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We describe the symmetries of the chiral checkerboard Potis model (duality, inversion
relation, . ..) and write down the algebraic variety corresponding to the integrable case
advocated by Baxter, Perk, Au-Yang. We examine some of its subvarieties, in different
limits and for various lattices, with a special emphasis on ¢ = 3. This yields for g = 3, a new
algebraic variety where the standard scalar checkerboard Potts model is solvable. By a
comparative analysis of the parametrization of the integrable four-state chiral Potts model
and the one of the symmetric Ashkin-Teller model, we bring to light algebraic subvarieties
for the g-state chiral Poits model which:are invariant under the symmetries of the model.
We recover in this manner the Fateev-Zamolodchikov points,

1. Introduction

In the early 70’s a breakthrough was made in the field of two-dimensional
statistical mechanies on lattices when one realized (see for instance Ref, 1) that
it could be easier to solve at once an infinite number of models rather than an
isolated one, The step taken was to handle a family of models such that for any
two members of the family, their transfer matrices commute. This property
(related to the integrability of the model) is meaningless for one isolated model.

- Subsequent works have shown how these conditions are deeply rooted in very

rich algebraic structures (algebraic Bethe Ansatz,”. . .). The fruitful step taken was
actually to consider the whole pararneter space of the model and the symmetries
acting on this space.

These symmetries may reflect the invariance of the partition function by all
relabellings of the (dummy) summation variables or symmetries of the lattice, or
by transformations in the parameter space (inversion relation, duality transfor-
mation, , . .). The art is to find appropriate families of models which are at the
same time sufficiently large to permit a non-trivial action of the symmetry group
and sufficiently small to be handled.

Considering the exact results obtained on the chiral Potts model®>> and
recalling the exact results on the checkerboard standard scalar Potts model (sec
for instance Ref. 6), as well as the Ashkin-Teller model,’ it is natural to analyze
the checkerboard chiral Potts model, its symmetry group, and the algebraic
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varieties of the parameter space which are invariant under these symmetries.
Indeed in this model, there seems to be a very good ratio of the number of
variables in the parameter space to the number of constraints coming from the
symmetries.

The solutions given in ‘Ref. 4 for the g-state chiral Potts model are very
interesting from various points -of view:

First they exhibit remarkable structures (especially curves of genus greater than
one) renewing completely the way one can think of an exactly solvable model.

Next, the chiral Potts model is not an academical model: the presence of
chirality leads to a very rich phase diagram (mcommensurate phases, Lifschitz
points, . .., see for instance Ref. 8).

It is a good place to understand the role played by the different symmetries
(relabelling symmetries of the summation variables, duality which is no longer an
involution but a transformation of order four, etc. . ., see for instance Ref, 9), to
study the relations between these symmetries and the exact properties of the
model (automorphisms of the algebraic curves parametrizing the models,’. . .),
and to clarify the relations between criticality, integrability, and self-duality.
Finally the checkerboard model enables one to recover different lattices as limits
(triangular honeycomb, anisotropic square). -

In this paper we propose for the three-state checkerboard chiral Potts model
a codimension 1 algebraic variety which is invariant by all the symmetries of the
model: it encompasses the known integrable subcases of the model (checkerboard
standard scalar Potts model, and chiral anisotropic square Potts model) as well
as a conjectured variety for the critical manifold of the g =3 trlangular standard
scalar Potts model.!°

We exhibit, for generic ¢, interesting algebraic varieties of codlmenswn greater
than one, which are invariant under the symmetries. These results rely on the
careful analysis of the parametrization of the four-state chiral Potts model and
the one of the symmetric Ashkin-Teller model.”

In the first section we recall some notations and results on the g-state chiral
Potts model, the checkerboard standard scalar Potts model and the symmetric
Ashkin-Teller model. In the second section we describe the symmetries of the
model, write down, for the checkerboard chiral Potts model, the algebraic variety
corresponding to the integrable case advocated in Ref. 4. We examine some of its
subvarieties, in different limits and for various lattices, with a special emphasis
on g=3. In the third section we examine the symmetric Ashkin-Teller model
seen as a subcase of the four-state chiral Potts model* and see how the corres-
ponding parametrizations match together. We recover very naturally the Fateev-
Zamolodchikov points. !
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2. Some Notations

2.1. The chiral g-state checkerboard Potts model

We describe here the checkerboard g-state chiral Potts model and recall
different results and notations.!2 The lattice is a square lattice, which we consider
as a chessboard: to each black face of the board we associate a Boltzmann weight
which is the product around the face of elementary weights w; (i=1,...,4)
associated to the bonds.

0}' W‘l : Ei
W‘ Wz
g | ws | O

Fig. 1. Spin configuration around a face.

The weight of this configuration is

Wiface) = w(g; — a)) - wig; — ox) - wlor — 0x) - Waloi - o) -

The parameter space of the model is given by four sets of ¢ horhogcneous
variables w;(0), ..., wi{g - 1). '
The standard scalar limit of the model is obtained if one takes:

wi(l) = W) = ... =wilg - 1.

In this limit there is no chirality.
The anisotropic triangular, honeycomb, or square limits of the checkerboard
chiral model are obtained respectively by setting for one value of the index i

wi(l) = wi(2) = ... =wilg - 1) =0,
wi(0) = wi(1) =wi(2) = ... =wilg - 1),
or

i) = wan) = w(n) , and  wy(n) = wan) = W(n) .

In their study of the integrability of the anisotropic square g-state chiral Potts
model, Baxter, Perk, and Au-Yang4 have introduced a very adequate set of
variables (two sets of rapidity vectors (g, by ¢ dy) and (dy, by Cq» d5))- These
four component vectors occur only through particular combinations
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Xy = bydy , Xy = ayey, X3=bdy, x4 =cpa,, 0
Xs = Qg , Xg=dyay, X7= by, Xg= by, .
They are given by the overdetermined system |
w(n)x, - wnw"* x, - w(n + Dxs + w(n + D" 'x, = 0 (2)
W(n)@x5 ~ W™ x, - win + 1.)x7 +wn + D" 'xy = 0 , (3)

where w is a gth root of unity. As soon as g > 3, the system (2), (respectively (3))
is compatible only when the w’s (and respectively the W’s) are constrained to a
certain subvariety V, (resp. V), obtained by the vanishing of determinants.
Notice that the periodicity of w and w, i.e. w(n + g) = w(n)} yields

q q q g aq g 4 g :
X+ X, =Xy, + Xy and X5 + X = X5 + Xy . (4)

Moreover the form of the x;’s (Eq. (1)) yiélds two conditions on the homogeneous
variables x;: :

XoXz = XsXg and  xixg = XeX7

that is to say one equation

‘xlxa; X5Xg _
= =1 . (5)
XoXy  XeX7 .

It is possible to write this equation as

Fw(0), w(l),...,w(g ~ 1)) - FW O, wW(D),...,W(g - )= (6

where

X1X4

- XoX3

For the checkerboard model one may introduce linear systems similar to (2, 3),
obtained by replacing w by w, (resp. w4), and w by w, (resp. w,). These systems
are compatible only if each of the w;’s verify determinantal conditions i.e. belong
to some subvariety which we denote by V. (i). The cases g=3 and ¢> 3 are
essentially different and should be distinguished.

For ¢ =3, the systems (2), (3) are always compatible, and has the following
solution '

X = wWO) + aw(Dw2)? + @PwOw(l)?




Algebraic Varieties for the Chiral Potts Model 1747

Cxp = wOW()? + aw(Iw(2) + w*w (2)w(0)? ,

| | | ,
= xy = wQw(D)? + ow()w(0)* + aPw(0w(2)? , @)
= xe = WOWEP + ow(w(0) + Pw@w(1) .

Taking into account the value of the x;’s and the expression of F, Eq. (6) reads
P(w(0), w(l), W(25) - Q(W(0), w(1), W(2))
* Q(w(0), w(1), w(2)) - Pw(0), W(1), w(2)) = 0 (8)

where

2

~P(w(0), w(1), w(2)) = (Z W(l’)3)W(0)W(1)W(2) - 3w(0)*w(1)’w(2)?

i=0

&)

and

2

Q(w(0), w(1), w(2)) = (2 W(i)3)W(0)W(1)W(2)

i=0

+ 3IwOPw(1)Pw(2) - 22»&(1‘)314»0)3. - (10)

‘ i#j
One has the relations
dxx4 = Q - (w - WP
and

2x%0% = 00 + (@ - @))P .

In the limit of the standard scalar Potts model, condition (6) splits into two .

equations which are respectively the ferromagnetic'® and antiferromagnetic
criticality (and integrability) conditions'*:
A-B+A+B=0 (1
" AB-A-B=2 (12)

with 4 = w(0)/w(1) and B =w(0)/w(1). |
For g = 4, the homogeneous system (2) is overdetermined. One has non-trivial
solutions when the determinant of the system vanishes, namely:
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WO + wRw(Dw(3) + WY + wIwOw®) - 2w(0 w(2)?
_2w(1Pw(3) = 0 . (13)

Remark, An important subcase of the solvable chiral Potts model is the
‘superintegrable’ chiral Potts model.!’~1? Tt corresponds to the conditions

Xy =X7, Xp=2Xg, X3=2X5, X4=2Xp.

Equation (5) is automatically verified.

2.2. The standard scalar checkerboard Potts model and its limits

The standard scalar limit of the model is obtained when

wi(l) = wi(2) = ... = wilg - 1) = w; .

If one denotes 4, B, C, D the ratios w{0)/w; for i=1, 2, 3,4 respectively, the
criticality and integrability algebraic variety reads:

ABCD - (AB + AC + AD + BC + BD + CD)

-(@-2A+B+C+D)-(g~-1¥g-3)=0. (14}
In the limit of the anisotropic square Potts model, i.e. 4 = C, B=D, Eq. (14) also
splits and we recover Eqs. (11), (12). The anisotropic square model may also be
obtained in the limits C= oo, D=1, or C=1, D= oo, but then one recovers only

Eq. (12).

In the triangular limit, i.e. D = oo two varieties emerge!®'®:

(9 - 2ABC + AB + BC + CA - 1
AB + BC + CA + (g -2)(A +B+C)+(qg-27-1

=x1. (15

The case with the plus sign corresponds to the well-known criticality (and
integrability) variety of the anisotropic triangular. model,'* and may be obtained
as limit of Eq. (14) ‘ .

The case with the minus sign was introduced by Martin and Maillard.'® For
the isotropic three-state model it gives three points remarkably well fitted by
numerical studies of the zeroes of the partition function of the model.'® For g > 3
no interesting property has yet been found for this case. _

There is a parametrization of the standard scalar checkerboard model (or its
limits) permitting the analysis of the symmetries of the parameter space, and the

- search for criticality or integrability®!>:

wi(®) — g.w(l) 4 - g,

wi(0) —g.w(l) A4 -gq_ (16)

X4 =
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g. being the two roots of the equation

2+ (@g-2x+1=0,

and similarly for B, C, D. ‘
Note that in the standard scalar limit, for ¢ = 4, the determinantal condition
(13) reduces to - '

Wf(O) - W, = 0.

For ¢ = 4, the parametrization (16) becomes singular. In an appropriate limit one
finds an additive parametrization instead of a multiplicative one, by setting

1
W .(.E = e
Xa 1 +4° B

Equ_atioh (14) for g =4 then reads:
XA+XB+X0+XD= 1.

2.3. The symmetric Ashkin-Teller model

The symmetric Ashkin-Teller model is an interesting subcase of the four-state
chiral Potts model. To make this explicit, let us consider the four-state spin of the
Potts model as two Ising spins o, and 7,. The Boltzmann weight associated to the
horizontal bond {ij) reads then, up to a multiplicative factor:

w(O) 14 |or o nr Ty W(O)W(z) 14 Joa W(3) o Yor- oy
( w(2)) ( w(1)w(3) ) ( w(1) ) (17

This Boltzmann weight identifies with the one of the symmetric Ashkin-Teller
model when w(1)=w(3) (or w(0) = w(2)).

There is a nice parametrization’ of the (anisotropic) model which makes
transparent the action of the symmetries in the parameter space (see Sec. 2.4). It
is of course very appropriate for the description of the exact solvability. Introduce
the foliation of the parameter space of the anisotropic model:

w(1)2 = w(0w(2) X w1y - w(0)w(2)
~ w(l)(w(0) - w(2) T W) - w(2)

The good variables of the symmetric Ashkin-Teller model are x and X given by:

w(0) - w(2) - 2w(l) 4.

¥ W0 - w2 - 2w(D) 4. (18)
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where §. are the two roots of

Zo2At+1 =0,

and the same for W. An analysis based on an extensive use of these variables

permits to recover the algebraic varieties where the model is solvable
In the anisotropic case such varieties have equatlons

A=A,
(19)
xx? = g1 .
We recognize in (19) both the known integrability condition xX=§7 and the
candidate conjectured by Truong xx= ~g 2.*°
For the isotropic symmetric Ashkin-Teller model, one recovers in particular

the self-dual lines

w(0) = w(l) + w(2) + w(3) and w(l) = w(3) (20)
that 1s to say
X=X= —a-r ’
and
Z3w(0) = w(l) + w(2) + w(3) and w(l) = w(3) .’ @1)
that is to say |
X=X-= c?'f :

The symmetric Ashkin-Teller model can be mapped onto a staggered six-vertex
model.>' On the self-dual line (20) the staggering vanishes and the model is
exactly solvable and equivalent to a six-vertex model. In this case there are
remarkable values of A, for which the exponents become rational (A = cos(kz/m),
with & and m integers). Among these values of A, we emphasize A= -1,

A = 5> and especially A=0 and A = —Lz, for which the model corre-
sponds to a free fermion model,??

2.4. The symmetries of the g-state chiral Potts model

We recall the results of Ref. 12 and use the same notations. We denote by &
the group of symmetries of the model. Generators of & are

* A cycle of order g, C: w(n})—=w(r+1)

N -




'
e
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e The spin re%z;:rsal R: w(n) — w(q - n) -1

e The duality transformation D: w(n)—w(n) = mzoco’f‘mw(m)

e The matrix inverse I: inversion of the (cyclic) matrix W of eniries
W, i=wli-J)

s The dyadic inverse J: w(n)—1/w(n)

e The horizontal-vertical permutation §: w(n)<w(n)

» Another cycle of order g, I': w(n)—w"w(n).

Notice that these generators are not independent and verify constraints:
I=DJD“1‘, I'=D"'CD,

R-D*, R-1, JR=RJ.

Transformations I and J correspond to the inversion relation®® acting on the
horizontal and vertical weights W and W respectively. The group generated is an
infinite discrete group of birational transformations in the parameter space,
isomorphic to a semi-direct product of Z by a finite group. '

This symmetry group can be generalized straightforwardly to the checkerboard
model. '

This group of course admits various representations, obtained by restrlctmg its
action to subvarieties of the space of parameters.

If we restrict ourselves to the varieties ¥,NV, where the xs exist, the.
previous transformations read on the x;’s:

o C: Xx; > X[, Xy —> (0Xy, X3 > X3, X5 > WXy
o DX, > wxy, Xy Xy, X3 > Xy, X4~ X3
o i x| X, Xy = X4, X3 > X1, Xq ™ Xy
o S: X x5, XX, Xq <> X7, X4 <" Xg.

Up to the multiplicative factors, the representation of the group &is by the group
of symmetries of the square. This representation of the group of symmetry 18

finite, and thus not faithful. _
If we do not restrict ourselves to ¥V, N7V, any longer, there are still two

interesting limiting cases: the standard scalar Potts model and for ¢=4 the
symmetric Ashkin-Teller model. In terms of the variables x, and x previously
introduced, the action of the group becomes multiplicative:

2 o
X4 4 Xa X—>=qix , ...

and the equations of the solvablhty varieties take an especially nice form. For
example Eq. (14) becomes?*

2
X4XpXcXp = %
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for the standard scalar checkerboard model or Eq.(19) for the symmetric
Ashkin-Teller model. Of course Eq. (19) can be straightforwardly generalized to
the checkerboard symmetric Ashkin-Teller model. One should notice that the
relation between the homogeneous variables w and the various sets of ‘good
variables’ x; or x or x4 is in all cases a bilinear system.

Recall however the exception of the standard scalar Potts model at ¢ =4 (and
at ¢=0) for which the parametrization (16) becomes additive. In terms of the
previously introduced variables X,, the matrix inverse and the dyadic inverse
read respectively:

rX—-X, JX—>1-X.

For the ssrmmetric Ashkin-Teller model this switch from multiplicative to
additive parametrization corresponds to A = =+ 1, for which the model reduces to -

the g = 4 standard scalar Potts model.
In the g=3 case of the standard scalar Potts model, we even have an exact

identification of the parametfizations x; and x 4. Equation (7) yields the following
values for the x,s (up to a multiplicative factor):

X = (4-1)A4~w)
Xy = @34 - 1)A4 - w?)
- x3 = w(d-1)A4-wd)
- x4 = (4 -1)4-w),
and we recover
X4
X4 = X3

Note that: |

g, =@ with @ =1,

In the case ¢ > 3 the relation between the different parametrizations is not so
clear, because of the determinantal constraints like (13), and the infinite nature
of the representation of the symmetry group. This question will be addressed in
the next section.

Remark. Another transformation, which is known to play a role for the exactly
solvable models has a nice representation in terms of the x,’s. It is the so-called
shift operator (see Eq. (15) of Ref. 28, and Eq. (16) of Ref. 19). '
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It corresponds to the following transformation on one of the four vectors

introduced above:
(a, b,c,d)—~ (b, wa,d,c) .

which translates into simple transformations on the x;’s.
Other automorphisms acting on the rapidities have been considered in Ref. 4:

(a,b,¢,d) > (wa,b,we,d) or (wa b c,d) or {(w™ "¢ da w ).

Again these automorphisms translate into simple transformations on the x;’s.

2.5. Miscellaneous results for the g-state checkerboard chiral Potts model

Among the exact results on the chiral checkerboard Potts model, there exist the
so-called disorder solutions®® for which some dimensional reduction occurs. The
different interesting physical quantities can be calculated exactly, when the
parameters are restricted to a simple algebraic variety: .

g -1
1
(22)

np

- wi(m)a(m)wa(n) = }“'p: 5 wa(p)

for every n=0,...,9 - L. _
Another interesting result’® gives some insight on the model for small

chiralities. If we write
w(n) = w + g, for n=1

one has the following equality for the partition function per site Z:
W g, WO, W EL W8 y)

Zw@),w + ¢, ..

g- .

- G-Z(W(O)[l - ( —1——) Een], w,...,w,)
q_l n=1 :

(ol ()

(23)

qg-1 =i

J with
E ‘ q -1 g1
] 1 -
: q-1/ =7 nel
The existence of such a relation implies that critical points of the standard scalar
Potts model are not isolated: there are critical points in their vicinity in the

parameter space (weak chirality neighbourhbod)’.
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3. An Algebraic Variety for the Checkerboard Chiral Potts Model

The integrability of the checkerboard g-state chiral Potts model can be
understood in a Z-invariant formulation of the model (see p. 141 of Ref. 4). The
four Boltzmann weights of the checkerboard model w,, w,, w;, w, vield dn
integrable model if they can be constructed from four sets of rapidities: (a ap, by,

Cps dp) (i=1,2) and (a,, b,, c,, d, ) (i=1,2). w 1s then constructed from p =p,,
g = q, with the help of formulas (l) and (2). Then w, is constructed from (p,, q,),

ws from (ps, ¢;) and w, from (p,, 1)
The quantity F of Eq. (6) then equals:

aq,-bqfcpfdp.-
F =

apibpicqﬁdql‘
with i = 1, 2 for w; and w, respectively. For the perpendicular Boltzmann weights
w, and w, we have, because of the extra w factor occurring in (3), the relation:

apszchldql

FO0), ..., wala = 1) = @750

and the same equation for w, where p,<p,, ¢,<>q,. Combining these equations
together one gets:

Fwi(0), wi(1), ..., wi(g - 1)) F(wy(0), wo(1), ..., wilg - 1))

X F(Wg,(O), W3(1), 1oy W3(q - 1))F(W4(0), W4(1), vy W4(q - 1)) = (DZ
(24)

The integrability subvariety is the intersection of N; V(i) with (24).

It is straightforward to check that this subvariety gives back the known
integrability varieties previously mentioned for the anisotropic square chiral and
the standard scalar checkerboard Potts model. As will be seen in Sec. 4, this is
also true for the anisotropic symmetric Ashkin-Teller model (Egs. (6), (14), (19)).
It is also invariant by the symmetry group &

There are two other non-trivial integrable subcases of the checkerboard chiral
Potts model. If w,, ws, wy, w, verify:

Fw(0), wi(1), ..., wig — 1)) Flwx(0), wy(1), ..., wofg - 1)) = @ (25)
and

Fws(0), wi(1), ..., wa(g = 1))- F(wa(0), wa(1), ..., walg - 1)) = @ (26)
then the diagonal transfer matrices |

Tw (@), wi(1). ... wilg — 1), wa(0), wa(1), ..., wy(g - 1))
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and FTw3(0), wa(1), ..., wi(a — 1), wa(0), wy(1), . .., wy(g - 1)) commute. Conse-
quently the subvariety of N;V,(i) defined by (25) and (26). is also an integrability
subvariety. Similar results hold for the partition {1, 3}, {2, 4} of {1, 2, 3 4}, These
two subcases are clearly compatible with Eq. (24).

We will now examine the consequences of the existence of this variety for the
standard scalar model for ¢=3 (where we do not have the determinantal
constraints like Eq. (13) for g = 4).

Denote P, and Q; the polynomials in w{0), w(1), w{2) defined as in Eqs. (9)
and (10). Equation (24) reads:

HQIPIPsPy + P P3Py + OsP\PyPy + QuPiPoPs)
- (PyQ20304 + P,01030s + P301Ca0Q4 + Py(010:03) = 0 . (27)

In the anisotropic square limit of the three-state chiral Potts model (w,(n) = wal(n)
and w,(#) = wy(n)), Eq. (27) becomes:

0.0, - 3PP, =0
together with Eq. (8):

POy + PO, =0

The honeycomb and triangular limits cannot be taken by brute force because

Eqgs. (1, 2) may not be fulfilled in the limit,
The honeycomb limit corresponds to

F(w(0), w(1), w(2)) =
and the triangular limit to
| Fow(0), w(1), w(2) =

Equation (24) then becomes:

FOR@), (1), ..., wilg— D) FO0), wL), .., walg - 1)
x F(wy(0), wy(l), ..., wig-1)) = K (28)

F where K = ? and w for the honeycomb and triangular lattices respectively.
In terms of the polynomial P; and Q;, this reads

.3(Q1P2P3 + QoP1Py + Q3P 1Py — PiPoPy)
- (P15 + P01 05 + PiQi0rm - 1(:0:) = 0 (29)
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for the triangular lattice, and

MO PoPs + QWP Py + OsP\Py — PIPyP3)
+ (P15 + PyO1Qs + PsQih - Qia0s) = 0 (30)

for the honeycomb lattice.
Notice that for the chiral isotropic three-state Potts model, Egs. (29) and (30)

are invariant under all permutations of w(0), w(1), w(2) while for (29) one expects
only a symmetry under the exchange of w(1) with w(2). This is the manifestation
of an enhanced symmetry at exact solvability.

In the limit of the standard scalar model, Eq. (27) splits into two equatlons
Eq. (14) for g =3, and a new equation: :

ABCD + 2(ABC + ABD + ACD + BCD)
+ (AB + AC+ BC+ AD + BD+ CD) -4 +B+C+D)-2 =0.

(31

In the ‘good’ variables x, ..., this equation reads:
| X4XpXcXp = — 0? (32)

to be compared with Eq. (14) in the same variables:
X4XpXcXp = W2 . (>33)

Note that Eq.(32) represents an algebraic variety of the standard scalar

checkerboard Potts model, invariant by the group 4. ‘ 7
In the triangular limit (Do), we recover the variety introduced by Martin

and Maillard for g =3 (see Eq. (15) with the minus sign):

ABC + 2B+ BC+ CA) + A+ B+ C-1=0. (34)

In the honeycomb limit (D— 1), Eq. (31) gives a new algebraic variety (for
- q=3) '

ABC + (AB + AC + BC) - 1=0.

In the anisotropic square limit (4= C, B=D), Eq.(31) gives another new
algebraic variety (for ¢ = 3):

APB? + 4(A’B + AB?) + (A2 + B2 + 44B) ~ 24+ B) -2 =0 .

Recalling the equivalence of the standard scalar Potts model with a staggered six-
vertex model,?! one can introduce ‘fugacity’ variables for these various lattices
(z = x4xpxcxp/q 2 for the checkerboard lattice, z = X, X g/( — g, ) for the anisotro-
pic square lattice, z = x xzx/q * for the triangular lattice, z = x xzx/( ~ g, ) for
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the honeycomb lattice).2? Condition (14) or (33) corresponds to the case where
it is possible to ‘wash’ the staggering field (ie. z= 1) by gauge transformations.
The model then reduces to an integrable six-vertex model. What we have seen for
g=3isthat z= - 1 also corresponds to solvable cases for these various lattices,
and even z= i for the anisotropic square lattice. Remark that an analogous
phenomenon happens for the symmetric Ashkin-Teller model with the relation
x%= - q2 of Ref. 20.

4. The Symmetric Ashkin-Teller Limit of the Chiral Potts Model

We have described the model and its parametrization inSec. 2.3. We describe
here how it is related to the one of the four-state chiral Potts model (Sec 2.1).

We may go from the ¢ = 4 chiral Potts mode! to the symmetric Ashkin-Teller
model by taking w(1) = w(3).

What is remarkable is that the determinantal condition (13) becomes:

1
A =<
2
For the self-dual symmetric Ashkin-Teller model, this condition is just a free
fermion condition. |
Moreover the overdetermined system (2) gives the following relation on the

xi’S:
X = Q.)C4 and x3 = Q.Xz (35)

where Q= @ (36)

and similar conditions on X5, Xg X7, Xg Notice that these equations are
compatible with Eq. (4) and-of course with the group action described in Sec. 2.4.
The ‘good’ variable x of the symmetric Ashkin-Teller model is nothing but the’
ratio - (x;/x;)?, and g, of Sec. (2.3) is a root of order eight of unity. We also

have
X\ 2 I
F= (;3) . 37

The identification comes as follows: relation (35) used in the system (2) for g=14,
(keeping in mind w(1) = w(3)) yields two equations: '

Il

(W(0) - w(2) + 2Qw(1)] x1 = QLW(O) + W()] xs

_ Qw(0) + W)X,

[W(0) - w(2) - 2Qw(1)] X3
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leading to

) (35_1)2 [w(0) - w(2) - 28w(1)].

x;) T w(0) - w(2) + 2Qw(1)] ’

to be compared with Eq. (18).
Equation (24) identifies with Eq. (19). In the isotropic case it reads:

X=x=-(xQ)
which are Eqgs. (20}, (21), and one gets

W(O)_aSioz‘3 w(l)__a7ia‘7
W(l)—aia""lj W(z)_asia‘f’

(38) .

where

These results (35), (36), (37) hold for arbitrary ¢. In the anisotropic case, one gets
an algebraic curve parametrized by ’

‘ W(O) 1 - Q.)C]/Xg W(l) 1 - Q3X1/X3

wl) ~ il - Q7 W@ xe - Q3 (39)

where
Q4 =1 .

and similar expressions for w.

In the isotropic case:
Xi 2 | : |
—) = Q. z
8 o

Introducing « such that «®¢ = 1, we will have the points |

W(O) aSiaf‘3
w(l) S ata!

w(l) al a7
w(2) B o oo

w(n) a3 +4n + oo (3+4n)

wn + 1) gl g g - (Ledn @
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These results are exactly the points found in Ref. 11 for which an enhanced
symmetry appears. These self-dual critical points can be described by conformal
Z,xZ, theories."' -

For g =5 or ¢ =7 for example, these points are bifurcation (critical) points of
the phase diagram.?® On the other hand, the critical points of the solvable chiral
Potts model were given in Ref. 4: they are obtained with

a? + b I

ot 2

for all sets of rapidities. This critical variety should contain for ¢=3 the Lifshitz
point where the incommensurate phase begins. In terms of the x/s it gives:

¢ =d and

Xy = X7, Xy = Xs, X4 = Xg, X3 = Xg. In the case /=0, one recovers Eqgs. (35), (36).

In the g = oo limit one recovers from Eq. (39) the U(1) invariant X Y model
with specific Boltzmann weights (up to multiplicative factors):

{p - w’)ll o
2 .

where x,/x; = exp(i0/g) (and similar equations with W and ). Equation (6) gives

Wp, o = |SiN

8+ 6=m.

Remark 1. One sees that, here again, the genus greater than one parametriza-
tion degenerates into a rational one. _

Remark 2. The Fateev-Zamolodchikov points are self-dual (\/&w(n) = W(n)),
and one also has w{n)=w(g - n).

Remark 3. For the Fateev-Zamolodchikov points, and the three-state standard
scalar Potts model, one has :

5 nth root of unity.
X4 X3 :

Remark 4. We have found algebraic subvarieties of ¥, which are invariant by
the action of the group & and compatible with Eqgs. (4), (6) for arbitrary q.
Conditions (4), (6) are actually quite restrictive, in particular if the subvarieties
we look for are given by equalities between the x;’s, up to multiplicative factors.

Remark 5. Equation (14) is known to describe a subvariety where the model
is solvable and critical. The status of Eq. (27) is less clear. It is a variety where the
model is exactly solvable, For g =3, the points given by the isotropic limit of
Eq. (34) and (33) could very well be critical points, in view of the numerical
studies of the zeroes of the partition function of the isotropic triangular lattice.!?
We will only remark that, because of Kardar’s result,?% all the known or possible
critical points can be extended for weak chiralities.
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Remark 6. One can also try to relate Eq. (24) and the disorder varieties (22).
Actually the disorder solution for the anisotropic triangular lattice, can be seen
as a trivializing limit of the star-triangle relation. This is particularly clear on the
simple example of the Ising model. The star-triangle relation reads '

exp(K 0203 + Kyoy03 + Kzo103) = A Z exp (L1106 + Lyoho + Lio30) .
a

The disorder solution

thK; + thK,-thK; = 0

amounts to say that L, or L, vanishes. This question will be addressed in further
studies. '

5. Conclusions

This paper emphasizes the role played by the algebraic subvarieties of the
space of parameters, as well as the importance of the choice of variables. Let us
go back for example to the star-iriangle relation for the chiral Potts model. If we
construct three sets of cyclic and diagonal matrices respectively C, C’, C” and D,

D', D", from the weights w(i), w'(i), w’(i), W(i), ' (i), #"(i), with

Ci; = w(i - j) for the cyclic matrices, and
D;; = ¢; ;-w(i) for the diagonal matrices

‘then the star-triangle relation may be written as the matrix equation:

CD'C"=DC'D" . (42)
In the limit where D = D’ = D = unit matrix the variables # enable to write very
simply this matrix equation, The limit C=C’ = C” = unit matrix is even more
trivial. However when the matrices C and D are non-trivial, the finding of
variables appropriate for solving Eq. (42) is not easy. The ‘good’ variables x used
throughout the paper are such a good choice, in which Eq. (42) collapse to
extremely simple ones, as, among others:

X's X X' X'g

xr3 X5 ’ xrl )C”3

On this example, the existence of an (overdetermined) bilinear system is seen
as a key structure for the star-triangle relation.

We have seen that these fundamental ‘good’ variables exist for various models
which do not automatically reduce to cyclic matrices (the symmetric Ashkin-
Teller model for instance). It is thus natural to try finding models where such
structures are available, and provide us with candidates to integrability.
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We could envisage generic models with Boltzmann weights w; ;, with
restrictions of the type

wij = Wi, j (43)

for some pairs of indices {i, AR Cyclic matrices (i.e. such that w; ;=
Wiy ej+lds OF symmetric matrices (i.e. such that w; ;= w; ;) exemplify models of
this type. We are interested in families which are (globally) invariant by the two
involutions I and J, as described in Sec. 2.4 (I is the matrix inversion, and J is
the dyadic mverse w; ;— 1/w; ;.) '

We could, in a second step, look for bilinear (overdetermined or not) systems
like ' ‘

S EFwnc=0, k=T (44)
ifi ke

such that not only I and J, but all the generators of & are simply represented in
terms of the x;’s:

Xp = o Xatk) -

with o some permutation of r indices, and oy complex numbers, that is to say &
is represented as & semi-direct product of Z and of a subgroup of the permutation

group of r elements. :
One imagines that, because of the bilinear character of Eq.(44), linear

transformations on the w’s may be simply represented on the x;’s. On the
contrary nonlinear transformations like the dyadic inverse J will not be
represented simply unless for example the coefficients £ fjk vanish except for two
pairs of indices (i1, /1) and (i5,j2)- _

Actually, as far as the first step is concerned, for ¢ =3 the exhaustive list of
patterns of the type (43) contains only 17 elements, some being related by trividl
relabelling of rows and columns. Most of these patterns define subgroups of
GL(3, R). The cyclic matrices form an abelian one. The sets which do not
correspond to subgroups of GL(3, R) are the symmetric matrices (symmetric with
respect to the diagonal), and the ones which are symmetric with respect to the
other diagonal.

A classification of the stable patterns is, in our opinion, a direct way to uncover
spin models particularly interesting for further developments in statistical
mechanics on lattices. Further exploration in this direction is In progress.
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