An Analysis of OEIS Generating Functions

Michael Assis
School of Mathematical and Physical Sciences
The University of Newcastle

13 December, 2017

What is the OEIS?

- Online Encyclopedia of Integer Sequences
- Started in 1965 by Neil Sloane
- Originally a punched card database
- Books published in 1973, 1995
- E-mail service 1994, website 1996
- User contributed in Wiki from 2010
- A searchable database of integer sequences
- Two kinds of searches:
- Simple look-up
- Superseeker
- Results include:
- Sequence name and definition
- Known formulas
- References
- Code for use in Maple, Mathematica, PARI/GP, ...
- Resources:
- Graphing
- Musical rendering

Generating functions

Given a sequence of numbers, what is their pattern?

Generating functions

Examples:

- $2,4,6,8,10,12,14,16,18,20,22,24,26,28,30, \ldots$ n-th term: $2 n$
- $1,1,2,3,5,8,13,21,34,55,89,144,233,377,610, \ldots$
n-th term: $\frac{\phi_{1}^{n}-\phi_{2}^{n}}{\phi_{1}-\phi_{2}}, \quad \phi_{1}=\frac{1+\sqrt{5}}{2}, \quad \phi_{2}=\frac{1-\sqrt{5}}{2}$
- $1,-\frac{1}{2}, \frac{1}{24},-\frac{1}{720}, \frac{1}{40320},-\frac{1}{3628800}, \frac{1}{479001600}, \frac{1}{87178291200}, \ldots$ n-th term: $\frac{(-1)^{n}}{(2 n)!}$
- $1,6,29,130,561,2368,9855,40622,166303,677420, \ldots$ n-th term: ?

Generating functions

Questions for a given sequence/series:

- Does the sequence converge or diverge?
- If it converges, what is the radius of convergence?
- How do you analytically continue beyond the radius of convergence?
- Is there an efficient algorithm to compute the terms?

Generating functions

Convergence tests:

- Ratio test

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=r, \quad(r<1): \text { converges }
$$

- Root test

$$
\lim _{n \rightarrow \infty} \sup \sqrt[n]{\left|a_{n}\right|}=r, \quad(r<1): \text { converges }
$$

- Radius of convergence: $\frac{1}{r}, \quad r$ from Ratio or Root tests

Generating functions

Analytic continuation:

- From a series expansion around x_{0} with radius of converge r :
(1) Find point x_{1} within $\left|x_{1}-x_{0}\right|<r$ with radius outside original domain
(2) Repeat
- Find a functional equation for the function
- Use an integral definition of the function
- Use the ODE that the function satisfies

Generating functions

Efficient computation:

- Have an explicit n-th term expression
- Use a recurrence relation
- Find series solution to ODE
- Find a Puiseux series to an algebraic equation

Generating functions

Example:
Treat sequence as coefficients of a power series:

$$
\begin{aligned}
& 2,4,6,8,10,12,14,16,18,20,22,24,26,28,30, \ldots \\
\Rightarrow & 2 x+4 x^{2}+6 x^{3}+8 x^{4}+10 x^{5}+\ldots=\frac{2 x}{(x-1)^{2}}
\end{aligned}
$$

- Sequence diverges
- Radius of convergence 1
- Easy to compute sequence terms

Generating functions

Example:
Treat sequence as coefficients of a power series:

$$
\begin{aligned}
& 1,1,2,3,5,8,13,21,34,55,89,144,233,377,610, \ldots \\
\Rightarrow & 1+1 x+2 x^{2}+3 x^{3}+5 x^{4}+8 x^{5}+\ldots=\frac{1}{1-x-x^{2}}
\end{aligned}
$$

- Sequence diverges
- Radius of convergence $\frac{1}{\phi_{1}} \approx 0.618033 \ldots$
- Terms satisfy recursion relation:

$$
a_{n}=a_{n-1}+a_{n-2}, \quad a_{0}=1, \quad a_{1}=1
$$

- and satisfies n-th term expression:

$$
\frac{\phi_{1}^{n}-\phi_{2}^{n}}{\phi_{1}-\phi_{2}}
$$

Generating functions

Example:

Treat sequence as coefficients of a power series:

$$
\begin{aligned}
& 1,-\frac{1}{2}, \frac{1}{24},-\frac{1}{720}, \frac{1}{40320},-\frac{1}{3628800}, \frac{1}{479001600}, \frac{1}{87178291200}, \ldots \\
\Rightarrow & 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\frac{x^{10}}{10!}+\ldots=\cos (x)
\end{aligned}
$$

- Sequence converges
- Radius of converge is ∞
- Easy to calculate sequence terms

Generating functions

Example:

Treat sequence as coefficients of a power series:
$1,6,29,130,561,2368,9855,40622,166303,677420, \ldots$
$\Rightarrow 1 x+6 x^{2}+29 x^{3}+130 x^{4}+561 x^{5}+2368 x^{6}+\ldots=$?

Generating functions

Practical problems:

- It can take a long time to compute sequence terms
- You may not know an n-th term expression
- Radius of convergence is only known to within some error

Finding generating functions

When you don't have an n-th term expression, what to do?

- You can use the Ratio and Root tests to estimate the radius of convergence
- You can search for an ODE the series satisfies

Finding generating functions

Example:

- $1+1 x+2 x^{2}+3 x^{3}+5 x^{4}+8 x^{5}+\ldots=\frac{1}{1-x-x^{2}}$
- Know in advance it satisfies ODE:

$$
\left(1-x-x^{2}\right) \frac{d y(x)}{d x}-(1+2 x) y(x)=0
$$

- Assuming 1st order ODE, 2nd degree polynomial coefficients:
(1) Compute: $x y, x^{2} y, y^{\prime}, x y^{\prime}, x^{2} y^{\prime}$
(2) Find series: $a_{0} y+a_{1} x y+a_{2} x^{2} y+b_{0} y^{\prime}+b_{1} x y^{\prime}+b_{2} x^{2} y^{\prime}$
(3) Solve for coefficients a_{j}, b_{j} such that each term vanishes:

$$
a_{0}=1, a_{1}=-1, a_{2}=-1, b_{0}=-1, b_{1}=-2, b_{2}=0
$$

Finding generating functions

Things to consider:

- The full pattern may not have revealed itself yet
\Rightarrow The solution may fail after a certain point
- Save terms for use in checking any solution
- Not enough terms known for finding polynomial coefficients
\Rightarrow No solution found until more terms are known
- The series satisfies no finite order ODE
\Rightarrow At best an approximation can be found

Software

Maple:

- listtodiffeq and seriestodiffeq in gfun package
- linear ODE search
- Default max order is 2 , default polyn coeff degree is 3
- Can handle arbitrary precision integers, rationals
- No control over saving later terms for checking
- Very slow

Mathematica:

- FindGeneratingFunction and FindSequenceFunction
- Search in function spaces
- Polynomials
- Rational functions
- Hypergeometric functions
- Holonomic functions (linear ODEs)
- Can take symbolic terms, arbitrary precision integers, rationals
- Control over saving later terms for checking
- Time limit, default 10s, (likely) slow
- Only yields functions, not ODEs (?)

Software

Iwan Jensen's code:

- Linear ODE search
- Written in Fortran, fast
- All calculations done mod a prime, reconstruction necessary
- Input integers must be less than $2^{16}-1$
- Not openly distributed

Writing my own software:

- Written in C, very fast
- Use of arbitrary precision linear algebra package
- Search for linear and non-linear ODEs, $p_{k} y^{n}\left(\frac{d y}{d x}\right)^{m}$
- Automated search
- Control over saving later terms for checking
- Open source, https://github.com/mike352/serintode

Analyzing the OEIS

- Downloadable file with all "a" sequence files:
- File updated daily, $\sim 24 \mathrm{MB}$
- About 300,000 sequences
- Typical sequence length of 40 terms, up to 100
- Using my program to analyze file:
- Takes 2 hours
- Finds linear ODE solutions to $\sim 15 \%$ sequences
- Automated LaTeX generation
- Output pdf file has 3235 pages

Analyzing the OEIS

The OEIS stores longer versions of sequences, "b-files":

- Contains the most number of terms known for most sequences
- No single file available for easy download
- Neil Sloane said "No" to me
- All are accessible from the website at individualized URLs
- Each b-file can be downloaded from its URL
- Beware of automated download methods...
- Total file size zipped 5GB, unzipped 29GB

Analyzing the OEIS

The b-files:

- Some are identical to the a-file version
- Largest sequence has $1,578,730$ terms
- Breakdown by size:

length	$n \leq 20$	$20<n \leq 50$	≤ 100	≤ 500	≤ 1000	≤ 5000	≤ 10000	>10000
$\%$ of OEIS	19.9%	21.5%	19%	15.9%	5.6%	8.3%	5.3%	4.6%

Analyzing the OEIS

Linear ODE solutions:

- Found total of 55,431 solutions so far
- 19\% of OEIS
- Breakdown by size of sequence:

length	≤ 100	≤ 200	≤ 300	≤ 500	≤ 900	>900
total	21392	4667	12251	1566	1815	$14468+$

- $\sim 1 \%$ have very large integers

Analyzing the OEIS

Non-linear algebraic ODE solutions:

- Found total of 897 solutions so far
- 0.3% of OEIS
- Breakdown by size of sequence:

length	≤ 100	≤ 200	≤ 300	≤ 500	≤ 900	>900
total	751	55	30	61		

Analyzing the OEIS

The OEIS:

- Most are simple 1st order linear ODEs
- Most have very small, simple integer coefficients
- ~20\% of OEIS has solutions
- Very few are solutions of non-linear algebraic ODEs
- Possible OEIS strategy:
- Make a searchable database for solutions of low order ODEs with polynomials of low degree

Going further

- Software can be generalized for functional equations For example: $p_{n} y\left(a_{1} x+a_{2} x^{2}+\ldots\right)=y(x)$
- Putting my C program online
- Incorporation my program into the OEIS itself
- Analysis of $>50,000$ solutions ongoing ...

Thank you!

