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Abstract
We study the full susceptibility of the Ising model modulo powers of primes.
We find exact functional equations for the full susceptibility modulo these
primes. Revisiting some lesser-known results on discrete finite automata, we
show that these results can be seen as a consequence of the fact that, modulo
2r, one cannot distinguish the full susceptibility from some simple diagonals of
rational functions which reduce to algebraic functions modulo 2r, and, con-
sequently, satisfy exact functional equations modulo 2r. We sketch a possible
physical interpretation of these functional equations modulo 2r as reductions
of a master functional equation corresponding to infinite order symmetries
such as the isogenies of elliptic curves. One relevant example is the Landen
transformation which can be seen as an exact generator of the Ising model
renormalization group. We underline the importance of studying a new class
of functions corresponding to ratios of diagonals of rational functions: they
reduce to algebraic functions modulo powers of primes and they may have
solutions with natural boundaries.
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1. Introduction

Despite the enormous progress made over the last 75 years in the study of (Yang–Baxter)
integrable models in lattice statistical mechanics and enumerative combinatorics, there still
remain many important unanswered questions.

One of the most intriguing is the susceptibility of the two-dimensional Ising model. The
closed form expression3 of the partition function was obtained by Onsager [2] in 1944, and
the spontaneous magnetization was obtained a few years later by both Onsager (unpublished)
and Yang [3]. However, after more than 70 years, a closed form expression for the full
susceptibility still eludes us. Accordingly, understanding the nature of this function remains a
challenging problem.

Forty years ago, Wu et al [4] showed that the full susceptibility of the square-lattice Ising
model can be decomposed as the infinite sum of holonomic n-fold integrals [5–9], denoted
χ( n). In the last decade the linear differential operators corresponding to the first χ( n)ʼs, up to
n = 6, were obtained, underlying the role of the elliptic curve parametrization [10], but
showing also the emergence of (at least) one Calabi–Yau ODE, and beyond, of linear dif-
ferential operators with selected differential Galois groups [11–13]. A complete description of
the singular points of the linear differential operators corresponding to the first few χ( n)ʼs has
also been obtained [6, 14–16]. Despite being an infinite sum of holonomic n-fold integrals,
the full susceptibility is not a holonomic function [17].

Further, in a recent paper it has been shown that these n-fold integrals are actually
diagonals of rational functions [18, 19]. Consequently their series expansions are such that
modulo any prime, or power of a prime, they can be identified with the series expansions of
an algebraic function [18, 19]. These properties were explicitly shown in the case of χ(3), in
section 3.1 of [18]. In particular it was shown that H w 83( ) ˜ ( )c= (defined in section 2, see
(15)), satisfies, modulo 2, the quadratic equation

H w w H w w 0 mod 2. 12 10( ) · ( ) ( )+ + =

and modulo 3, the polynomial equation of degree nine

p H w w p H w w p H w w p p 0, 29
9 6

3
3 10

1
19

0
1

0
2· ( ) · · ( ) · · ( ) · · ( )( ) ( )+ + + =

where:

p w w w w w

p w w w w w w w w w w w

w w w w w w w w w w

p w w p w w w w

p w w w

1,

1,

1 1 , 1 1 1 ,

1 1 1 . 3

0
1 6 5 4 2

0
2 37 36 35 33 31 30 28 27 24 23 22

21 18 16 14 12 11 10 7 5 3

1
2 20 13

3
2 18 15 4 2

9
3 2 18 24

( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( )

( )

( )

= + + - - +

= - + - + - + + + - +

- - - + - - - + - - -

= + - = + - - -

= + + -

Since all the χ( n)ʼs are diagonals of rational functions [18], similar results are expected for
any χ( n) modulo any prime p, and, beyond, modulo any power of a prime p r. As a
consequence of the Fermat relations, ap = a, modulo p, one can expect relations, like (1) or
(2), to be expressible as functional equations where H(w)p is replaced by H(wp). Now, the full
susceptibility χ is not the diagonal of a rational function, indeed it is not even holonomic
[15, 17]. Therefore, for the full susceptibility, one cannot expect relations like (1) or (2) to

3 It can be rewritten in a simpler 4F3 hypergeometric form, see [1].
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exist. Due to the complexity of this function4, one might not expect, at first sight, such
functional equations for the full susceptibility.

However, as we show below, the full susceptibility, when expressed in the appropriate
expansion variable, does satisfy some surprsingly simple functional equations modulo certain
primes, or power of primes.

These exact results show that the full susceptibility reduces to an algebraic function,
modulo certain primes, or powers of primes, and thus sheds new light on the integrable
character of this very important function in physics. We consider this a surprising result: we
certainly did not expect such simple results for the full susceptibility. This gives us con-
siderable incentive to systematically study other non-holonomic physical series modulo
primes or powers of primes. It will be interesting to see whether this is an exceptional result,
in which case it sheds more light on the susceptibility, or a common occurrence, in which case
we need to explain why.

2. Definitions and some known results on the full susceptibility

In 1976, Wu et al [4] showed that the susceptibility could be expressed as an infinite sum of
contributions, known as n-particle contributions χ( n). The low-temperature series were given
by the case n even, and the high-temperature series by n odd. More precisely the low
temperature susceptibility is given by [16]

kT w s w s w

s w

1 1 1 1

1 , 4

n

n

L
4

L
4 2

L
4 2

1
4

1
4

1
4( )

( ) ( )· ( ) · ˜ ( ) · ˜ ( )

· ˜ ( ) ( )

( )

( )

å

å

c c c

c

= - = -

= -

in terms of the self-dual temperature variable w s s1 ,1

2
2( )= + where s J kTsinh 2 ,( )= and

s J kT1 sinh 2 .L ( )= The high temperature susceptibility is given by [16]

kT w
s

s w
s

s w
1

1
1

1 .

5

n
H

4
H

4 2 1
1
4

1
4( ) ( )· ( ) · · ˜ ( ) · · ˜ ( )

( )

( )åc c c= - = - +

Remarkably long series expansions with respectively 2042 and 2043 coefficients5, have
been obtained6 [20] for wL˜ ( )c and w ,H˜ ( )c namely

w w w w w w w

w w w

c w

4 80 1400 23 520 388 080 6342 336

103 062 976 1668 639 424 26 948 549 680

6L

L
4 6 8 10 12 14

16 18 20

4086
4086

˜ ( )

˜ ( )( )

c = + + + + +

+ + +
+ + + 

and

w w w w w w w w w

w w w c w

2 8 32 128 512 2048 8192 32 768

131 080 524 288 2097 440 .

7

H
2 3 4 5 6 7 8

9 10 11
2043

H 2043

˜ ( )

˜
( )

( )

c = + + + + + + +

+ + + + + + 

It is worth comparing these two series with the series corresponding to the first wn˜ ( )( )c in
the two infinite sums (4) and (5), namely:

4 Which has, for instance, a natural boundary [15–17].
5 The low temperature series w ,L˜ ( )c being an even function, means that the expansion is known up to the coefficient
of w4086 (see (6)).
6 Using an algorithm adapted from the Fortran algorithm in [17].
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w w F w

w w w w w w

w w w

4
3

2
,

5

2
, 3 , 16

4 80 1400 23 520 388 080 6342 336

103 062 960 1668 638 400 26 948 510 160

8

L
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2
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⎡
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⎞
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= + + + + +

+ + + + 

and

w
w

w
w w w w w w w

w w w w

2

1 4
2 8 32 128 512 2048 8192

32 768 131 072 524 288 2097 152 .

9

H
1 2 3 4 5 6 7

8 9 10 11

˜ ( )

( )

( )c =
-

= + + + + + +

+ + + + + 

It is known that O w ,n n2˜ ( )( )c = so that the coefficients are the same up to w14 for the low-
temperature series, and up to w8 for the high-temperature series. Further, one observes that the
ratio of the coefficients for Lc̃ and L

2˜ ( )c (resp. Hc̃ and H
1˜ ( )c ) is very close to 1.

The series expansion for wL
4˜ ( )( )c reads7

w
w w w w w w

w w
w w

w w
w w

w

2
64 2470 74 724 1954 688 46 428 552

1029 903 288 21 716 367 896
440 440 693 418 8663 350 828 976
166 258 457 615 526 3126 949 985 578 700
57 833 406 662 680 980 1054 656 431 047 823 680

19 003 412 267 837 223 432

10

L
4

4
16 18 20 22 24 26

28 30

32 34

36 38

40 42

44

˜ ( )

( )

( )c
= + + + + +

+ +
+ +
+ +
+ +

+ + 

The series expansion for wL
6˜ ( )( )c reads

w
w w w w w

w w w
w w

w w
w

2
144 11 306 641 604 29 455 804

1161 654 484 40 827 303 872 1310 513 628 660
39 090 651 539 936 1097 452 668 063 296
29 281 457 807 054 052 748 130 523 334 531 340
18 414 177 309 344 582 452 11

L
6

6
36 38 40 42 44

46 48 50

52 54

56 58

60

˜ ( )

( )

( )c
= + + + +

+ + +
+ +
+ +
+ + 

The difference between wL˜ ( )c and wL
2˜ ( )( )c reads:

w w w w w

w w
w w

w w

16 1024 39 520 1195 584 31 275 008

742 856 832 16 478 452 608
347 461 886 336 7047 051 094 688
138 613 613 263 616 2660 135 321 848 480 . 12

L L
2 16 18 20 22 24

26 28

30 32

34 36

˜ ˜

( )

( )c c- = + + + +

+ +
+ +
+ + + 

7 Since there is an overall integer of the form 2n for all the coefficients of the wn
L˜ ( )( )c or wn

H˜ ( )( )c series, we divide
them, in the following, by an appropriate power of 2n factor. The series expansion remains an expansion with
(smaller) integer coefficients.
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The difference between wL˜ ( )c and w wL
2

L
4˜ ( ) ˜ ( )( ) ( )c c+ reads:

w w w w

w w
w

64 9216 723 584 41 062 656

1885 171 456 74 345 886 976
2612 947 447 808 13

L L
2

L
4 36 38 40 42

44 46

48

( )˜ ˜ ˜

( )

( ) ( )c c c- + = + + +

+ +
+ + 

The difference between wL˜ ( )c and w wL
2

L
4˜ ( ) ˜ ( )( ) ( )c c+ wL

6˜ ( )( )c+ reads:

w w w
w w w

w w
w w

w

256 65 536 8815 104
829 038 592 61 219 149 824 3779 726 083 072
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14

L L
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L
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L
6

64 66 68
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76 78

80 82

84

( )˜ ˜ ˜ ˜

( )

( ) ( ) ( )c c c c- + +

= + +
+ + +
+ +
+ +

+ + 

The series expansion for wH
3˜ ( )( )c reads

w
w w w w w w w

w w w w
w

w w w
w w w

w

2
36 4 884 196 18532 6084

357 391 153 484 6556 516 3440 964
116 449 960
71 553 656 2022 814 844 1413 292 572
34 583 048 616 26 900 157 072 584 324 509 812
498 048 104 276 15

H
3

3
9 11 12 13 14 15 16
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22 23 24

25 26 27

28

˜ ( )

( )

( )c
= + + + + + +

+ + + +
+
+ + +
+ + +
+ + 

The series expansion for wH
5˜ ( )( )c reads

w
w w w w w

w w w w
w w w

w w
w w

w w
w w

w w
w

2
100 5652 4 238 032

484 8323 743 32 436 255 716 632
1592 488 7139 250 236 63 994 900
185 181 953 320 2231 760 988
4531 508 893 397 69 986 224 204
105 775 797 597 812 2020 409 460 692
2374 723 605 151 320 54 584 651 129 624
51 602 310 149 637 388 1396 760 803 374 712
1090 696 414 153 653 447 . 16

H
5

5
25 27 29 30 31

32 33 34 35

36 37 38

39 40

41 42

43 44

45 46

47 48

49

˜ ( )

( )

( )c
= + + + +

+ + + +
+ + +
+ +
+ +
+ +
+ +
+ +
+ + 

Comparing wH˜ ( )c and the sum w wH
1

H
3˜ ( ) ˜ ( )( ) ( )c c+ one finds that these two series are the

same up to O(w25), as expected:

w w w w w
w w w w

32 3200 180 864 128 7617 024
15 488 266 359 776 1037 952 8182 932 224 17

H H
1

H
3

25 27 29 30 31

32 33 34 35

( )˜ ˜ ˜

( )

( ) ( )c c c- +

= + + + +
+ + + + + 
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and

w w w w
w w w

w w

128 25 088 2621 952 194185216
512 11 431 676 800 115 200
569 065 324 032 13 709 824 . 18

H H
1

H
3

H
5

49 51 53 55

56 57 58

59 60

( )˜ ˜ ˜ ˜

( )

( ) ( ) ( )c c c c- + +

= + + +
+ + +
+ + + 

Since the modulus of elliptic functions parametrising the Ising model [10, 15] is k = s2,
with the conjectured natural boundary [16] corresponding to the unit k or s circle, it is natural
to introduce series expansions in the s or sL variables. In fact, we have studied series
expansions in the v = sL/2= 1/(2s) variable in the low-temperature regime, and the v = s/2
variable in the high-temperature regime, in order to have series with integer coefficients
(instead of rational coefficients with denominators of the form 2n). The corresponding low
and high temperatures series χL(v) = χL(sL/2) and χH(v) = χH(s/2) read respectively8

v v v v v v v v

v v v c v

4 16 104 416 2224 8896 43 840

175 296 825 648 3300 480 19L
L

4 6 8 10 12 14 16

18 20 22
4086

4086

( )
( )( )

c = + + + + + +

+ + + + + + 

and

v v v v v v v v v

v v v v c v

1 4 12 32 76 176 400 896 1964

4256 9184 19728 41952 20
H

2 3 4 5 6 7 8

9 10 11 12
2043

H 2043

( )
( )( )

c = + + + + + + + +

+ + + + + + + 

which can be compared with v1 16L
2 4 1 4

L
2( ) · ˜( ) ( )c c= -

v v
v

v
F

v

v

v v v v v v v
v v v

1

4
1 16

4

1 4

3

2
,

5

2
, 3 ,

4

1 4

4 16 104 416 2224 8896 43 824
175 296 825 104 330 0416 21

L
2

3
4 1 4

2

4

2 1 2

2

4 6 8 10 12 14 16

18 20 22

( )( ) · · · [ ]

( )

( ) ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟c = -

+ +

= + + + + + +
+ + + + 

and s s1H
1 4 1 4

H
1( ) · ˜( ) ( )c c= -

v
s

s

s

s

v

v

v v v v v v v v

v v v v

1

1

1 16

1 2

1 4 12 32 76 176 400 896 1960

4256 9184 19 712 41 888 .

22

H
1

4 1 4

2

4

8

1 4

2 3 4 5 6 7 8

9 10 11 12

( )
( ) ·

( ) ( )

( )

( ) ⎛
⎝⎜

⎞
⎠⎟c =

-

-
=

-
-

= + + + + + + + +

+ + + + + 

As must be the case, the coefficients are the same up to v14 for the low-temperature series, and
up to v8 for the high-temperature series, and, beyond, the ratio of the coefficients for χL(v) and
χL
(2)(v) (resp. χH(v) and χH

(1)(v)) are very close to 1. For the low-temperature series expansion
the difference between χL(v) and χL

(2)(v) reads:

8 Throughout this paper the c̃ are functions of the variable w, while the χ are functions of the variable v.
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v v v v v v v v

v v v

v

16 544 64 13 056 2944 272 512

88 448 5286 560 2201 856

98 136 096 .

23

L L
2 16 20 22 24 26 28

30 32 34

36

( ) ( )

( )

( )c c- = + + + + +

+ + +

+ + 

It is worth recalling that the very long (low and high temperature) series expansions have
been obtained for the full susceptibility as a consequence of a quadratic finite difference
Painlevé functional equation [17], yielding an N4 polynomial algorithm for calculating the
series. This series is therefore ‘algorithmically integrable’. Furthermore the n-fold integrals of
the infinite sum decomposition [4], the χ( n)

’s, have been shown to be highly selected
holonomic functions, namely diagonals of rational functions [18].

These properties (‘algorithmic integrability’, infinite sums of diagonals of rational
functions, ...) suggest that transcendental non-holonomic functions such as the full suscept-
ibility of the square Ising model, should correspond to a ‘rather special class’ of non-holo-
nomic functions, which require new concepts and tools to characterize and analyze them.

Obtaining such remarkably long series for the full susceptibility was a computational
‘tour de force,’ and it is likely that these series have much more to tell us. To date they have
only been used to obtain some results on χ(5) and χ(6), to confirm exact results [14, 15] on the
singularities of the linear ODEs of the χ( n)ʼs, and to clarify the natural boundary sce-
nario [16].

In the following sections we revisit these remarkably long series from a new finite
automaton [21] perspective, which in effect means considering the various series modulo
various integers, in particular, taking a ‘p-adic’ perspective [22], modulo integers that are
integer powers of primes.

3. Functional equations modulo 2r for the full susceptibility

3.1. The low-temperature susceptibility

Consider the low temperature series (19) for the full susceptibility [20], for which 2043
coefficients have been obtained in the u = v2 variable [20]. We denote this series F(u), so that

F u u u u u u u u

u u a u

4 16 104 416 2224 8896 43 840

175 296 825 104 . 24

2 3 4 5 6 7 8

9 10
2043

2043

( )
· ( )

= + + + + + +
+ + + + + 

Now consider this series modulo various integers q = 2r, (q = 2, 4, 8, 16, 32, 64, L), where
we denote by Fq the corresponding series modulo q. We found the following simple results:

F u F u F u u F u u u0, 0, 4 , 4 8 , 252 4 8
2

16
2 4( ) ( ) ( ) ( ) ( )= = = = +

where the first two results are of no significance, and just reflect the lattice symmetry.
However for q = 32 and q = 64, we found the appearance of simple lacunary series, so that

F u u u u L u20 24 16 , 2632
2 4 2( ) · · ( ) ( )= + +

F u u u u u u u u L u60 11 8 10 8 8 48 32 , 2764
2 2 4 6 2 4( ) ( )( ) · · ( ) ( )= + + + + + +

where L(u) corresponds to the first 1024 coefficients of the lacunary series with a natural
boundary on the unit-circle u 1= :
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L u u

u u u u u u u u u u u1 .

28

n

n

0

2

2 4 8 16 32 64 128 256 512 1024

n( )

( )

å=

= + + + + + + + + + + + +
=

=¥



This strongly suggests that F32(u) and F64(u) satisfy the modulo 32 and modulo 64 functional
equations respectively:

u F u F u u u u16 24 8 , 292
32 32

2 5 6 8( )· ( ) ( )= + + +

u u F u

u F u

u u u u u u u u

3 2

3 2

16 3 4 6 2 58 4 2 6 . 30

2 4
64

2
64

2

5 2 4 5 6 7 11( )

( )
( ) ( )

· · ( )

·

· ( )

+

= +

+ + + + + + + +

The series expansions F128, F256, ... also satisfy similar functional equations, but they are
more involved, the series having a less obvious lacunary series interpretation. For instance
one finds that

u F u F u u u L u u p

p u u u u u

u u u u u

32 3 8 ,

where: 2 8 15 12 4

8 4 8 4 8 , 31

2
128 128

2 6 2 5
13

13
2 3 4 5

6 7 9 11 13

( ) ( )· ( ) · · ( ) · ·

( )

= + - +

= - - - + -

+ + - + -

where L(v) is the lacunary series (28), which satisfies the functional equation u + L(u2) = L
(u). Therefore one deduces the functional equation modulo 128:

u u F u u u u F u

u F u u p

3 2 3

3 16 , where: 32

8 4
128

4 6 2
128

2

2
128

4 10
28

( ) ( ) ( )
( ) ( )

· · ( ) · ·

· · ( )

- - - -

= - +

p u u u u u u u u u

u u u u u u u u u u

4 12 2 6 4 16 10 10 4

2 4 12 10 13 11 11 6 3 3.
28

28 26 24 22 20 18 14 12 11

10 9 8 7 6 5 4 3 2

= - - + + - + + +

- + + - - - + - - - +

Since we have seen that the full susceptibility series is quite close to the series expansion
of χ(2), it is natural to ask if one obtains similar results modulo 2r, for χ(2). From the series
expansion (21), we find that one obtains the same series as the one displayed in (25) modulo
2, 4, 8, 16. Modulo 32 and 64 one obtains simple functional equations for χ(2) which are
similar to (29) and (30) but actually slightly different.

This can be rewritten in terms of the difference (23). This difference (23) is zero modulo
2, 4, 8, 16. Modulo 32 it is just one term, namely 16 v16 (the series for χ(2) being a non-trivial
lacunary series) and modulo 64, it becomes the lacunary series

v v v v v v v v

v v v v

16 32 32 32 32 32

32 32 32 32 33
L L

2 16 20 32 36 68 132

260 516 1028 2052

( ) ( )
( )

( )c c- = + + + + +

+ + + + + 

Remark. The low temperature series (24) relied on having coefficients up to the term in
v2043. Consequently the previous functional equations have been checked up to order 2043 in
the the expansion (24). The previous calculations underline the crucial role played by the
lacunary series (28) where the next term is u2048. It would thus be interesting to validate a
functional equation such as (32) up to the point where the term u2048 in (28) is expected to
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emerge: this would require one to find just9 a few (less than 10) extra terms in the low
temperature series (24). Without trying to get more coefficients for the full susceptibility in
exact arithmetic (not modulo a prime, or a power of a prime) which requires very substantial
computer ressources, we can try to check all our previous functional equations modulo some
integers of the form 2r, seizing the opportunity of having a polynomial algorithm to get many
more than 2000 coefficients (5000, 6000, 10 000, ...) but just modulo 2, 4, 8, 16 ...

3.2. The high-temperature susceptibility

Similarly, we now study the high-temperature expansion (20), moduloqwith q = 2, 4, 8, 16,
32, 64, and compare these series with the ones obtained modulo qwith q = 2, 4, 8, 16, 32, 64
for (22). Since, apart from the first constant coefficients, all the coefficients are divisible by 4,
we introduce the series

G v
v

v v v v v v v v

v v v v

v

1

4
3 8 19 44 100 224 491

1064 2296 4932 10 488

22 180

34

2 3 4 5 6 7 8

9 10 11 12

13

( ) ( )

( )

c
=

-
= + + + + + + +

+ + + +

+ + 

and denote by Gq the corresponding series modulo q. We obtained the following results:
modulo 2 the series G2 is the lacunary series L(v) − 1 (where L(v) is given by (28)):

G v v v v v v v v v v v v 352
2 4 8 16 32 64 128 256 512 1024( ) ( )= + + + + + + + + + + + 

which is a solution of the functional equation

G v G v v. 362 2
2( )( ) ( )= +

Modulo 4 the series G4 is the lacunary series 3 L(v) − 3 − 2 v

G v v v v v v v v v

v v v

3 3 3 3 3 3 3

3 3 3 37
4

2 4 8 16 32 64 128

256 512 1024

( )
( )

= + + + + + + +
+ + + + 

which is a solution of the functional equation:

G v G v v v2 . 384 4
2 2( )( ) ( )= + +

Modulo 8 the series G8(v) becomes more difficult to recognise,

G v v v v v v v v v v v v

v v v v v v v v

3 3 4 4 3 4 4 4 4 7

4 4 4 4 4 4 4 4

39

8
2 4 5 6 8 11 13 14 15 16

17 19 20 22 23 24 26 27

( )

( )

= + + + + + + + + + +

+ + + + + + + + + 

though if we define

G v G v L v 1, 408 8
ˆ ( ) ( ) ( ) ( )= + -

then

G v v2 4 mod. 8. 418· ˆ ( ) ( )=

9 Even though obtaining more terms for the low temperature series (24) can be done with a polynomial time
algorithm, getting more coefficients requires substantial computer resources: however, here the idea is that we just
need a few extra terms.
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Comparing the series (34) with the series (χH
(1) − 1)/4 which is equal to

v

v
v v v v v v v

v v v

v v v

1

4

1 16

1 2
1 3 8 19 44 100 224

490 1064 2296

4928 10 488 22 180

42

4

8

1 4
2 3 4 5 6 7

8 9 10

11 12 13

·
( )

( )

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟-

-
- = + + + + + +

+ + +

+ + + + 

one gets mod.2, 4, 8, 16, 32 respectively:

v v v q v v v v

v v v v v v

v v v v v v v v v v v

mod. 2, 3 3 2 mod. 4,

3 3 4 4 2 mod. 8,

3 8 3 12 4 10 8 8 8 8
mod. 16. 43

2 4 2 4 8

2 4 5 6 8

2 3 4 5 6 8 9 10 12 16

( )

+ + + + +
+ + + + +
+ + + + + + + + + +

We see that, in contrast to the low-temperature expansion, a simple rational function like
χH
(1) yielding polynomial expressions modulo 2, 4, 8, 16, 32 cannot give rise to the emergence

of lacunary series like (35) and (37). For high-temperature series, one must therefore rather
ask whether, modulo 2r, one can distinguish between the full susceptibility χH and χ(1)

+ χ(3).

3.3. Functional equations mod.2r for ~χ in the variable w

For the low and high-temperature series for c̃ in the variable w (see (6)–(9), ...), we have
obtained similar results and functional equations modulo q = 2, 4, 8, 16, 32, 64. These series,
and the corresponding functional equations, are given in appendix 6.

3.3.1. High temperature for ~χ in the variable w. Let us consider the previous question of
comparing χH with χ(1) + χ(3), but in the variable w, so that we are comparing Hc̃ and

1 3˜ ˜( ) ( )c c+ modulo 2r.
The series expansion of the difference ΔH = H H

1
H

3˜ ( ˜ ˜ )( ) ( )c c c- + is given in (17). The
series expansion for 1 3˜ ˜( ) ( )c c+ can be obtained with an arbitrary number of exact
coefficients, while 2043 coefficients of the series expansion of Hc̃ are known. Considering,
modulo various integers, the 2043 coefficients of the series (17), we found that ΔH = 0
modulo 2r, for r 5.

Modulo 16 one cannot distinguish Hc̃ and ,H
1

H
3˜ ˜( ) ( )c c+ their series expansions being a

very simple lacunary series:

w w w w w L w

w w w w w
w w w w

10 8 8 8

2 8 8 8 8
8 8 8 8 44

H H
1

H
3 3 5

2 9 17 33

65 129 257 513

˜ ( ) ˜ ˜ · ( )

( )

( ) ( )c c c= + = + + +

= + + + +
+ + + + + 

yielding the simple functional equation modulo 16:

w w w w w w8 1 . 45H
2

H
3 7( ) ( )˜ · ˜ ( ) · ( )c c= + - -

Modulo 32, similarly, one cannot distinguish Hc̃ and ,H
1

H
3˜ ˜( ) ( )c c+ their series expansions

being a very simple lacunary series
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w w w w w w w w w

w w w w w w L w

2 8 8 24 24 24 24 24 24

10 16 8 8 16 24 ,

46

2 9 17 33 65 129 257 513

2 3 5 9 · ( )
( )

+ + + + + + + + +

= + + + + +



where L(w) is the lacunary series (28). This yields the simple functional equation modulo 32:

w w w w w w w8 2 5 . 47H
2

H
3 15 7( )( )˜ · ˜ ( ) · ( )c c= + - + -

Modulo 64, 128, similarly, one cannot distinguish between Hc̃ and ,H
1

H
3

H
5˜ ˜ ˜( ) ( ) ( )c c c+ +

their series expansions being, again, very simple lacunary series.

3.3.2. Low temperature for ~χ in the variable w. Similarly, if one compares the low-
temperature full susceptibility with wL

2˜ ( )( )c modulo 32 one finds the lacunary series:

w w w w w w w w

w w w w

4 16 24 16 16 16 16

16 16 16 16 , 48
L

4 6 8 12 20 36 68

132 260 516 1028

˜ ( )
( )

c = + + + + + +

+ + + + + 

versus

w w w w w w w w w

w w w w

4 16 24 16 16 16 16 16

16 16 16 16 ,

49

L
2 4 6 8 12 16 20 36 68

132 260 516 1028

˜ ( )

( )

( )c = + + + + + + +

+ + + + + 

the difference being only 16 w16.
One finds that the difference between Lc̃ and ,L

2˜ ( )c given in equation (12), is zero modulo
2, 4, 8, 16, and equal to 16 w16 modulo 32. Modulo 64 it is given by a lacunary series

w L w w

w w w w w w

32 16

32 1 . 50

L L
2 4 16

4 28 8 4 2( )
˜ ˜ · ( )

· ( )

( )c c- = +

+ - - - - -

One finds that the difference between Lc̃ and ,L
2

L
4˜ ˜( ) ( )c c+ as given by (13), is zero modulo 2,

4, 8, 16, 32, 64 and is given by a lacunary series modulo 128:

w L w

w w w w w w

64

64 1 . 51

L L
2

L
4 4

4 16 8 4 2

( )
( )

˜ ˜ ˜ · ( )

· ( )

( ) ( )c c c- + =

- + + + + +

If one includes ,L
6˜ ( )c the difference (14) between Lc̃ and L

2
L

4
L

6˜ ˜ ˜( ) ( ) ( )c c c+ + is seen to be zero
modulo 2, 4, 8, 16, 32, 64, 128, 256.

The scenario seems to be that one cannot distinguish between the series for Lc̃ and that
for a finite sum like L

2
L

4˜ ˜( ) ( )c c+ n
L

2˜ ( )c+ + modulo 2rwhere r grows with n. The series
expansion for the n

L˜ ( )c are given in [23], up to n = 12. This scenario has been checked and
found to hold up to .L

12˜ ( )c Recall that the finite sum L
2

L
4˜ ˜( ) ( )c c+ n

L
2˜ ( )c+ + is also the

diagonal of a rational function [18], implying that this finite sum reduces to algebraic
functions modulo primes, or power of primes, and thus satisfies functional equations modulo
primes, or power of primes. For instance, ,Lc̃ which cannot be distinguished from this sum
modulo 2r for some r, satisfies a functional equation modulo 2r.

These functional equations can thus be seen as related to the functional equations for .n
L˜ ( )c

For instance modulo w2, 8H
3˜ ( )( )c becomes the lacunary series
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w
w L w w w w w

8
1 , 52H

3
4 2( )˜ ( )

· ( ) · ( )
( )c

= - + + +

from which one deduces the functional equation modulo 2:

w
w w

w
8 8

. 53H
3

H
3 2

10( )
·

˜ ( ) ˜
( )

( ) ( )c c
= +

Modulo 4 the series w 8H
3˜ ( )( )c becomes the lacunary series

w
w L w w w w w w

8
3 2 1 , 54H

3
8 4 2( )˜ ( )

· ( ) · ( )
( )c

= + + + + +

from which one deduces the functional equation modulo 4:

w
w w

w w w
8 8

4 2 . 55H
3

H
3 2

3 7 15( )( )
·

˜ ( ) ˜
· ( )

( ) ( )c c
= + + -

For 16L
4˜ ( )c we have similar results. The series 16L

4˜ ( )c reduces, modulo 2, to w16.
Modulo 4 the series 16L

4˜ ( )c becomes10 the simple lacunary series

w
w L w w w w w w w w

16
2 2 1 , 56L

4
4 16 4 28 8 4 2( )˜ ( )

· ( ) · ( )
( )c

= + + + + + + +

yielding the functional equation modulo 4

w
w

w
w w w w w

16 16
2 2 2 1 .

57

L
4 2

4 L
4

20 44 16 12 4( ) ( )˜
·

˜ ( )
·

( )

( ) ( )c c
= + - + + -

4. Automaton interpretation of the functional equations

Recalling the decomposition of the full susceptibility as an infinite sum of n-fold integrals,
χ( n), these striking results can be seen as a consequence of the fact that, modulo integers that
are powers of the prime 2, the full susceptibility series is the same lacunary series as the series
for the first χ( n)ʼs: for instance the low-temperature series modulo 64 of the full susceptibility
series and of 2 4˜ ˜( ) ( )c c+ (which is the diagonal of a rational function) are the same. There is a
not-widely-known discrete automaton [21, 34] result that, modulo a prime p, diagonals of
rational functions [38] not only reduce to algebraic functions, but also satisfy [21] ‘functional
equations modulo p r

’ of the form F f x f x f x, , , 0p ph( ( ) ( ) ( )) = .
Let us recall some relevant results on discrete automaton [21, 24–26]: modulo a prime p,

the diagonal of a rational function reduces to an algebraic function, and this is also true
modulo p r (p prime, r integer). Furthermore, these papers tell us that if f(x) is algebraic
modulo a prime p then f x f x f x1, , , ,2 3( ) ( ) ( )  are linearly dependent, and 1, f(x), f p(x),
f x f x, ,p p2 3( ) ( )  are also linearly dependent. From Fermat’s little theorem, namely that if p
is a prime number, ap = a, (mod.p), one deduces for any series f x a xn

n( ) ·= å

a x a x a x p, mod. , 58n
n p

n
p pn

n
pn( )· · · ( )å å å= =

and, thus, f (x)p = f (x p) modulo p, and, more generally, f x f xp pr r( ) ( )= modulo p r. One
deduces that the relations F(f(x), f (xp), f x, ph( ) ) = 0 can, in fact be written linearly, as

10 Here, the calculations can be checked with an arbitrary number of coefficients. We did so with 6000 coefficients.
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p x f x 0, 59
n

n
pn( )( ) · ( )å =

where the pn(x) are polynomials with integer coefficients, (see for instance section 2 in
Lipshitz and van der Poorten [21]).

Series generated by a finite automaton correspond to a system of algebraic equations,
which correspond, in turn (non-trivially) to being algebraic. All these functional equations
occurring for discrete automata can be seen as functional equations associated with algebraic
functions modulo integers, in particular diagonals of rational functions. This can be seen as
the origin of the functional equations of this paper. The functional equations we have obtained
can be interpreted11 as consequences of the fact that, modulo some integers that are powers of
the prime 2, one cannot really make a distinction between the full susceptibility and the
diagonal of a rational function (like the sum of the first χ( n)s), and consequently reduce to
algebraic functions modulo 2r. One could say that non-holonomic functions, like the full
susceptibility of the Ising model, correspond to ‘almost diagonal functions’.

The automaton interpretation of this section can be revisited from a binomial viewpoint.
Recall that the coefficients of the series expansion of diagonals of rational functions neces-
sarily reduce to nested sums of products of binomials [27, 28]. Binomial coefficients modulo
prime powers have been considered by many great mathematicians of the nineteenth cen-
tury12, yielding a large set of elegant results. Among the various prime powers, the powers of
2 seem to play a selected13 role [33]. Combining these two set of results is another approach
to the main problem addressed in this paper, namely the study of (infinite sums of) diagonals
of rational functions modulo prime powers.

For powers of the prime 2, the functional equations satisfied by the full susceptibility are
quite simple ones, which are associated with the lacunary series14 (28). Of course for powers
of other primes (3r, 5r, ...), the functional equations satisfied by the full susceptibility should,
if they exist, be much more involved, certainly not reducing to simple lacunary series. For
powers of other primes, the scenario that modulo some powers of primes, one cannot dis-
entangle the full susceptibility from some finite sum of χ( n)

’s, is no longer valid. For instance,
if one considers the series expansion (18) of the difference H H H

1 3˜ ( ˜ ˜ )c c c- + , one sees that
the coefficient of w100 and w101 are, respectively, the following products of primes15:

2 59 1403 746 269 427 1965 616 530 023 269 691 689 798 741 092 891,
2 29 2681 1049 99 658 008 281 797 903 856 656 009 433 736 710 068 597. 60

12

8

· · · ·
· · · ( )

Similarly, if one considers the series expansion (15) of 8,H
3˜ ( )c one finds that the coefficient of

w100 and w101 are, respectively, the following products of primes:

11 Equivalently, our conjectured functional equations can be seen as conjectures on the fact that, for instance, the
non-holonomic infinite sum L L

2
L

4˜ ( ˜ ˜ )( ) ( )c c c- + L
6

L
8˜ ˜( ) ( )c c= + +  reduces to zero modulo 64, and possibly, that

each series n
L

2˜ ( )c for n 3, reduces to zero modulo 64, which corresponds to the (experimental) remark of section 2,

that the wn
L˜ ( )( )c (resp. wn

H˜ ( )( )c ) have an overall factor 2n.
12 For instance Cauchy, Cayley, Gauss, Hensel, Hermite, Kummer, Legendre, see [29, 30]. The study of
congruences of combinatorial numbers [31] usually starts with theirp-adic order: it was first studied by Kummer [32].
13 In 1899 Glaisher observed that the number of odd entries in any given row of Pascal’s triangle is a power of 2.
14 Note that, as far as reduction to algebraic functions modulo powers of the prime 2 is concerned, a remarkably
simple quadratic algebraic function corresponding to the Catalan number generating function also reduces to this
lacunary series (28), as can be seen in appendix B.
15 Using the command ‘ifactor’ in Maple.
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2 3 263 3291 604 173 673 340 864 762 033
3935 416 959 987 419 344 918 432 619, 2 5 5581
140 051 834 806 578 509 195 477 348 569 596 056 396 208 311 876 1649. 61

2 2

3
· · · ·

· · ·
· ( )

Besides powers of 2, there is no prime cancelling all the coefficients of the difference (18) or
of .H

3˜ ( )c
The question whether modulo primes different from 2, or powers of primes different

from 2r, the full susceptibility, that no longer reduces to the sum of the first n˜ ( )c ʼs, satisfies
(probably involved) functional equations remains open.

5. Comments and speculations

5.1. Towards a physical interpretation of the functional equations

We can view these exact functional equations modulo integers that are powers of the prime 2,
as a finite discrete automata [34] result corresponding to the fact that, modulo such integers,
one cannot disentangle the full susceptibility from the diagonal of a rational function. From a
more speculative, but more physical perspective, one might hope that such functional
equations are the ‘shadow’ modulo primes or powers of primes, of (probably very involved)
functional equations16, the x x p Frobenius symmetry being, in fact, an infinite order
transformation. Furthermore, such an infinite order discrete transformation might be seen as a
symmetry of the model. Along this symmetry line, recall that, in the case of the square Ising
model, any isogeny of the elliptic curve parametrizing the model [10] can be interpreted as an
exact generator of the renormalization group [35].

We remark that L
2˜ ( )c (see (8)), can be written so that the Landen modulus clearly appears.

Consider the 2F1 hypergeometric function Φ(x), and recall the Landen modulus kL:

x x F x k k k
1

4

3

2
,

5

2
, 3 , , 2 1 .

3
4

2 1
2

L( ) · · ( [ ]
⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟F = = +

From (8) L
2˜ ( )c reads:

k w
v

v

s

s

v v v v v v v

4
4

1 4

2

1

4 16 120 480 2800 11200 58800

62

L
2

L 2 2

4 6 8 10 12 14 16

( )˜ ( )

( )

( ) ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟c = F = F = F

+
= F

+

= + + + + + + + 

One would like to see the Landen transformation k k ,L which can be viewed as anexact
generator17 of the renormalization group [35], as a symmetry of ,L

2˜ ( )c before seeing it as a
symmetry of the full susceptibility. Remarkably, this is the case: Φ(kL) and Φ(k) are very
closely and very simply related! This remarkable relation can be written in many ways, using
the various variables we have introduced [9, 10, 36, 37] (s, k, w, v), but since our functional
relations are mostly written as series in v, we will write this relation in v. In v the Landen
transformation corresponds to

16 In characteristic zero, not ‘modulo primes or powers of primes’.
17 This highly selected infinite order transformation (isogeny of the elliptic curve parametrizing the model [10, 35])
has k = 1 as a fixed point, k 0,= ¥ being clearly special [35].
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v
v

v
v

v

v
4

4

1 4
or:

1 4
. 632

2
2

2
⟶ ⟶ ( )

+ +

Let us introduce

x
x

x

x

x

1 d

d
. 64( ) · ( ) ( )Y =

+ F

One then has the remarkably simple (differential-functional equation) relation representing
the Landen transformation as a symmetry of :L

2˜ ( )c

v

v
v

4

1 4
4 4 . 65

2
2( )· ( )

⎛
⎝⎜

⎞
⎠⎟F

+
= Y

Pursuing this line of argument on functional equations with an infinite order transfor-
mation (hopefully with a physical symmetry interpretation like the Landen transformation
representing a generator of the renormalization group [35]), it is tempting to imagine the
v v2 infinite order transformation in functional equations like (26), (36), or (37), as a
mod.2r reduction of an infinite order symmetry of the model. In such a scenario, since one
cannot distinguish, modulo 2 or 4, between v and v/(1 + 4 v2), a functional equation
G v G v v,2 2

2( ) ( )= + like (36), could also be written as

G
v

v
G v v G

k
G

k k

1 4
or:

4 4 2
, 662 2 2

2
2

L
2( ) ( )⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠+

= + = +

and one could expect that the functional equations we discover modulo 2r, are also the
restriction modulo 2r of some (quite involved) functional equations where the infinite order
transformations have some physical meaning. Keeping in mind the unit circle natural
boundary of the full susceptibility of the Ising model, it is worth recalling that functional
equations like G v G v v,2( ) ( )= + not modulo integers but in characteristic zero, are the
simplest examples to actually show that a series has a (unit circle) natural boundary.

Recalling the expression of wL
2˜ ( )( )c given by (8), the previous functional equation (65)

reads:

v

v

v

v

v

v1 4

1

8

1 4 d

d
, 67L

2
2

2

3
L

2 2( )
˜ · ·

˜
( )( )

( )⎛
⎝⎜

⎞
⎠⎟c

c

+
=

+

This might suggest replacing wL
2˜ ( )( )c by wL˜ ( )c so as to consider this differential-functional

equation (67) for the full susceptibility given by (6) modulo 2, 4, 8. Unfortunatly, in contrast
with the calculations performed in section 3.1, one finds that a differential18 functional
equation like (67) is not satisfied by the full susceptibility modulo 2, 4, 8. This seems to
suggest that, if a ‘master’ functional equation with an infinite order transformation symmetry
exists (in exact arithmetic, not modulo some integers) for the full susceptibility, it is certainly
much more involved that any simple generalization of (67).

Of course, all these ideas are quite speculative. It is reasonable to imagine that there must
be some (probably involved) representation of the renormalization group [35] of the full
susceptibility. In particular, for this integrable model which has an elliptic parametrization,
one might expect a representation of the action of the Landen transformation on the full
susceptibility.

18 Therefore different from the functional equations in section 3.1 .
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5.2. Non-holonomic functions that are ratios of diagonals of rational functions, and beyond

Almost everything remains to be done to understand and describe this class of ‘nice’ non-
holonomic functions reducing to algebraic functions modulo some powers of primes. It is
worth recalling that, while the product of two holonomic functions is a holonomic function,
the ratio of two holonomic functions is, in general19, non-holonomic! The class of functions
that are expressible as a ratio of two holonomic functions, and, further, the ratio of diagonals
of rational functions, is clearly a very interesting class of functions: they are such that their
series can be recast into series with integer coefficients [18, 38] (the ratio of series with
integer coefficients is up to an overall integer a series with integer coefficients), and that their
series, modulo primes, or modulo powers of primes, reduce to algebraic functions20 (the ratio
of series reducing to algebraic functions reduces to the ratio of algebraic functions, and thus
reduces to algebraic functions). Keeping in mind the (natural boundary of the) susceptibility
of the Ising model, it is worth recalling that the ratio of holonomic functions can also yield a
natural boundary, as can be seen from the solutions of nonlinear Chazy III equations [39, 40].

The solutions of a particular nonlinear third order differential equations having the
Painlevé property, the Chazy III equations [39, 40], have (circular) natural boundaries, and
this can be seen as a direct consequence of the fact that the solutions correspond to the ratio of
two holonomic functions, as shown by Chazy in crystal clear papers.

The Chazy III equation [39, 40] is a third-order nonlinear differential equation with a
movable singularity that has a natural boundary for its solutions [41]:

y

x
y

y

x

y

x

d

d
2

d

d
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d

d
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· ( )⎜ ⎟⎛
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⎠= -

It can be rewritten in terms of a Schwarzian derivative:

f f f x f f f y
f

x
2 , 2 3 with:

d

d
. 694 2 2· { } ‴ ( )( ) = ¢ = ¢ -  =

Similarly, it is important to recall that the ratio of two holonomic functions, which is in
general a non-holonomic function, is the solution of a nonlinear Schwarzian derivative ODE:

y

x
R x y x
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y
x x R x

d

d
0, , , 2 . 70

2
1

2

( ) · ( ) { ( ) } ( ) ( )t t+ = = =

The Chazy III nonlinear differential equation (68) has the quasi-modular form Eisenstein
series E2/2. It can also be written as a log-derivative21, namely a ratio Δ′/Δ, where
Ramanujan’s modular discriminant function [42, 43] Δ is actually a selected holonomic
function: a modular form.

It is worth recalling, with the example of the enumeration of three-dimensional convex
polygons [44], that we have already encountered, in enumerative combinatorics, the emer-
gence of ratios of holonomic functions. The class of functions characterized by ratios of
holonomic functions and ratios of diagonals of rational functions is certainly an over-sim-
plified scenario for the susceptibilitity of the Ising model. It is however an interesting ‘toy
class’ for the susceptibilitity of the Ising model, the class of the algebraic functions of
diagonals of rational functions being much too large to reasonably explore.

19 Except when the holonomic function in the denominator is an algebraic function: in that case the ratio is also
holonomic.
20 More generally, a rational or even algebraic function (with integer coefficients) of holonomic functions, is such
that it reduces modulo primes, or modulo powers of primes, to an algebraic function.
21 One takes the derivative with respect to the nome q (see equation (6) in [41]).
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6. Conclusion

This paper underlines the central role of discrete finite automata, or diagonals of rational
functions, in lattice statistical mechanics and enumerative combinatorics, in particular
regarding the challenging problem of the full susceptibility of the two-dimensional Ising
model [17].

The natural emergence of diagonals of rational functions in an extremely large set of
lattice statistical mechanics and enumerative combinatorics models, has been emphasized and
explained in [18]. That paper explains why a large class of functions describing lattice models
that can be expressed as n-fold integrals of an algebraic22 integrand [18], which are, con-
sequently, solutions of linear differential equations, and, thus, at first sight, transcendental
functions, is in fact a remarkable class of transcendental holonomic functions, namely
diagonals of rational functions [18].

The corresponding selected linear differential operators are not only Fuchsian, but also
[5] globally nilpotent23, and, since these transcendental functions are diagonals of rational
functions, they reduce to algebraic functions modulo any prime [18]. They even reduce to
algebraic functions modulo any integral power of a prime number. We may call this class of
transcendental holonomic functions, that quite naturally occur in so many problems of the-
oretical physics [18], ‘almost algebraic functions’.

As far as transcendental non-holonomic functions are concerned, the full susceptibility of
the two-dimensional Ising model is ‘algorithmically integrable’ (with an O(N4) polynomial
algorithm) and can be decomposed as an infinite sum of n-fold integrals, that have been
shown to be diagonals of rational functions [18]. Such nice transcendental non-holonomic
functions emerging in physics require further concepts and tools to characterize and ana-
lyze them.

In this paper we have obtained exact functional equations for low and high temperature
series of the full susceptibility modulo integers that are powers of the prime 2, the series being
associated with simple lacunary series. Since these exact results come from remarkably long
low- and high-temperature series [20] with more than 2000 coefficients, these exact functional
equations are currently not yet proved but extremely plausible conjectures. Recalling the
decomposition of the full susceptibility as an infinite sum of n-fold integrals χ( n), these
striking results can, in fact, be seen as a consequence of the fact that, modulo integers that are
powers of the prime 2, the full susceptibility series are the same series as the series for the sum
of the first χ( n)ʼs: for instance the low-temperature series modulo 16 of the full susceptibility
series and of χ(2) (which is the diagonal of a rational function) are the same.

Modulo a prime p, diagonals of a rational function not only reduce to algebraic functions,
but also satisfy equations of the form F f x f x f x, , , 0.p ph( ( ) ( ) ( )) = In other words, the
functional equations we have obtained, can be interpreted as the fact that modulo some
integers that are powers of the prime 2, one cannot really distinguish between the full
susceptibility and the diagonal of a rational function (like, for instance, χ(2) + χ(4), ...). The
scenario seems to be that one cannot distinguish the series for Lc̃ and for a finite sum like

L
2

L
4˜ ˜( ) ( )c c+ n

L
2˜ ( )c+ + modulo 2rwhere r grows with n. The series expansion for the n

L˜ ( )c
are given in [23], up to n = 12. This scenario can be checked up to .L

12˜ ( )c Recall that the finite

sum L
2

L
4˜ ˜( ) ( )c c+ n

L
2˜ ( )c+ + is also a diagonal of a rational function [18], therefore this

finite sum reduces to algebraic functions modulo powers of primes, and, thus, satisfies

22 Or even holonomic.
23 Their critical exponents are rational numbers, their Wronskian are N-th roots of rational functions, etc.
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functional equations modulo powers of primes. Therefore Lc̃ which cannot be distinguished
from this sum modulo some 2r satisfies a functional equation modulo some 2r.

The question whether the full susceptibility satisfies (probably involved) functional
equations modulo primes different from 2, or powers of primes different from 2r, remains
open (even if, given (60) and (61), it may seem unlikely).

Much remains to be done to understand, and describe, this class of ‘nice’ non-holonomic
functions. It is worth recalling that, while the product of two holonomic functions is a
holonomic function, the ratio of two holonomic functions is, in general, non-holonomic. The
class of functions that are expressible as ratios of diagonals of rational functions, is clearly a
very interesting and important class of functions: they are such that their series (i) can be
recast into series with integer coefficients, and (ii) modulo primes, or modulo powers of
primes, reduce to algebraic functions24. Concerning the susceptibility of the Ising model, it is
worth recalling that ratios of holonomic functions can also yield25 a natural boundary. The
ratio of diagonals of rational functions is probably an overly-simple scenario for the sus-
ceptibilitity of the Ising model. However it is clearly important to start studying this class of
functions, and further, to study algebraic expressions of diagonals of rational functions, per
se, before introducing them as a well-suited and powerful framework in which to study
models of lattice statistical mechanics or enumerative combinatorics [44].
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Appendix. Full susceptibility expansions in w

A.1. Low-temperature expansion in w

Let us consider (6), the low-temperature expansion for Lc̃ in the w s s11

2
2( )= + variable

and introduce the series F w 4:L
˜( ) c̃=

F w w w w w w w

w w
4

20 350 5880 97 020 1585 584

25 765 744 417 159 856 A.1

L 4 6 8 10 12 14

16 18

˜( )
˜

( )

c
= = + + + + +

+ + + 

Modulo 2 and 4 the series (A.1) becomes simple polynomials:

F w w F w w wmod. 2, 2 mod. 4. A.22
4

4
4 8˜ ( ) ˜ ( ) ( )= = +

24 More generally, algebraic expressions of diagonal of rational functions are such that they reduce modulo primes,
or modulo power of primes, to algebraic functions.
25 The fact that solutions of a particular Painlevé-like nonlinear third order differential equations, the Chazy III
equations [39, 40], have (circular) natural boundaries is a direct consequence of the fact that the solutions correspond
to the ratio of two holonomic functions, as shown by Chazy.
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Modulo 8, this series becomes the lacunary series

F w w w w w w w w w w4 6 4 4 4 4 4 48
4 6 8 12 20 36 68 132 260˜ ( ) = + + + + + + + + + 

which satisfies the functional equation modulo 8:

F w w F w w w w2 2 0 mod. 8. A.38
2 4

8
10 2 6( ) ( )˜ · ˜ ( ) · ( )- + + - =

Comparing these results with 4,L
2˜ ( )c the series expansion (8) divided by 4

w F w

w w w w w w
w w w

4

3

2
,

5

2
, 3 , 16

20 350 5880 97 020 1585 584
25 765 740 417 159 600 6737 127 540 , A.4

L
2

4
2 1

2

4 6 8 10 12 14

16 18 20

˜
· [ ]

( )

( ) ⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

c
=

= + + + + +
+ + + + 

one finds that this series (A.4) gives, modulo 2, 4, 8, the same series expansions as (A.2) and
(A.1), and consequently satisfies the same functional equation as (A.3). Again, similarly to
the results displayed in section 3.1, in the variable v, one cannot make, modulo 2, 4, 8, a
distinction, for low-temperature expansions, between Lc̃ and .L

2˜ ( )c

A.2. High-temperature expansion in w

Let us consider (7), the high-temperature expansion for Hc̃ in the w s s11

2
2( )= + variable,

and introduce the series F w 2:H
˜( ) c̃=

F w w w w w w w w

w w w w
2

4 16 64 256 1024 4096

16384 65540 262144 1048720 A.5

H 2 3 4 5 6 7

8 9 10 11

˜( )
˜

( )

c
= = + + + + + +

+ + + + + 

This series modulo 2 and 4 reads:

F w w F w wmod. 2, mod. 4, A.62 4˜ ( ) ˜ ( ) ( )= =

This series modulo 8 reads:

F w w w w w w w w

w w

4 4 4 4 4 4

4 4 mod. 8,
8

2 9 17 33 65 129

257 513

˜ ( ) = + + + + + +
+ + + 

which satisfies the functional equation:

F w w w w w F w4 1 mod. 8. A.78
2 3 7

8( ) ( )˜ · · ˜ ( ) ( )+ - + =

Modulo 16 it reads:

F w w w w w w w

w w w

4 4 12 12 12

12 12 12 mod. 16, A.8
16

2 9 17 33 65

129 257 513

˜ ( )
( )

= + + + + +
+ + + + 

from which one deduces the functional relation:

F w w w w w w F w4 2 1 mod. 16. A.916
2 3 15 7

16( )( )˜ · · ˜ ( ) ( )+ + - + =

Comparing the series (A.5) with the series 2,H
1˜ ( )c namely the series (9) divided by 2

w

w
w w w w w w

w w w w w
2 1 4

4 16 64 256 1024

4096 16384 65536 262144 1048576 A.10

H
1

2 3 4 5 6

7 8 9 10 11

˜

( )

( )c
=

-
= + + + + +

+ + + + + + 
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one gets respectively, mod.2, 4, 8, 16, 32:

w w w w

w w w w w w

w w w w w w w

mod. 2, mod. 4, 4 mod. 8,
4 16 mod. 16, 4 16 mod. 32,
4 16 mod. 64, 4 16 64 mod. 128. A.11

2

2 3 2 3

2 3 2 3 4 ( )

+
+ + + +
+ + + + +

Appendix B. A very simple algebraic function example illustrating the
emergence of a lacunary series

Let us consider a very simple algebraic function, the Catalan number generating function
[33]:

C x
x

x

1 1 4

2
. B.1( ) ( )=

- -

It is the solution of the quadratic equation x C x C x 1 0.2· ( ) ( )- + = Modulo 2 the series
x C x· ( ) reduces to L(x) − 1, where L(x) is the lacunary series :

L x x x x x x x x x x

x x x

1

B.2

2 4 8 16 32 64 128 256

512 1024 2048

( )
( )

= + + + + + + + + +
+ + + + 

This Catalan number generating function (B.1) satisfies the functional equation

x C x C x 1 0 mod. 2. B.32( )· ( ) ( )- + =

which can be seen as the consequence of C(x2) = C(x)2 mod. 2, or as the consequence of the
functional equation L x L x x.2( ) ( )= +

This generating function (B.1) yields many other lacunary series modulo 2r (see for
instance [33]), for instance, modulo 8 the series expansion of 4 + 4/(1 −x · C(x2)) reduces to

L x4 · ( ) where L(x) is given by (B.2). This result, namely the emergence of lacunary series,
can be seen as a simple example of the previous finite automaton results, or, equivalently,
congruence on algebraic functions, in the simplest case where only square roots occur.
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