - BC - CA - BA + ABC)G’ 

where 

N triang = 2. (1 + 2BCA + 3A - BC + 2CA + 2BA)(l+ 2BCA + 3B + 2BC - CA + 2BA) 

x(~+~BCA+~C+~BC+~CA-BA).(2+BCA+3B+BC+CA+BA) 

x(~+BCA+~A+BC+CA+BA).(~+BCA+~C+BC+CA+BA) 

x (-l t BC + CA - 2BA + ABC)(-1 + BC - 2CA + BA + ABC) 

x (-1 - 2BC + CA + BA + BCA). 

Kriang and Gtriang are invariant under the inversion relation of the triangular lattice. Curiously K 
is also covariant for the inversion relation of the honeycomb lattice (see Phoney in Appendix 11.2): 
one can easily verify that it transforms like K -+ -K under the inversion relation of the honeycomb 
three-state Potts model. 

The expansion of three of these (up to a sign) invariants yields: 

AC. (1 + A)(1 + C) 
Ic= 2(1+2A).(1+2C).(A-1).(C-1).(A+2)(C+2)’B+”” 

M triang = 
AC+2A+2C+lf 

AC-1 “” (E.73) 

Y. trlarlg = - 
AC . (I+ A)(1 + C) . B + . . . . 

(AC - 1)3 

One should note that these three invariants yield only 1 - A.C singularities, or simple singularities 
like 1 - A, C + 2. . . . One cannot get the 1 - AN . CN singularities known to occur on resummed 

expansions [10,25] in this way. The last invariant Gtriang y ields more involved singularities, for 
instance CA + 2A -t 2C + 1 singularities. 

The resummed expansion of the spontaneous magnetization of the edge three-state Potts model 
on the anisotropic triangular lattice corresponds to (see (7.12)): 

z. g In(A) = 
2A2C2 4A4C4 

(1 - A2C2)2 
k B2 + (1 _ A2c2)3 . B3 +. . . . 

More precisely, in the z = 1 triangular limit (namely D = 0), expression (C.28) becomes: 

z. $ In(A) = (q - 1) 

+ (4 - 1) * (q - 2) . * B3 

+ 2(q - 1)A2C2. (A2 + C2 + A4C2 + C4A2 + 3A2C2 + A4C4) . B4 

(1 - A2C2)4 
(E.74) 

+ 2(q - 1) . (q - 2) (3A2C2 - A4C4 - A6C5 - A5C6 - A7C7 + A + C - A5C5) A3C3 B4 

(1 - A2C2)3 (1 - AWs)2 

+ 3(q .- 1) . (q - 2)2A6C6 

(1 - AW2)4 

. B4 _ (q - 1)2A4C4 (2A2C2 + 7) . B4 

(1 - A2C2)4 * 
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In contrast with the honeycomb lattice, there are many ways to get a resummed expansion 
like (E.74), in terms of group invariants of the triangular lattice. For the honeycomb lattice, 
invariant (7.4) was built from the modification of an invariant which corresponded to taking the 
product over the group of the “order varieties”. It seems that the equivalent of (7.4), but for the 
triangular lattice, could rather be an invariant corresponding to a modification of Ytrians. 

Thus, coming back to the checkerboard lattice, we could therefore, have (at least) two invari- 
ants, one which “dominates” in the honeycomb limit and the other in the triangular limit. 

APPENDIX F 
OCCURRENCE OF Wh ROOTS OF UNITY 

ON ANISOTROPIC SQUARE LATTICE RUBBER BANDS 

In order to understand the occurrence of 1 - AN singularities in the resummed expansions of 
the edge Potts models, let us consider an anisotropic square lattice q-state Potts model on rubber 
bands, for instance the one for which the transfer matrices are represented as 3 x 3 matrices 
in [6,63]. 

After extracting the leading low-temperature terms, the largest eigenvalue A can be seen to 

be solution of the following algebraic equation of third degree (characteristic polynomial of the 
3 x 3 transfer matrix): 

As+Cs.As+Ci .ll+cs=o, with 

C,, = A5(B - 1)5(Bq + 1 - B)4, 

Ci = A2(B - 1)2(Bq + 1 - B) . cl, 

C2 = -A3B3. q3 + 3A2B2(2BA - B - A). q2 

+ (15A3B2 - 7A2B2 - 14B3A3 + llB3A2 - B3 - 3A3B - BA2). q (F.75) 

+(B-1).(B2-llA2B2+13A3B2+BA2-8A3B+B+A3+A2+1), 

where 

cl = A3B3. q3 - AB2(6BA2 - 2B - 1 - 3A2). q2 

+ (llB3A3 - AB2 + B3 - 7AB3 + 3B2 - 12A3B2 + 3A3B + 2BA) .q 

-(B-1).(7A3B2-5AB2+B2-5A3B+4B-5BA+A3+A+1). 

The expansion of A, when B is small, reads: 

n=1+3+l).Wz .B2+(q-l).g 
W, 

1 - A2 n=3 (1 - A2)‘+l * Bn’ 
with 

W2 = A2, 

W3 = (3q - 5). A4 + 4A2 + 1, 

W, = 3q. (q - 2) . A6 - 3 (A4 - A2 - 1) A2 

+ 3A2(q - 2) + (7A2 + 8A3 - 2A5 + 5A - 2A6 + 2 + 3A4) 

A2+A+l 
, 

W5=3A8(q-2).q2-3A2.(A6+5A4+3A2+l) 

3A2 . Q52 3A2 . Q53 
+3.(q-2). (AZ+A+l) +3’(q-2)’ CA2+A+1)2? with 

Q53 = 1 - 4A - 15A2 - 46A3 - 102A4 - 116A5 - 107A6 - 72A7 - 19A8 + 2Ag + Alo, 

Q52=-q.A’(4Ag+8A8+A7-2-28A6-50A5-64A4-55A3-30A2-9A). 

Note, that WY also has a (1 + A + A2)4 singularity. In fact the characteristic equation reads: 

P(A) = A3 + C, . A2 + Ci . A + Co = 0, where 

co = coo + car + * - * + cog, 

Cl = Cis + Ci, +. . ’ + c& 
(F.76) 

c2=c2O+c21+c22+c23, 
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where the Cij’s are of order j in B, reads successive equations of the form: 

Lml, w2,. . . , wn-1) + (3 + Cl0 + 2 . C,,) . W, = 0. (F.77) 

The occurrence of a new singularity is thus related to the following combination of the Cij’s: 

3 + Cl0 + 2 . Czo = (1 - A2) . (1 - A3) . (F.78) 

This key expression can be seen as the derivative of the characteristic polynomial (F.76) with 
respect to A, in the B = 0 limit. 

3 + G-J + 2&J = dil -$A)(B = 0). 

Let US note, however, that for the first coefficient, W2, there is the following equation: 

(A2 - 1) . (C22 + Co2 + C12) - 3B2. (3 + CK, + 2C2,,). (q - 1). W2 = 0, 

where 

(F.79) 

C22 + Co2 + Cl2 = 3. (q - 1) . A2B2. (A3 - 1). (F.80) 

Therefore, one sees that the singularity 1 - A3 cancels out for this first coeficient W2. A mech- 
anism where all the Nth root of unity occur, clearly needs to consider “polynomial” relations of 
infinite degree. 
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