An Analysis of OEIS Generating Functions

Michael Assis

School of Mathematical and Physical Sciences The University of Newcastle

13 December, 2017

Michael Assis An Analysis of OEIS Generating Functions

< ∃ >

- Online Encyclopedia of Integer Sequences
- Started in 1965 by Neil Sloane
- Originally a punched card database
- Books published in 1973, 1995
- E-mail service 1994, website 1996
- User contributed in Wiki from 2010

The OEIS

- A searchable database of integer sequences
- Two kinds of searches:
 - Simple look-up
 - Superseeker
- Results include:
 - Sequence name and definition
 - Known formulas
 - References
 - $\bullet\,$ Code for use in Maple, Mathematica, PARI/GP, \ldots
- Resources:
 - Graphing
 - Musical rendering

Given a sequence of numbers, what is their pattern?

< ≣ > <

- 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, ... *n*-th term: 2n
- 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, ... *n*-th term: $\frac{\phi_1^n - \phi_2^n}{\phi_1 - \phi_2}$, $\phi_1 = \frac{1 + \sqrt{5}}{2}$, $\phi_2 = \frac{1 - \sqrt{5}}{2}$ • 1, $-\frac{1}{2}$, $\frac{1}{24}$, $-\frac{1}{720}$, $\frac{1}{40320}$, $-\frac{1}{3628800}$, $\frac{1}{479001600}$, $\frac{1}{87178291200}$, ... *n*-th term: $\frac{(-1)^n}{(2n)!}$
- 1, 6, 29, 130, 561, 2368, 9855, 40622, 166303, 677420, ... *n*-th term: ?

Questions for a given sequence/series:

- Does the sequence converge or diverge?
- If it converges, what is the radius of convergence?
- How do you analytically continue beyond the radius of convergence?
- Is there an efficient algorithm to compute the terms?

Convergence tests:

• Ratio test
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = r, \quad (r < 1) : \text{converges}$$

Root test

$$\lim_{n\to\infty}\sup\sqrt[n]{|a_n|}=r,\quad (r<1):\text{converges}$$

• Radius of convergence: $\frac{1}{r}$, r from Ratio or Root tests

Analytic continuation:

- From a series expansion around x_0 with radius of converge r:
 - Find point x₁ within |x₁ x₀| < r with radius outside original domain</p>
 - 2 Repeat
- Find a functional equation for the function
- Use an integral definition of the function
- Use the ODE that the function satisfies

Efficient computation:

- Have an explicit *n*-th term expression
- Use a recurrence relation
- Find series solution to ODE
- Find a Puiseux series to an algebraic equation

Treat sequence as coefficients of a power series:

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, ...

$$\Rightarrow 2x + 4x^{2} + 6x^{3} + 8x^{4} + 10x^{5} + \ldots = \frac{2x}{(x-1)^{2}}$$

- Sequence diverges
- Radius of convergence 1
- Easy to compute sequence terms

Treat sequence as coefficients of a power series:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, ... $\Rightarrow 1 + 1x + 2x^2 + 3x^3 + 5x^4 + 8x^5 + \ldots = \frac{1}{1 - x - x^2}$

- Sequence diverges
- Radius of convergence $\frac{1}{\phi_1} \approx 0.618033...$
- Terms satisfy recursion relation:

$$a_n = a_{n-1} + a_{n-2}, \quad a_0 = 1, \ a_1 = 1$$

• and satisfies *n*-th term expression: $\frac{\phi_1^n - \phi_2^n}{\phi_1 - \phi_2}$

Treat sequence as coefficients of a power series:

 $\begin{array}{l} 1, \ -\frac{1}{2}, \ \frac{1}{24}, \ -\frac{1}{720}, \ \frac{1}{40320}, \ -\frac{1}{3628800}, \ \frac{1}{479001600}, \ \frac{1}{87178291200}, \ \dots \\ \Rightarrow \ 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} + \dots = \cos(x) \end{array}$

- Sequence converges
- Radius of converge is ∞
- Easy to calculate sequence terms

Treat sequence as coefficients of a power series:

1, 6, 29, 130, 561, 2368, 9855, 40622, 166303, 677420, ... $\Rightarrow 1x + 6x^2 + 29x^3 + 130x^4 + 561x^5 + 2368x^6 + \ldots = ?$ Practical problems:

- It can take a long time to compute sequence terms
- You may not know an *n*-th term expression
- Radius of convergence is only known to within some error

When you don't have an *n*-th term expression, what to do?

- You can use the Ratio and Root tests to estimate the radius of convergence
- You can search for an ODE the series satisfies

•
$$1 + 1x + 2x^2 + 3x^3 + 5x^4 + 8x^5 + \ldots = \frac{1}{1 - x - x^2}$$

• Know in advance it satisfies ODE:

$$(1 - x - x^2) \frac{dy(x)}{dx} - (1 + 2x) y(x) = 0$$

• Assuming 1st order ODE, 2nd degree polynomial coefficients:

- Compute: $x y, x^2 y, y', x y', x^2 y'$
- **2** Find series: $a_0 y + a_1 x y + a_2 x^2 y + b_0 y' + b_1 x y' + b_2 x^2 y'$
- Solve for coefficients a_j , b_j such that each term vanishes:

 $a_0=1,\ a_1=-1,\ a_2=-1,\ b_0=-1,\ b_1=-2,\ b_2=0$

Things to consider:

- The full pattern may not have revealed itself yet
 - \Rightarrow The solution may fail after a certain point
- Save terms for use in checking any solution
- Not enough terms known for finding polynomial coefficients
 - \Rightarrow No solution found until more terms are known
- The series satisfies no finite order ODE
 - \Rightarrow At best an approximation can be found

Software

<ロ> <同> <同> < 同> < 同>

æ

Maple:

- listtodiffeq and seriestodiffeq in gfun package
- linear ODE search
- Default max order is 2, default polyn coeff degree is 3
- Can handle arbitrary precision integers, rationals
- No control over saving later terms for checking
- Very slow

Mathematica:

- FindGeneratingFunction and FindSequenceFunction
- Search in function spaces
 - Polynomials
 - Rational functions
 - Hypergeometric functions
 - Holonomic functions (linear ODEs)
- Can take symbolic terms, arbitrary precision integers, rationals
- Control over saving later terms for checking
- Time limit, default 10s, (likely) slow
- Only yields functions, not ODEs (?)

Iwan Jensen's code:

- Linear ODE search
- Written in Fortran, fast
- All calculations done mod a prime, reconstruction necessary
- Input integers must be less than $2^{16}-1$
- Not openly distributed

Writing my own software:

- Written in C, very fast
- Use of arbitrary precision linear algebra package
- Search for linear and non-linear ODEs, $p_k y^n \left(\frac{dy}{dx}\right)^m$
- Automated search
- Control over saving later terms for checking
- Open source, https://github.com/mike352/serintode

- Downloadable file with all "a" sequence files:
 - File updated daily, $\sim 24 \text{MB}$
 - About 300,000 sequences
 - Typical sequence length of 40 terms, up to 100
- Using my program to analyze file:
 - Takes 2 hours
 - Finds linear ODE solutions to $\sim 15\%$ sequences
 - Automated LaTeX generation
 - Output pdf file has 3235 pages

The OEIS stores longer versions of sequences, "b-files":

- Contains the most number of terms known for most sequences
- No single file available for easy download
 - Neil Sloane said "No" to me
- All are accessible from the website at individualized URLs
 - Each b-file can be downloaded from its URL
 - Beware of automated download methods ...
- Total file size zipped 5GB, unzipped 29GB

The b-files:

- Some are identical to the a-file version
- Largest sequence has 1,578,730 terms

• Breakdown by size:

length	<i>n</i> ≤20	20< <i>n</i> ≤50	\leq 100	≤500	\leq 1000	\leq 5000	\leq 10000	>10000
% of OEIS	19.9%	21.5%	19%	15.9%	5.6%	8.3%	5.3%	4.6%

Linear ODE solutions:

- Found total of 55,431 solutions so far
- 19% of OEIS
- Breakdown by size of sequence:

length	≤100	≤200	≤300	≤500	\leq 900	>900
total	21392	4667	12251	1566	1815	14468+

 $\bullet\,\sim\,1\%$ have very large integers

Non-linear algebraic ODE solutions:

- Found total of 897 solutions so far
- 0.3% of OEIS

• Breakdown by size of sequence:

length	\leq 100	≤200	\leq 300	\leq 500	\leq 900	>900
total	751	55	30	61		

The OEIS:

- Most are simple 1st order linear ODEs
- Most have very small, simple integer coefficients
- ${\sim}20\%$ of OEIS has solutions
- Very few are solutions of non-linear algebraic ODEs
- Possible OEIS strategy:
 - Make a searchable database for solutions of low order ODEs with polynomials of low degree

- Software can be generalized for functional equations For example: $p_n y(a_1x + a_2x^2 + ...) = y(x)$
- Putting my C program online
- Incorporation my program into the OEIS itself
- Analysis of > 50,000 solutions ongoing . . .

Thank you!

Michael Assis An Analysis of OEIS Generating Functions

Im ▶ < 10</p>

æ

э